STIRLING SUMMABILITY OF RAPIDLY DIVERGENT SERIES

M. S. Macphail

1. INTRODUCTION

A summability method based on the Stirling numbers and a parameter A was
introduced by Karamata [5], who called it the Stirling method and denoted it by S(A).
We shall use &(7) for a slight modification of this method. The special case A =1
of #(\) was studied independently by Lototsky [7] and developed by Agnew [1], [2],
who named this case the Lototsky method, denoted by L. To illustrate the power of
the method, Agnew showed that Euler’s series = (-1)¥k!z"k is L-summable if (with
z = X + iy) x > log 2, but not if Izl < log 2; the intermediate region remained in
doubt [1, p. 111]. The purpose of the present note is to present a general theorem on
Stirling summability, which will show in particular that Euler’s series is L-sum-
mable if z is outside the first arch of x = log(2cos y), but not if z is inside. By a
separate argument, we can show that the series is summable on the boundary also.
Furthermore, for & (A)-summability (A > 0), we obtain the same region multiplied
by A; therefore the series is summable by some member of the family in the whole
plane, except on the negative real axis.

It was pointed out by the referee that Greub [4] used the same curve
x = log (2cos y) for somewhat similar purposes. Greub’s paper appeared almost
simultaneously with [2], and it reached the same conclusions about the relations
among the Lototsky and other summability methods.

2. DEFINITIONS

We define the Stirling numbers p,, (n=1, 2, **-; k=0, 1, 2, -*, n) by the
identity

n

x(x+ 1)(x+2) - (x+n-1) = 2o pnkxk;
k=0

thus p o =0 (n=1, 2, --*), and we define also Pgo = 0. The Stirling method was
defined by Karamata by the formula

n
-1 k
S()\): O'n = —()_\Kk_o pnk)t Sk’

where (A), =A(A+1)A+2)--(A+n - 1); if 0, — 0 as n — =, we say the sequence

{sq, sy, 8,, *-} is S(A)-limitable to 0. We always assume that A > 0, which en-
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sures regularity.
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We shall modify the method slightly, applying it to the sequence { Sy, S, -}
by writing

n

1 k
SN o, = ™ 27 Poic A Sk

k=1

in order that the special case A = 1 may agree exactly with the Lototsky method L
as written by Lototsky and Agnew. (Precision is in order, since the method is not
translative.)

It was shown in [1, p. 114-115] that the series-to-series form of L is

U1=u1,

n
U= i 2 Potaction (=28, );

if U, = o, we say the series Zu, is L-summable to 0. For our purposes it will
be more convenient to renumber the terms of the series, starting irom u, and U,
to obtain [2, p. 364]

U0 = ug,

n

1

n = @+ 1)! kz?lpnkuk (n=1

U 2, .)

By the method used in [1], we find that the series-to-series form of F(1) is

. Uy = ug,
(1) n
- k =
U, = ) kZ_)l P Uy (m=1,2 ).

Now it is well known that if we take the branch of -log (1l - w) defined by = w"/n,
then

©0
p
{-log(1 -w)}* =kt 2 _n‘L}EWn k=1, 2 ).
n=k )

This is easily proved inductively: we differentiate to obtain a relation between
{-log(1 - w) }*t! and {-log(1 - w)}¥, and use the recursion formula

Pnii,kx = BPp kT Py x-1-

It follows at once that

)tk

=P
{-2log(l -w)}E =k! 2 B g (k=12 ).
n=k

n!
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We may therefore regard the &% (x)-method as generated in the following way.
Given the series T _, u,, write the series

o0
18
() = 2 k—lftk,
k=0

put t = -2log (1 - w), and arrange F,(w) = f(-Alog (1l - w)) in powers of w:

co 0 p 7"k
_ nk n
k=1 n=k

o n k
P A

= ug + 27wt 20 n;(' u .
n=1 k=1 )

Denoting F,(w) by =._, hy ,w", we see by (1) that

© n!
(2) U, = mhx,n,
n

and we may hope to determine whether Z U, converges by considering the properties
of F,(w).
A

We note in passing that it is easily seen by classical analysis that if the series
~ U, w" has a positive radius of convergence, then the same is true of Z)(uk/k!)tk,
as was stated by Agnew [2, p. 366].

3. THE MAIN RESULT

THEOREM. Given a sevies

b

(3) > 2
k=0

el

let

k

|

o> [t
£.(t) EO:()

Z

W

and
F, \(w) = f,(-Alog(1 - w)) = 27h_w"

(wheve the h, depend on z and M\). Then

(i) for all z such that F, ) ts vegular and bounded in le <1, the series (3)
is #(\)-summable;

(ii) for all z such that F, , has a singulavity in |w| < 1, the series (3) is not
F(\)-summable; ’
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(iii) for values z such that F, ) is regulay but not bounded in lw| <1, the
series (3) may or may not be ¥ (\)-summable.

