PROPERTIES INHERITED BY RING EXTENSIONS
C. W. Kohls

Two of the basic methods of embedding a ring in a larger ring are the adjunction
of an identity and the formation of the direct sum with another ring. They are spe-
cial cases of the general ring extension defined as follows.

Definition1l. Let A and S be two rings. We say that a ring E is an exlension
of A by S if A is an ideal in E and E/A is isomorphic to S.

The more precise homological definition is not needed in this paper. Several
authors have discussed whether a ring with a certain property can always be em-
bedded in a ring with identity having the same property (see, for instance, the intro-
duction to [5]). Similar problems have also been considered for general extensions,
for example, in [8]. The present paper answers several questions of this type. The
theorem in Section 2 is concerned with the special case of embedding a ring in a ring
with identity, while the main body of results (Section 3) deals with general extensions.
The two basic theorems, which yield several corollaries, concern semisimple rings.
Sample corollary: Any extension of a Boolean ring by a Boolean ring is Boolean.
Finally, we improve a theorem of Szendrei on the general extension of rings to rings
with identity.

1. PRELIMINARIES

The problem of describing all extensions of A by S of the type defined above was
solved by Everett [3], and the solution was later recast by Rédei [7]. (In some of the
literature the term “Schreier extension” is used for Everett’s extension.) In Rédei’s
formulation, each extension of A by S is viewed as a “skew product,” that is, as the
set A X S with addition and multiplication defined by

(a,s)+ (M, t) = (@a+b+[s, t], s+1),
(a, s)(b, t) = (ab+sb+at+ {s, t}, st),

where [s, t], {s, t}, sb, and at describe functions from S XS, S X A, and A X § into
A. This is a ring if and only if a specific but rather long collection of identities in-
volving these functions is valid. In the two classical cases mentioned in the introduc-
tion, the first two functions are, of course, the zero function. Further details, which
may be found in [8], will not be given here; in fact, in most of the paper we do not use
an explicit description of the extensions of A by S.

We shall now give the definitions of some of the less familiar concepts used in
the sequel. The characteristic of a ring A is the common additive order of all the
elements of A, if it exists; this is necessarily either a prime or infinity. (Our use
of the word “characteristic” in [5] is different.) For any prime p, A is a p-7ing if
it has characteristic p and aP = a for each a € A. If m is a positive integer, a
ring A is m-rvegular if for each a € A there exists an x € A such that
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a™xa™ = a™; a w-regular ring is defined similarly, with the m allowed to vary,
and a 1-regular ring is called vegular.

The ring of integers modulo n will be denoted by I,.

2. IDENTITY-ADJUNCTION EXTENSIONS

Assume that S is a commutative ring with identity over which A is an algebra.
Then one extension of A by S is defined by the formulas

(a,s)+ (b, t) = (a+b, s+t), (a, s)(b, t) = (ab + sb + ta, st);

that is, the functions sb and at are defined to be multiplication of b and a by the
operators s and t, respectively. (Observe that both s and t are now written on the
left.) This extension will be denoted by (A ; S). Since (A ; S) has an identity, and
adjoining an identity by any of the usual methods yields an extension of this type, we
call (A ; S) an identity-adjunction extension.

In [5], we considered the question whether (A ; S) is regular, m-regular, or 7-
regular if both A and S are. In the case of regularity, the answer is easily ob-
tained; see Theorem 2 below. A more involved problem is whether there always
exists a commutative regular ring S with identity over which a regular ring A is an
algebra. Fuchs and Halperin [2] have, in fact, exhibited a regular ring S over which
every regular ring is an algebra. As was pointed out in the review of [5] (Mathema-
tical Reviews 18 (1957), p. 375), the proofs therein actually yield only the results that
if A is commutative regular and S is m-regular (7-regular), then (A ; S) is m-
regular (7m-regular). (The statement in [6] that semisimplicity can be avoided in
Lemma 5 of [5] unfortunately remains in doubt.) More than this can be obtained in a
simpler fashion, however; see Theorem 2 below. The only result of this type that
we have been able to obtain for a generalized regular ring A is the following.

THEOREM 1. If A is a p-regulay ring of characteristic p, wheve p is a prime,
then (A ; Ip) is a p-vegular ving of chavacteristic p.

Proof. Clearly, (A ; Ip) is a ring of characteristic p. Note that
(a, s)P = (aP, sP) = (aP, s);

so, given (a, s), we are required to find (x, t) such that (a®, s)(x, t)(aP, s) = (aP, s).
This reduces to solving the equation

(1) aPxaP + sxaP + saPx + s%x = aP - ta’P - 2staP,
where sts =s. We choose t =0 if s = 0. Now

-ta®P - aP = _{Pa%P _ aP = (_ta? - a)P,
so there exists a z € A such that

(-taP - aP)z (-ta?P - aP) = —ta’P _ aP,

Set x=(st - 1)z + tzapzap. Direct verification shows that this x is a solution of

(1).
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3. GENERAL EXTENSIONS

We now use an idea of Brown and McCoy to obtain some results about general
extensions; see Lemma 1 and Theorem 2 of [1].

