REMARK ON A RESULT OF KAPLANSKY CONCERNING C(X)

S. Cater

In this paper, let R be a chain (with more than one element) endowed with the
interval topology, let X be a compact Hausdorff space, and let R(X) denote the
family of continuous functions in R¥X. For f, g € R(X), let f < g mean that
f(x) < g(x) for all x € X, and let f < g mean that f(x) < g(x) for all x € X. For
f € R(X), let G¢ denote the graph of f in X X R. Under the partial ordering <,
R(X) is a lattice.

In [4] Kaplansky described all the lattice automorphisms of R(X) that are bi-
continuous in the topology of uniform convergence (here R is the real line); if ¢ is
such an automorphism, there exist a homeomorphism T of X onto X and a contin-
uous mapping p of X X R into R such that &(f)(Tx) = p(x, f(x)) for all x € X and all
f € R(X), and for each x € X the mapping r — p(x, r) is increasing. (Milgram [5]
presents a similar result for the case where R(X) is regarded as a multiplicative
semigroup.) He observed that if X satisfies the first countability axiom, then each
automorphism ¢ of R(X) must be bicontinuous, and hence of this form. Finally, he
presented a compact space X and an automorphism ¢ of R(X) that cannot be so
described [4, p. 629].

We shall present analogues of these results in a much broader context in which
Kaplansky’s arguments do not apply (see Examples 1 and 2). The prime ideals em-
ployed in [3] and [4] will not enter our development of Theorems I, II, and III.

Definition 1. A sublattice L. of R(X) is an R-sublattice if (1) for each x € X,
Lx = {f(x): f € L} consists of more than one element, and (2) given f,, f, € L,
X,, X, € X, X, #X,, there exists an h € L such that h(x;) = f(x;) for i=1, 2.

Note that a characterizing sublattice of R(X) in the sense of Anderson and Blair
[1] is an R-sublattice. For if

hl(xl) < f}.(xl)’ hl(xz) > fz(xz)y hz(xl) > fl(Xl)’ hz(xz) < fz(xz),

then (h; V f1) A (hy Vv £5) coincides with f; at x; and with f, at x,. On the other
hand, an R-sublattice L is characterizing if and only if for each x € X, Lx has no
maximal or minimal element. (See Examples 1 and 2, and also compare R-sublat-
tices with the c-characterizing lattices of Blair [2].)

Throughout this paper, L; and L, will be R-sublattices of R(X), and ¢ will be a
lattice isomorphism of L; onto L,.

Definition 2. The isomorphism ¢ of Lj; onto L, is increasing if for f, g € L;,
f < g if and only if &(f) < ¢(g).

THEOREM 1. A necessary and sufficient condition that the isomorphism ¢ of
L onto L be increasing is that theve exist a homeomovphism T of X onto X and
a mapping p of U fe€Ly G¢ into R, continuous on each Gg, such that for each x € X,

r — p(x, r) is an increasing mapping of Ly x onto L,(Tx), and such that
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98 S. CATER
#(f) (Tx) = p(x, £(x))

forall fe L, x € X,

THEOREM II. If ¢ is an isomovphism of Ly onto L, that is bicontinuous in the
topology of pointwise convevgence, then ¢ is incrveasing.

THEOREM III (Kaplansky). If R is a subset of the veal line and ¢ is an iso-
movphism of Ly onto L, that is bicontinuous in the uniform topology, then ¢ is
increasing.

THEOREM 1IV. If R is the veal line and X is either locally connected or
sequentially compact, then each automorphism ¢ of R(X) is bicontinuous in the
uniform topology and is incveasing.

Before cdnstructing proofs we present some R-lattices to which the arguments
given in [3] and [4] are inapplicable.

Example 1. Let R have a compact, totally disconnected order topology for which
there exists a homeomorphism h of R into R mapping no element into itself. Let X
be the same space, and let L consist of all f € R(X) such that for each r € R, £-1(r)
is at most a finite subset of X.

Obviously L is a lattice; we claim that L is an R sublattice of R(X). Note that
h and the identity mapping on X show that Lx consists of at least two elements, for
each x € X. For f,,f, € L, x;, x, € X, and x; #x,, let U;, U, be complemen-
tary closed and open subsets of X such that x; € Uy, x, € U,, and set g=1f; on
U; and g=1, on U,; then g € L and g(x;) = f5(x;) for i =1, 2. Thus L is an R-
sublattice of R(X).

