STIRLING SUMMABILITY OF RAPIDLY DIVERGENT SERIES

M. S. Macphail

1. INTRODUCTION

A summability method based on the Stirling numbers and a parameter λ was introduced by Karamata [5], who called it the Stirling method and denoted it by $S(\lambda)$. We shall use $\mathscr{S}(\lambda)$ for a slight modification of this method. The special case $\lambda=1$ of $\mathscr{S}(\lambda)$ was studied independently by Lototsky [7] and developed by Agnew [1], [2], who named this case the Lototsky method, denoted by L. To illustrate the power of the method, Agnew showed that Euler's series $\Sigma(-1)^k \, k! \, z^{-k}$ is L-summable if (with z=x+iy) $x\geq \log 2$, but not if $|z|<\log 2$; the intermediate region remained in doubt [1, p. 111]. The purpose of the present note is to present a general theorem on Stirling summability, which will show in particular that Euler's series is L-summable if z is outside the first arch of $x=\log(2\cos y)$, but not if z is inside. By a separate argument, we can show that the series is summable on the boundary also. Furthermore, for $\mathscr{S}(\lambda)$ -summability ($\lambda>0$), we obtain the same region multiplied by λ ; therefore the series is summable by some member of the family in the whole plane, except on the negative real axis.

It was pointed out by the referee that Greub [4] used the same curve x = log(2 cos y) for somewhat similar purposes. Greub's paper appeared almost simultaneously with [2], and it reached the same conclusions about the relations among the Lototsky and other summability methods.

2. DEFINITIONS

We define the Stirling numbers p_{nk} (n = 1, 2, \cdots ; k = 0, 1, 2, \cdots , n) by the identity

$$x(x+1)(x+2)\cdots(x+n-1) = \sum_{k=0}^{n} p_{nk} x^{k};$$

thus $p_{n0}=0$ (n = 1, 2, ...), and we define also $p_{00}=0$. The Stirling method was defined by Karamata by the formula

S(
$$\lambda$$
): $\sigma_n = \frac{1}{(\lambda)_n} \sum_{k=0}^n p_{nk} \lambda^k s_k$,

where $(\lambda)_n = \lambda(\lambda+1)(\lambda+2)\cdots(\lambda+n-1)$; if $\sigma_n \to \sigma$ as $n \to \infty$, we say the sequence $\{s_0, s_1, s_2, \cdots\}$ is $S(\lambda)$ -limitable to σ . We always assume that $\lambda > 0$, which ensures regularity.

Received July 7, 1964.

This paper was written while the author was a member of the Summer Research Institute of the Canadian Mathematical Congress, Kingston, Ontario, 1964.

We shall modify the method slightly, applying it to the sequence $\{s_1, s_2, \cdots\}$ by writing

$$\mathcal{S}(\lambda): \quad \sigma_{n} = \frac{1}{(\lambda)_{n}} \sum_{k=1}^{n} p_{nk} \lambda^{k} s_{k},$$

in order that the special case $\lambda=1$ may agree exactly with the Lototsky method L as written by Lototsky and Agnew. (Precision is in order, since the method is not translative.)

It was shown in [1, p. 114-115] that the series-to-series form of L is

$$U_1 = u_1$$
,

$$U_n = \frac{1}{n!} \sum_{k=1}^{n} p_{n-1,k} u_{k+1}$$
 (n = 2, 3, ...);

if $\Sigma \, U_n = \sigma$, we say the series $\Sigma \, u_k$ is L-summable to σ . For our purposes it will be more convenient to renumber the terms of the series, starting from u_0 and U_0 , to obtain [2, p. 364]

$$U_0 = u_0$$

$$U_n = \frac{1}{(n+1)!} \sum_{k=1}^{n} p_{nk} u_k$$
 $(n = 1, 2, \dots).$

By the method used in [1], we find that the series-to-series form of $\mathcal{G}(\lambda)$ is

(1)
$$U_{0} = u_{0},$$

$$U_{n} = \frac{1}{(\lambda + 1)_{n}} \sum_{k=1}^{n} p_{nk} \lambda^{k} u_{k} \quad (n = 1, 2, \dots).$$

Now it is well known that if we take the branch of $-\log(1-w)$ defined by $\sum w^n/n$, then

$$\{-\log (1 - w)\}^k = k! \sum_{n=k}^{\infty} \frac{p_{nk}}{n!} w^n$$
 $(k = 1, 2, \dots).$

This is easily proved inductively: we differentiate to obtain a relation between $\{-\log{(1-w)}\}^{k+1}$ and $\{-\log{(1-w)}\}^k$, and use the recursion formula

$$p_{n+1,k} = n p_{n,k} + p_{n,k-1}$$
.