THEOREM 2. If A is regulay and S is m-vegulay (n-regular), then any exten-
sion E of A by S is m-regular (m-regular).

Proof. The proof reads the same way in both cases, with m interpreted as
variable in the w-regular case. Given a € E, we can find y € E such that
a™ - a™Mya™ € A, because S is m-regular (v-regular). Thus, there exists z € A
such that

@™ - alya™)z @™ - aMya™) = a™ - a™ya™,

Set x=2z -za™y - ya™z+ya™zaMy+y; then a™xa™ =a™
Varying this idea slightly, we have the following result, similar to both Theorems
1 and 2.

THEOREM 3. If A is a p-regular ving, where p is a prime, and S is m-regu-
lay (m-regular), then any commutative extension E of A by S, of charactevistic p,
is an mp-regulay (n-regulay) ring.

Proof. The proof reads the same way in both cases, with m interpreted as
variable in the w-regular case. Given a € E, we can find y € E such that
a™ - a™ya™ € A, because S is m-regular (7-regular). Thus, there exists z € A

such that
@™ - aya™)Pz (@™ - aPya™)P = (@™ - aPya™)P,
Since E is commutative and of characteristic p, this can be written in the form

(2™P _ gP yP Py, (TP _ TP (P aMP) _ amp _ ,mp P amp

Set x=2z - za™PyP - yPa™Py 4 yPa™P za™PyP 4 yP . then a™Pxa™P = a™P

Remark 1. The device used in Theorems 2 and 3 cannot be used to prove that E
is m-regular if both A and S are m-regular (even if m is prime and E is com-
mutative and of characteristic m). Indeed, the natural generalization of [1, Lemma
1] is false; that is, it is not true that if a™ - a™ ya™ is m-regular, then a is m-
regular (the definition of m-regularity of an element being the obvious one). For
example, in the ring A of 2-by-2 matrices over I4, define a to be the matrix of
ones; then a is not 2-regular, but a% - a2ya? is 2-regular for every y € A, since
a? ya2 = 0 for every y € A and a%=o0. (Note: this also shows that, in contrast with
the regular case, the ring of matrices over an m-regular ring need not be m-regu-
lar.)

Remark 2. In Theorem 3, it is not sufficient to assume that A and S are com-
mutative and of characteristic p—see Remarks 3 and 4 below.

The next theorem leads to a variety of results on properties inherited by ring
extensions.

THEOREM 4. Let A be isomovphic to a subdivect sum of the collection of
primitive simple vings {A, }, and let S be isomovrphic to a subdirect sum of the
collection of primitive vings {Bg}. If E is any extension of A by S, then E is
isomovphic to a subdivect sum of the collection of primitive vings {Aa} U {Bﬁ}.
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Proof. For each o and each S, let

M, = {a€ Aray = 0} and PB={s€S:s;g=0},

where ag and sg denote components in the given subdirect sums. Then

n M, = (0) and ﬂ Pg= (0). Now the pr1m1t1ve ideals Pp are in one-to-one
correspondence with a set of primitive ideals PB in E containing A, in such a way

that Pg = P} /A [4, p. 205]. We observe that n Pj = A. Furthermore, the pr1m1—

tive ideals Ma are in one-to-one correspondence with a set of primitive ideals Mg,
in E not containing A, in such a way that My = M}, N A [4, p. 206]. Thus

(ﬂM&)ﬂ(QPkg) -(Nwmy) na=-Natynay =Ny, = @,

so E is isomorphic to a subdirect sum of the quotient rings modulo the My, and Pb .

Now each M/, is a maximal ideal in E. For if I is an ideal in E containing M, ,
then IN A= Mgy = My N A, since IN A is an ideal in A containing M, , which is a
maximal ideal in A. Thus IAcC My . But A & My, and My is a prime ideal, so
that I M}, whence I= M{, . I follows that (Mg, A) = E for each ¢, and we can
write

E/M,, = (M4, A)/My = A/MG 0 A) = A/My = Ag.
Also, for each B, we have the isomorphisms

E/Pp = E/A/PB/A = s/Pg = Bg.

Therefore E is isomorphic to a subdirect sum of the collection of rings
{ag} U {Bg}.

COROLLARY 1. Let F be a field, and let A and S be rvings of F-valued func-
tions on some domains X and Y, vespectively, such that, for each x € X (y € Y)
and each v € F, theve is an a € A (s € S) with a(x) =v (s(y) =v). Then any exten-
sion E of A by S is a ring of F-valued functions on X U Y such that, for each
z € XUY andeach v € F,theve is an e € E withe(z) = v.

Proof. A and S are subdirect sums of fields, which are primitive simple rings.

If a ring A has a property 7 definable in terms of ring operations, we write
A>T,

Definition 2. A ring property 7 will be said to be (1) divisible if A > 7 implies
that B > 7 for every quotient ring B of A, (2) summable if A, > 7 for all A, in
some collection implies that B > 7 for every subdirect sum B of the rings A, .