For any r € R, x € X, an argument like that in [4] would employ the boundary of
the ideal {f € L: f(x) < r}, say, in the topology of pointwise convergence. But in the
present case this boundary may be void; indeed, it must be void if r is an isolated
point in R. Since R contains a maximal and a minimal element, the argument in [3,
Section 6] would require that for any disjoint closed sets A, BC X some f € L is
constant on A and B, respectively. But in the present case no function in L is con-
stant on an infinite subset of X.

Example 2, Let E be a closed, totally disconnected, proper subset of a compact
Hausdorff space X, and let R be the real line. Let L consist of all functions
f € R(X) such that for each x € E, f(x) is 0 or 1. By elementary topology and the
Tietze Extension Theorem, it follows that L is an R-sublattice of R(X). The argu-
ments in [3] and [4] again fail, as they do in Example 1.

We now develop proofs of Theorems Ito IV. Since sufficiency in Theorem I is
evident, we present no proof of it. To prove necessity in Theorem I, suppose until
further notice that ¢ is increasing.

LEMMA 1. Thevre exists a unique one-to-one mapping T of X onto X such that
Sor all £, g € Ly and all x € X, {(x) = g(x) if and only if ¢(f)(Tx) = ¢(g)(Tx).

Proof. First we observe that if £f;, f, € Ly, x;, X, € X, and x; # X, then
there exists an h € L such that h(x;) = f;(x;) and h(x;) # f,(x;). This is clear
since there exist g, h € L; such that

g(xz) # fz(xz), h(xl)'= fl(xl)’ h(xz) = g(xz)-

The corresponding assertion is also true of L.
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Fix a function f € L1 and an element x* € X. Given any two functions g, h € Lj
satisfying g <f <h and ¢(g)(x*) = ¢(£)(x*) = ¢(h)(x*), let C(h, g) denote the set of all
points u € X for which g(u) = f(u) = h(u). (For example, C(f, f) = X.) Plainly,

C(h, g) is compact and nonvoid; if ¢(g) £ ¢(h), then g £ h. We claim that the col-
lection of sets C(h, g) over all such functions g, h has the finite intersection prop-
erty. To show that C(h;, g;) N C(h,, g,) N - N C(h,, g,) is nonvoid, observe that
if

n n
h = V hi and g = A gj_’
i=1 i=1

then g <f <h, ¢(g)(x*) = ¢f)(x*) = ¢(h)(x*), and C(h, g) is nonvoid; but
g<g <f<h; <h for i=1, -+, n, and clearly C(h, g) =[ li%{ C(n;, gy).

It follows that there is a nonvoid compact subset C of X such that if g, h € L,
g <f<h, and ¢(g)(x*) = o(f)(x*) = #(h)(x*), then g, h, and f coincide on C. Now let
g be any function in L; with ¢(g)(x*) = ¢(f)(x*)., It follows that fV g and f A\ g
coincide with £ on C, and consequently g coincides with f on C.

Fix some x € C. By a similar argument on ¢“1 , there exists a nonvoid compact
subset S of X such that if g € Lj and g(x) = f(x), then ¢(g) and ¢(f) coincide on S.
We claim that S = {x*}. Indeed, if x; € S and x; # x*, select k € L, such that
k(x*) = (£)(x*), k(x;) # &(f)(x1); then ¢~1(k)(x) = f(x) and k(x;) = $(f)(x;), which is
impossible. Similarly we see that C = {x}.

We have thus far shown that for each x* € X there exists a unique point x € X
such that for g € L;, f(x) = g(x) if and only if Hf)(x*) = ¢(g)(x*). By the above argu-
ment on ¢-1 it follows that for each x € X there exists a unique point x* € X such
that for g € Ly, f(x) = g(x) if and only if ¢(f)(x*) = ¢(g)(x*). Let T be the mapping
of X into X defined by Tx = x*. Then T is a one-to-one mapping of X onto X.

Select a function f' € L;, and let T' be the mapping determined by £ ' in the
same way that T is determined by f; that is, for g € L, let £'(x) = g(x) if and only
if ¢(f)(T'x) = ¢(g)(T'x). To complete the proof of Lemma 1 it suffices to show that
T = T'. The proof is by contradiction; suppose x;, X, € X, x; #X,, and Tx; = T'x; .
Select g,;, g, € L, such that

gi(xy) = f(x), g1(x;) = £'(x,), gy(xy) = £(x;), gux;) *# £'(x,).
Then
#(f) (Tx,) = #(g ) (Tx,) = Hgy) (T'x,) = HE)(T'x,)
and
() (T'x,) # ¢(g,)(T'x,) = ¢(g,) (Tx,;) = #(f)(Tx,),

which is impossible. Thus Lemma 1 is proved.