It follows at once that

$$\{-\lambda \log (1 - w)\}^k = k! \sum_{n=k}^{\infty} \frac{p_{nk}^{\lambda}}{n!} w^n \quad (k = 1, 2, \dots).$$

We may therefore regard the $\mathscr{S}(\lambda)$ -method as generated in the following way. Given the series $\Sigma_{k=0}^{\infty} u_k$, write the series

$$f(t) = \sum_{k=0}^{\infty} \frac{u_k}{k!} t^k,$$

put $t = -\lambda \log(1 - w)$, and arrange $F_{\lambda}(w) = f(-\lambda \log(1 - w))$ in powers of w:

$$F_{\lambda}(w) = u_0 + \sum_{k=1}^{\infty} u_k \sum_{n=k}^{\infty} \frac{p_{nk} \lambda^k}{n!} w^n$$

$$= u_0 + \sum_{n=1}^{\infty} w^n \sum_{k=1}^{n} \frac{p_{nk} \lambda^k}{n!} u_k.$$

Denoting $F_{\lambda}(w)$ by $\sum_{n=0}^{\infty} h_{\lambda,n} w^{n}$, we see by (1) that

(2)
$$U_n = \frac{n!}{(\lambda+1)_n} h_{\lambda,n},$$

and we may hope to determine whether ΣU_n converges by considering the properties of $F_{\lambda}(w)$.

We note in passing that it is easily seen by classical analysis that if the series $\Sigma \, U_n \, w^n$ has a positive radius of convergence, then the same is true of $\Sigma \, (u_k/k!) t^k$, as was stated by Agnew [2, p. 366].

3. THE MAIN RESULT

THEOREM. Given a series

(3)
$$\sum_{k=0}^{\infty} \frac{a_k}{z^k},$$

let

$$f_z(t) = \sum_{k=0}^{\infty} \frac{a_k}{k!} \left(\frac{t}{z}\right)^k$$

and

$$F_{z,\lambda}(w) = f_z(-\lambda \log (1 - w)) = \sum h_n w^n$$

(where the h_n depend on z and λ). Then

- (i) for all z such that $F_{z,\lambda}$ is regular and bounded in $\left|w\right|<1,$ the series (3) is $\mathscr{S}(\lambda)\text{-summable};$
- (ii) for all z such that $F_{z,\lambda}$ has a singularity in |w|<1, the series (3) is not $\mathcal{S}(\lambda)$ -summable;

(iii) for values z such that $F_{z,\lambda}$ is regular but not bounded in |w| < 1, the series (3) may or may not be $\mathcal{S}(\lambda)$ -summable.

Proof. (i) It was shown by Landau [6, p. 446] that the factorial series

$$\sum U_n = U_0 + \sum_{n=1}^{\infty} \frac{n! h_n}{(\lambda + 1)_n}$$
,

based on (2), converges if and only if the Dirichlet series

$$\sum_{n=1}^{\infty} \frac{h_n}{n^{\lambda}}$$

converges. Also, if $S_n = h_1 + \cdots + h_n$, then

$$\sum_{n=1}^{p} \frac{h_n}{n^{\lambda}} = \sum_{n=1}^{p-1} S_n \left(\frac{1}{n^{\lambda}} - \frac{1}{(n+1)^{\lambda}} \right) + \frac{S_p}{p^{\lambda}}.$$

Now

$$\frac{1}{n^{\lambda}} - \frac{1}{(n+1)^{\lambda}} = O\left(\frac{1'}{n^{\lambda+1}}\right),$$

and under our assumption that F(w) is regular and bounded on |w| < 1, it follows from another result of Landau's [3, pp. 442-443] that $S_n = O(\log n)$ as $n \to \infty$ for fixed λ , z. Hence (4) converges, and this completes the proof of part (i).

- (ii) This part is obvious.
- (iii) As an example we consider the L-summation of the geometric series $\,\Sigma\,\zeta^n$. Here

$$f(t) = e^{\zeta t}, \quad F(w) = e^{-\zeta \log (1-w)}.$$

The image of |w| = 1 in the t-plane $(t = \alpha + i\beta)$ is the first arch of

$$\alpha = -\log(2\cos\beta)$$
,

which extends to infinity in the positive real direction, in a strip of width π , the unit disk being mapped into the inside of the arch. If $\Re\,\zeta < 0$, then $\Re\,(-\zeta\log(1-w))$ is bounded above, and |F(w)| is bounded, on |w| < 1; by part (i), $\Sigma\,\zeta^n$ is L-summable. If $\Re\,\zeta > 0$, we no longer have the boundedness; nevertheless we know by [1, p. 107] that $\Sigma\,\zeta^n$ is L-summable if $\Re\,\zeta < 1$, but not if $\Re\,\zeta \geq 1$.

4. APPLICATIONS

We consider first the series $\Sigma_{k=0}^{\infty} \, (\text{-1})^k \, k! \, z^{-k} \,$ mentioned in the Introduction. Here

$$f_z(t) = \frac{z}{z+t},$$

$$F_{z,\lambda}(w) = \frac{z}{z - \lambda \log(1 - w)}$$
.