Proof. (i) It was shown by Landau [6, p. 446] that the factorial series

n!h,

200 = o+ 2 5y

=1

based on (2), converges if and only if the Dirichlet series

(4) 27

Now

and under our assumption that F(w) is regular and bounded on ]WI < 1, it follows
from another result of Landau’s [3, pp. 442-443] that S, = O(log n) as n — « for
fixed A, z. Hence (4) converges, and this completes the proof of part (i).

(ii) This part is obvious.

(iii) As an example we consider the L-summation of the geometric series = ¢".
Here

£(t) = eCt’ F(w) = e-§log (l-w).
The image of |w| =1 in the t-plane (t = a + ig) is the first arch of
a = -log(2cos B),

which extends to infinity in the positive real direction, in a strip of width 7, the unit
disk being mapped into the inside of the arch., If ¢ < 0, then N(-log(l - w)) is
bounded above, and |F(w)| is bounded, on |w| < 1; by part (i), Z¢" is L-sum-
mable. If ¢ > 0, we no longer have the boundedness; nevertheless we know by [1,
p. 107] that = ¢ is L-summable if %t¢{ < 1, but not if R¢ > 1.

4, APPLICATIONS

k

We consider first the series ELO:O (-1)®k! z"¥ mentioned in the Introduction.

Here

7
£t = z+t’
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z
z - Alog(l - w)"*

¥, , A(W) =

It is a question of whether z is or is not a value taken by Alog(l - w) in the unit
circle. More precisely, the image of le =1 by z=2xlog(1l - w) is the first arch of

Iy = log (2 cos A'ly),

A
which we denote by C,, and parts (i), (ii), (iii) of the theorem apply according as =z
is outside, inside, or on C, ; therefore the series is & (A)-summable if z is outside
C, , but not if z is inside. The curve C, is of course the curve Cj: x = log(2cos y),
multiplied by A, and as A — 0, the curves C, approach the negative real axis. As A
decreases, the methods ¥ (\) become stronger, with consistency [8]; since the trans-
formed series converges uniformly in each closed bounded region outside -C, , the
&(\)-sum of the series is the analytic continuation of the L-sum outside C; ,
namely, the Borel value "

©  _t

ze
S dat,
0 z+t

in the cut plane. (The generalized Borel method includes L; see [1, Section 11].)

It was pointed out by M. Wyman, in correspondence, that for each x > 0 the
series T(-1)¥kl1z-k is & (A)-summable on the curve C, itself. This may be proved
from Cauchy’s integral:

1 1 Z

h = 5= dw .
no 2w J oyntl z - Alog(l - w)

We observe that if z is on C, , the integrand has a branch point at w=1 and a

simple pole at the point w=1 ~ ez/h on the unit circle. I we take C to be a circle
of radius R > 1, with keyholes coming in to the branch point and the pole, we can
show by straightforward estimates that Ehn/nk converges.

We next consider the series Zf::l (Bk/k)z"k, the By denoting the Bernoulli num-
bers. The case z = 1 was treated in [1, Section 10]. We set

-1 -k-1
u, = By, k+ 1)tz F

and for simplicity we consider only A =1, We find

1 1 1
t,(t) = E;Jﬁ "
1 1 1

Fon™W) = S ostio/a o T Tog@ - w

Thus Fz,l is bounded in lw| < 1 provided the equation log(1l - w) = 2/miz has no
roots in |w| <1 for any n=41, +2 ---. The image of lwi =1 by

log(1l - w) = 27niz
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is the curve C; of the preceding example, divided by 27ni; this encloses the positive
or negative imaginary axis according as n is positive or negative. For L-summa-
bility it is sufficient that z be excluded from the regions corresponding to n =1 and
n = -1; these contain the whole imaginary axis. For the allowable values of z, the
L-sum of the series is the Borel value

©0
-tf 1 1 1 _ T'(1+ z)
.S(; € (Zet/z_ 1 t)dt =logz - Tz
We consider finally the series

21 4!
>+ 0+

1+0-
1!z 2124

.-[- ves
Taking again A = 1, we find that
2 2/ 2
£, = e /2" F_(w) = e-(log(1-w)/=",
The domain of summability consists of the quadrant larg zl < m/4 and the opposite

quadrant.

These three examples show that while the method provided by the theorem is
fairly general, the results of applying it in special cases may vary considerably.
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