Construct the mapping p of UfeLl G; into R as follows; for

xne U g

fGLl
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let p(x, r) = ¢(g)(Tx), where g is a function in L satisfying g(x) =r. By Lemma
1, p is well defined.

LEMMA 2. For any x € X, the mapping r — p(x, r) is an increasing mapping
of Ly x onto L,(Tx).

Proof. Let (x, ry), (x, ;) € lJf€L1 Giand r; <r,. Say g;, g, € Lj and

g1(x) =r, g,(x) =r,. Then (g; V g)(x) =r, and (g; A g2)(x) = r;, and because
Mgy N 8,) < ¢lgy V g,), it follows that

p(x, rl) = ‘ib(gl N gg)(Tx) < ff’(g] \Y gz)(TX) = p(x, rz) .

By Lemma 1, (g, A g,)NTx) # ¢(g; V g,)(Tx) and p(x, r;) <p(x, r;). .
LEMMA 3. T is bicontinuous.

Proof. Select any x € X, and let U be a neighborhood of x. Choose (x, r;) and
(x, r,) in fE€L, G¢, with r; <r,. For any x; € X - U there exist functions
g, h € L; such that g(x) =r;, h(x) =r,, and h(x;) < g(x;). By a simple compact-.
ness argument it follows that there are functions g; , *«-, g, € L, hy, -, h e L)
such that

(hy A= Ah )x)=1r,, (g;V--Vg)x) =r,,
and g; V --- Vg, exceeds hy A --- Ah, on X - U. For convenience of notation, set
8 =8 V- Vg, hg =h;A--Ah_.
By Lemmas 1 and 2 we see that
Tx € X(¢(g,) < #(hg)) and T 'X(¥(gy) < #(hy)) € U.

Therefore T-! is continuous, and since X is a compact Hausdorff space, T is also
continuous.

Proof of Theorem 1. In Lemmas 1 to 3 we produced a homeomorphism T of X
onto X and a mapping p from Ufe L, G¢ into R such that ¢(f) (Tx) = p(x, £(x)) for

all f € L;,x € X. We showed that for each x € X the mapping r — p(x, r) is in-
creasing. It remains only to show that p is continuous on each G¢. If f € L, the
mappings (%, £(x)) — Tx and x — ¢f)(x) are continuous functions of G¢ into X and
X into R, respectively, and the composite mapping (x, f(x)) — &(f) (Tx) = p(x, {(x)) is
also continuous. This concludes the proof.

Observe also that if ¢ is increasing, the mappings T and p in Theorem I are
unique. This is implicit in our argument.

Proof of Theorem II. Assume all the hypotheses of Theorem II. It suffices to
show that if f, g € L; and (f) < ¢(g), then £ < g. The proof is by contradiction (the
converse statement can be proved similarly). Assume f £ g. Since ¢ is an iso-
morphism, clearly f < g and f(x) = g(x) for some x € X. Withdut loss of generality
we may assume that Lj;x contains a point r > f(x). (A dual argument disposes of
the case where r < f(x).)

For any points x;, **, x,, € X distinct from x, there exist functions
£,, *=*, £, € L such that f.(x) =r and f(x) = f(x;) for all i. Then



REMARK ON A RESULT OF KAPLANSKY CONCERNING C(X) 101
n n
A (£, VX =r and A (£, \/f)(xi) = £(x;)
i=1 i=1

for all i. For every neighborhood U of f in L ; we can produce a function gy € Ly
such that gy(x) =r and gy N g € U. Since g(x) < gy(x), we see that ¢(gy) € ¥g)
and X(¢(g) < ¢(gy)) is a compact nonvoid subset of X. Likewise, for any neighbor-
hoods Uy, -+, Uy, of f in L,,

gx) <( A gU_)(x), x[¢<g) <A agu.)] = N x[¢e) < #ley )],
j=1 J j=1 J j=1 J

and this intersection is nonvoid. It follows that there exists a point y € X such that

o(E)(y) < He)y) < ¢lgy)y) and  (g)y) = dgy N g)y)

for each neighborhood U of f in L ;. This contradicts the bicontinuity of ¢, and
Theorem II is proved.

It is also worth noting that for each x € X, the mapping r — p(x, r) is bicontin-
uous. To see this, select a neighborhood U of f in L;. There is a neighborhood J
of f(x) in R such that to each r € J N (L; x) there corresponds a gy € U such that
gy(x) = r; the construction of gy; is essentially like the construction in the preceding
paragraph. From the bicontinuity of ¢ it follows that the mapping r — p(x, r) is
continuous in r. Reversal of the roles of L} and L, shows that this mapping is
bicontinuous.