It is a question of whether z is or is not a value taken by $\lambda \log(1 - w)$ in the unit circle. More precisely, the image of |w| = 1 by $z = \lambda \log(1 - w)$ is the first arch of

$$\lambda^{-1}x = \log(2\cos\lambda^{-1}y),$$

which we denote by C_{λ} , and parts (i), (ii), (iii) of the theorem apply according as z is outside, inside, or on C_{λ} ; therefore the series is $\mathscr{S}(\lambda)$ -summable if z is outside C_{λ} , but not if z is inside. The curve C_{λ} is of course the curve C_1 : $x = \log{(2\cos{y})}$, multiplied by λ , and as $\lambda \to 0$, the curves C_{λ} approach the negative real axis. As λ decreases, the methods $\mathscr{S}(\lambda)$ become stronger, with consistency [8]; since the transformed series converges uniformly in each closed bounded region outside C_{λ} , the $\mathscr{S}(\lambda)$ -sum of the series is the analytic continuation of the L-sum outside C_{1} , namely, the Borel value

$$\int_0^\infty \frac{ze^{-t}}{z+t} dt,$$

in the cut plane. (The generalized Borel method includes L; see [1, Section 11].)

It was pointed out by M. Wyman, in correspondence, that for each $\lambda>0$ the series $\Sigma(-1)^k k! z^{-k}$ is $\mathscr{S}(\lambda)$ -summable on the curve C_λ itself. This may be proved from Cauchy's integral:

$$h_n = \frac{1}{2\pi i} \int_C \frac{1}{w^{n+1}} \frac{z}{z - \lambda \log(1 - w)} dw$$
.

We observe that if z is on C_λ , the integrand has a branch point at w=1 and a simple pole at the point w=1 - $e^{z/\lambda}$ on the unit circle. If we take C to be a circle of radius R>1, with keyholes coming in to the branch point and the pole, we can show by straightforward estimates that $\Sigma\,h_n/n^\lambda$ converges.

We next consider the series $\Sigma_{k=1}^{\infty}(B_k/k)z^{-k}$, the B_k denoting the Bernoulli numbers. The case z=1 was treated in [1, Section 10]. We set

$$u_k = B_{k+1} (k+1)^{-1} z^{-k-1}$$
,

and for simplicity we consider only $\lambda = 1$. We find

$$f_z(t) = \frac{1}{z} \frac{1}{e^{t/z} - 1} - \frac{1}{t},$$

$$F_{z,1}(w) = \frac{1}{z} \frac{1}{e^{(-\log(1-w))/z} - 1} + \frac{1}{\log(1-w)}$$

Thus $F_{z,1}$ is bounded in |w| < 1 provided the equation $\log(1 - w) = 2\pi niz$ has no roots in |w| < 1 for any $n = \pm 1, \pm 2, \cdots$. The image of |w| = 1 by

$$\log (1 - w) = 2\pi niz$$

is the curve C_1 of the preceding example, divided by $2\pi ni$; this encloses the positive or negative imaginary axis according as n is positive or negative. For L-summability it is sufficient that z be excluded from the regions corresponding to n=1 and n=-1; these contain the whole imaginary axis. For the allowable values of z, the L-sum of the series is the Borel value

$$\int_0^\infty e^{-t} \left(\frac{1}{z} \frac{1}{e^{t/z} - 1} - \frac{1}{t} \right) dt = \log z - \frac{\Gamma'(1+z)}{\Gamma(1+z)}.$$

We consider finally the series

$$1+0-\frac{2!}{1!z^2}+0+\frac{4!}{2!z^4}+\cdots$$

Taking again $\lambda = 1$, we find that

$$f_z(t) = e^{-(t/z)^2}, F_{z,1}(w) = e^{-(\log(1-w))^2/z^2}.$$

The domain of summability consists of the quadrant $\left|\arg z\right|<\pi/4$ and the opposite quadrant.

These three examples show that while the method provided by the theorem is fairly general, the results of applying it in special cases may vary considerably.

REFERENCES

- 1. R. P. Agnew, The Lototsky method for evaluation of series, Michigan Math. J. 4 (1957), 105-128.
- 2. ——, Relations among the Lototsky, Borel and other methods for evaluation of series, Michigan Math. J. 6 (1959), 363-371.
- 3. P. Dienes, The Taylor series, Clarendon Press, Oxford, 1931.
- 4. W. Greub, Relations between summation methods and integral transforms, J. Res. Nat. Bur. Standards 63B (1959), 1-13.
- 5. J. Karamata, Théorèmes sur la sommabilité exponentielle et d'autres sommabilités s'y rattachant, Mathematica (Cluj) 9 (1935), 164-178.
- 6. K. Knopp, Theory and application of infinite series, Blackie and Son, London, 1928.
- 7. A. V. Lototsky (or Lotockii), On a linear transformation of sequences and series, Ivanov. Gos. Ped. Inst. Uc. Zap. Fiz.-Mat. Nauki 4 (1953), 61-91 (in Russian).
- 8. V. Vučković, The mutual inclusion of Karamata-Stirling methods of summation, Michigan Math. J. 6 (1959), 291-297.

Carleton University, Ottawa