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GENERALISED CONSTANT WIDTH FOR MANIFOLDS
S. A. Robertson

1. INTRODUCTION

The notion of constant width may be formulated as follows. Let H be a compact
C® n-manifold without boundary, convexly imbedded in real (n+ 1)-space R+l A
chord of H is normal if it is normal to H at one of its two end-points, and binormal
if it is normal to H at both end-points (compare Morse [3, p. 183]). Therefore H
has constant width if every normal chord is binormal; for then all normal chords
have the same length. Such a manifold is of course diffeomorphic to S®. Converse-
ly, any compact connected closed hypersurface in R™*1 of constant width is convex
and diffeomorphic to S™.

In this paper we formulate more general conditions for manifolds imbedded with
arbitrary codimension, and in some cases we obtain corresponding classification
theorems.

Let V denote a smooth (that is C*) connected n-manifold without boundary,
smoothly imbedded in R™ as a closed subset, for some m > n. We write v(p) for
the (m - n)-plane in R™ normal to V at p € V, and we say that V is fransnormal
in R™ if, for each pair p, q € V, the relation q € v(p) implies that v(p) = v(q). Thus
transnormality generalises constant width. It is easy to show that the map v from a
transnormal manifold V to the space of normal (m - n)-planes of V is a covering
map. We say that V has order r or is r-transmormal if v is r-fold. The main
result is as follows.

THEOREM 1.1. Awny transnormal n-manifold of ovdev 2 in R™ is diffeomorphic
to the cartesian product V1 X V, of differential manifolds Vi, V2, wherve V1 is
homeomorphic to S) and V, is homeomorphic to R™™3 (0 < j < n).

We do not know whether V; can have an unusual differential structure. For in-
stance, can any of the 27 unusual 7-spheres be transnormally imbedded in R??

We show in Section 4 that for any transnormal manifold V and any p, q € V, the
sets v(p) N V and v(q) N V are isometric as subsets of R™., We call v(p) NV a
generating frame of V, and we prove that the generating frame always admits a
transitive group of isometries. This fact, together with Theorem 1.1, yields the
following.

THEOREM 1.2. If V is a transnormal n-manifold in R™t! of ovder r, then
r=2 orr=1.

Since it is easy to show that R™ is (up to homeomorphisms) the only transnormal
manifold of order 1, Theorems 1.1 and 1.2 classify transnormal hypersurfaces of
finite order. In particular, the sphere, cylinder and plane are the only surfaces that
can be transnormally imbedded in R3 with finite order. The standard imbedding of
the torus in R% is 4-transnormal.

The last statement is a consequence of the easily proved fact that if M and N can
be transnormally imbedded in R?, RP with orders A and i respectively, then M X N
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can be transnormally imbedded in Ra+b with order Au (see the end of Section 8 for
a slightly stronger statement). It now follows that any cartesian product

'l 8% x oo X g’k gk
can be r-transnormally imbedded in R™, with r = 9K and m = k+ Z ig. This sug-
gests two questions: (DU V is r-transnormal, is r a power of 2?2 (2) Do there

exist r-transnormal manifolds not diffeomorphic (or homeomorphic) to a product of
standard spheres with some euclidean space?

The remainder of the paper is directed towards a solution of these two problems.
We prove for example the existence of r integrable distributions on V whose com-
plementary (orthogonal) distributions are also integrable, provided the covering v
is regular.

These and the preceding results emerge from a study of the properties of the
distance function Agq: VvV — R, where Aq(x) = ‘ X - q"2 and q € V. We use the ele-
mentary parts of Morse theory.

2. A TRANSNORMAL 2-SPHERE

For illustrative purposes, we modify the Reuleaux triangle construction (see [1]
or [5], for example) to obtain a transnormal imbedding of S2 in R3 asa C¥-sur-
face of nonconstant curvature.