Proof of Theorvem III. As in the proof of Theorem II, assume that
f(x) = g(x), o) < ¢(g), r € Lyx, r > f(x).

Select € > 0, and put W= X(g - £ > ¢); then x € X - W. By compactness and by a
preceding argument, there exist functions h,, -+, h,, € L; such that

Tl

W C X(h1<f+8)

"

1

1
and hy(x)=r, for i=1, -*-, n. Set
k=(, VOA(h, VI A--A(h, V).

Then k(x)=r and f <k <f+¢€& on W. Hence |k/\g—f| <e.

Then, given any neighborhood U of f in L;, we can produce a function gy € L
such that gy(x) =r and gy A g € U. The argument can be completed as in the proof
of Theorem II.

We make one further comment regarding Theorem III. In general, the order
topology on R might not coincide with the metric topology on R, and the functions in
Lj; might not be continuous mappings of X into the real line. We claim that if all
the functions in L; are continuous in this latter sense, then p is a continuous map-

ping of UfeLl G¢ into the real line (compare with [4, Lemma 2]). To see this,
suppose that f, g € Ly, & > 0, and x € X satisfy the condition |f(x) - g(x)| < 6.
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By an argument essentially like that in the preceding paragraph, there exists an

h € Lj such that h(x) = g(x) and |h - f| < 6. It follows from the bicontinuity of ¢
that to each € > 0 there corresponds a & > 0 such that for any x € X,

[p(x, r) - p(x, f(x))l <eg if ‘r - f(x)l < 6. From this and the continuity of f we
see that p is continuous at (x, f(x)) for all x € X, f € L.

Proof of Theovem IV, Let ¢ be a lattice automorphism of R(X). By [4] there is
a homeomorphism T of X onto X such that for f, g € R(X), x € X, the relation
f(x) < g(x) implies @) (Tx) < ¢(g) (Tx) and Hf)(Tx) < &g)(Tx) implies f(x) < g(x).

First we show by contradiction that for f, g € R(X), #(f) < ¢(g) implies f < g.
Assume that ¢(f) < ¢(g) and f £ g. Clearly f < g, and X(f < g) and X(f = g) are
nonvoid sets. We claim that X(f = g) has void interior; for otherwise there would
be a function h € R(X), coinciding with f on X(f < g), such that f < h and h exceeds
f at some point in the interior of X(f = g). Then h Ag =1, ¢(h) A\ ¢(g) = #(f), and
¢(h) exceeds ¢(f) at some point, which is impossible.

Assume that X is locally connected, and select x € X(f = g). Then x is in the
closure of X(f < g), and if U is any connected neighborhood of x, (g - f)(U) is a
connected subset of R containing an interval with left endpoint 0 and positive right
endpoint. For any neighborhood U of x, the set (g - £)(U) contains such an interval,
because X is locally connected. For each positive integer n, set E = X(g - f = 1/n);
then each neighborhood U of x intersects E, for all but finitely many n. Define the

function hjy on the set U:=1 En) U X(f=g) by the rule
f=g on X(f = g),
hg =< g+1/n  on E, (n odd),
f-1/n on E, (neven).

Routine arguments show that hy is continuous on ( U:lo:l En) U X(f = g). By the
Tietze Extension Theorem, some h € R(X) coincides with hy on this set.

Every neighborhood of x contains points y and z with h(y) < i(y), g(z) < h(z).
Thus in every neighborhood of Tx there exist Ty and Tz with ¢(h) (Ty) < ¢(f) (Ty),
#(g) (Tz) < ¢(h)(Tz). But inf[¢(g) - ¢(f)] > 0, because X is compact. This conflicts
with the continuity of ¢(h) at Tx. It follows that ¢ is increasing in the locally con-
nected case.

Now assume that X is sequentially compact. Since X(f = g) is not open, there
exists a sequence {xn} of points in X such that f(x,) < g(x,) for all n and
lim,_, . [g(x,) - f(x,)] = 0. Let {x, } be a subsequence converging to some point

. i

x € X(f = g). Conclude the argument as above, employing {xn_} in lieu of the se-
1
quence {E,}. It follows that ¢ is increasing in the sequentially compact case.

Finally, to show that ¢ is uniformly bicontinuous in either case, select € > 0
and f € R(X). Then ¢(f - €) < ¢(f) < ¢(f + &), and if g is a function in R(X) such
that ¢(f - £) < ¢(g) < ¢(f + £), we have the inequalities f - ¢ < g <f+¢&. The con-
clusion is evident.
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