Definition 3. A ring A will be called sivongly semisimple if the intersection of
the primitive maximal ideals in A is (0).

Of course, every strongly semisimple ring is semisimple; and, since a commuta-
tive primitive ring is simple, every commutative semisimple ring is strongly semi-
simple.

THEOREM 5. Let E be any extension of a strongly semisimple ving A by a

semisimple ving S. For any divisible and summable ving propervty w, A > 7 and
S > w imply that E > 7.
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Proof. Since A and S are semisimple, they are isomorphic to subdirect sums
of collections of primitive rings {Aa and Bﬁ} , respectively; and we may as-
sume that the Ay are simple, since A is strongly semisimple. By Theorem 4, E is
isomorphic to a subdirect sum of the collection {Aa} U {BB} . Because 7 is divis-
ible, Ap > 7 for all @ and Bg > 7 for all B. The fact that 7 is summable then im-
plies that E > 7.

COROLLARY 2. If A and S ave Boolean rings (p-vings), and E is any exten-
sion of A by S, then E is a Boolean ving (p-ving).

Proof. Boolean rings (p-rings) are commutative and semisimple, and the prop-
erty of being a Boolean ring (p-ring) is divisible and summable.

COROLLARY 3. Let E be any extension of a strongly semisimple ving A by a
semisimple ving S. If A and S salisfy a certain polynowmial identity, then so does E.

Pyroof. The property of satisfying a certain polynomial identity is divisible and
summable.

COROLLARY 4. Let E be any extension of a strongly semisimple ving A by a
semisimple ving S. If A satisfies the polynomial identity P(x1, ***, X,) = 0 and S
satisfies the polynomial identity Q(y1, ***, Ym) = 0, then E satisfies the polynomial
identity P(xy, -, x,)Q(y1, ***, ¥mm) = O.

Proof. A and S also satisfy the identity P(xj, -, %,)Q(y 1, ***, ¥m) = 0, so
Corollary 3 applies.

Remark 3. If E is any extension of A by S, the requirement that A and S be
commutative is necessary for the commutativity of E. From Corollary 3, this con-
dition is sufficient if A and S are semisimple. The following example shows that it
is not sufficient if A is not semisimple. Let A be the zero-ring whose additive
group is the additive group of the real field R, and let S =R. Let E be the extension
of A by S with the following operations:

(a,s)+(b,t) = (@a+b, s+1t), (a, s)(b, t) = (ab + sb, st) = (sb, st),

where sb is defined to be the element of R obtained by forming the usual product
sb in R. R is easy to verify directly that E is a ring. Obviously, A and S are
commutative; but E is not commutative, since (0, 1)(1, 0) = (1, 0) while

(1, 0)(0, 1) = (0, 0). (E can be defined alternatively to be the algebra generated over
R by the elements e and z satisfying the relations €% =e, z2 =0, ez = z, and

ze = 0. This is similar to [4, p. 42].)

Remark 4. I E is an extension of A by S, and E has finite characteristic p,
then A and S have characteristic p. Corollary 3 shows that if A is strongly semi-
simple, S is semisimple, and both rings have characteristic p, then E has charac-
teristic p. But this also fails if A is not strongly semisimple (even if both rings
are commutative): I4 is an extension of the ring of even integers modulo 4 by I,
but it does not have characteristic 2.

We turn now to the property of possessing an identity. Our theorem is a
strengthened version of a theorem of Szendrei [8], and the proof is obtained by
modifying his only slightly.

THEOREM 6. If an extension E of A by S has an identity, then (1) S has an
identity u, and (2) there exists b € A such that va=a - ba for all a € A. Con-
versely, for any extension E of A by S, if (1) and (2) hold, and A has at least one
element that is not a zevo divisov, then E has an identity (namely, (b, u)).
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Proof. Assume that E has an identity (b, u). Since S £ E/A, it is clear that u
is the identity of S. For all (a, 0) € E, we have the relations

(b, u)(a, 0) = (ba +ua, 0) = (a, 0),

whence ua = a - ba.
Now assume that conditions (1) and (2) hold, and that A has at least one element
c that is not a zero divisor. For any (a, s) € E,
(b, u)(a, s) = (ba+ua+bs + {u, s}, us).
Set d =ba +ua+bs + {u, s}. By conditions (11) and (9) in [8],
(bs)e = b(se) and {u, s}c = u(sc) - (us)c,

so cdc = c(ba + ua)c + c(b(sc) + u(sc) - sc). Using the assumed condition (2), we ob-
tain cdc = cac. Since c¢ is not a zero divisor, d = a. Thus,

(b, u)(a, s) = (d, us) = (a, s).

The proof that (b, u) is a right identity is similar.

Remark 5. Since any ring has an extension with an identity, no condition on A
alone can be necessary. On the other hand, (1) and (2) by themselves are not suffi-
cient: The example given in Remark 3 is an extension of a ring consisting of zero
divisors by a ring with identity, and va=a =a - ba for any b € A. But E does not
have an identity, since (1, 0)(a, s) = (0, 0) for all (a, s) € E.
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