Let T be an equilateral triangle in R% C R3 with vertices A, B, C. Let a,B,7
be concave arcs inside T, joining the mid-points D, E, F of the sides of T in pairs,
such that g8 and y have C®_contact at D and their common tangent at D bisects the
angle EDF; the pairs 7, a and o, 8 form similar configurations at E and F re-
spectively, and &, B, v meet nowhere else (see the figure).
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Let % denote the l-parameter C®-family of straight lines tangent to @, 8, or
v¥. Then the orthogonal trajectory of & that passes through A, B, and C isa C*®
noncircular simple closed curve of constant width in RZ2,

Rotate this curve in R3 about the median of T through A. The closed surface
Z so generated is a C* 2-sphere of constant width, but with nonconstant curvature.

3. FOCAL POINTS AND THE DISTANCE FUNCTION

In this section we use certain facts about focal points of a manifold imbedded in
a euclidean space. Proofs of these standard results can be found, for example, in
Milnor [2].

Let V be a transnormal n-manifold imbedded in R™. For any q € V, let
Ag:V — R be the C* distance function defined by Aq(p) = lp - af?. We set

v¥={(p,x):p €V, xevip}.

Thus V* is the normal bundle space of V in R™: it is a C*® m-dimensional sub-
manifold of V X R™. The projection n: V¥ — V and the end-point map n: V¥ — R™
are defined by 7(p, X) = p and 7(p, X) = x respectively. Both are C*-maps.

If (p, x) € V* is a singularity of n (that is if the rank p of the Jacobian of 7 at
(p, x) is less than m), then x is a focal point of V with base p and wmultiplicity
L =m-p. For each pe€eV, Fp will denote the set of focal points of V with base p.
We also set

Fy= U F,
PEV

and call this the focal set of V. Directly from the definition, we see that Fp c v(p),
for each p € V.,

Now put V* = (V X V) N V*. Then 7| V* is a locally diffeomorphic covering map
of V* onto V. Notice however that V* is not necessarily connected, since it con-
tains the diagonal of V X V. We observe that there are open neighbourhoods E of V
in R™ and E* of V*+ in V* such that | E* is a locally diffeomorphic map of E*
onto E.

LEMMA 3.1. No transnormal manifold meets its focal set.

Proof. If q € V is a focal point of V with base p € V, then (p, q) € V' isa
singular point of 7. But n immerses a neighbourhood of V¥ in R™, so we have a
contradiction.

LEMMA 3.2. The function Aq is nondegenerale, for each q € V.

Proof. Recall that p € V is a critical point of A g if and only if the line joining
p to q is perpendicular to V at p. Hence the critical set of Aq is the set viQ)n V.
Further, a critical point p € V of Ag is nondegenerate if and only if g £ Fp. Hence
A4 is nondegenerate if and only if q £ Fy. The required result now follows by
Lemma 3.1.
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4. GENERATING FRAMES

As in the previous section, and throughout the remainder of this paper, V will
denote a transnormal n-manifold in R™. The map v: V — Gu,m that sends p € V
to the (m - n)-plane v(p) normal to V at p is a C*-map into ‘the open Grassman-
nian of (m - n)-planes in R™. Set W = v(V). It is an immediate consequence of the
definition of transnormality that W is an n-manifold and that v is a C*-immersion
of V in W. We prove a little more than this.

LEMMA 4.1. The map v is a coveving map of W by V.

Proof. The map w: V* — V is a locally trivial fibre-map. Let £ € W and let
p€ &NV, Let M be an open cell-neighbourhood of Ip on V such that 7~1(M) is
bundle-equivalent to £ x M. Put N = v(M). Then v~ !(N) = n(#~1(M) n V+), and each
of its components is mapped diffeomorphically by v onto N. Hence v is a covering
map, and this proves the lemma.

Next we look at the metric properties of the sets v 1(g) (£ € W).

Let C: I — W be a (piecewise dlfferentlable) arc beginning at £ = C(0) and end-
ing at £ = C(1), say. Then for each p € v~ (E,) there is a unique piecewise differ-
entiable arc Cp I — V beginning at p = C, (0) and such that vCp = C. Hence C in-
duces a map C*#: p-1(£) — »-1(0).

From now on we write p ~ q to mean that p, q € V and v(p) = v(q). We also put
P; = Cp(t), q; = Cq(t) for t€[0, 1] =1

LEMMA 4.2. C* is an isomeltry.

Proof, Let p~q and v(p) = £ as above. Then p;~ q¢ for each t € I, and the
tangents to Cp, Cq at pt, q¢ are normal to the join of these points. Hence e - acll
is independent of the value of t. We conclude that the map C# given by C%(p) = p;,
for each p € v-1(£) is an isometry of v~1(£) onto v-1(¢).

Thus v-1(¢) is 1ndependent of £ € W up to isometry. We choose some base
point §; € W and call v~ Lg o) the generating frame $(V) of V. By choosing C to
be a closed arc, we get the following.

COROLLARY 4.3. ¢(V) admits a transitive group of isomeiries.
We denote this group by G(V).

5. DISTRIBUTIONS AND CRITICAL POINTS

For each q € V, Vq will denote the gradient C* vector field grad Aq of Aq on
V. The zeros of Vq are the critical points of Aq and so lie in v(q). Recall that the
integral curves of V4 are orthogonal trajectories of the contours of Ag4. Each such
curve, parametrised by the values of A g, begins at some critical point of Ag and
either ends at some other, distinct critical point or else continues to infinite length.
We write I‘ for the set of critical points of Ag

Let p~q on V. Then p € I'y and has index j, say. The stable manifold S(p, q)
(or S) of Aq at p is the set of pomts of V that lie on integral curves of Vq ending
at p, together with p itself. Then S is homeomorphic to R). The unstable mani-
Jfold U(p, q) (or U) at p is likewise homeomorphic to R"-J, and it consists of p
together with points on integral curves of Vg beginning at p. Thus the tangent
spaces at p to S and U are orthogonal complementary subspaces of the tangent
space 7(p) to V at p.
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We suppose from now on that the map v: V — W is a regular covering. In other
words, the group G(V) of isometries of the generating frame ¢(V) operates without
fixed points; that is, for each closed curve K in V covering a closed curve K on
W as in Section 4, and for each h ~ p, the curve Ky is also closed.

With this assumption, we can assign to each pair (p, q) a C* distribution of
j-planes, as follows.

Suppose that Cp isanarcon V from p to x € V. Lety = c(q). Then, with the
above hypothesis, the point y depends only on x and (p, q), and not on the choice of
Cp. Now define Apq: V — V by setting Apq(x) = y. Then Apq is a diffeomorphism
of V onto itself such that ApqAgh = Aph . Further, for each x €V, ”x - y” = || p - q”
and x ~y, where y = Apq(x).

The index of x as a critical point of y varies continuously with x over V, in
view of Lemmas 3.1 and 3.2. Hence the index of x is j.

We define Apq(x) to be the tangent space at x to S(x, y). Thus Apq (or A) isa
well-defined C* distribution of j-planes on V. A distribution A"f,q = A* of (n - j)-
planes is obtained on replacing S by U in the above definition; A and A* are
orthogonal and complementary.

6. LOCAL STRUCTURE OF V

Let Ap be an open cell-neighbourhcod of p on V, so small that
(i) it is disjoint from Ag = AM(Ap) and
(ii) the line xq joining x to q is not tangent to V at x, for any x € Ap.

Then the orthogonal projection of xq into v(x) is a straight line L, through x,
normal to V,

LEMMA 6.1. A(x) € L.

Proof. Let T, denote the set of points v € R™ such that ”u - v" = a, for some
u € V for which (u, v) € V¥, We write T3 for the set of all such pairs (u, v). Then
T isa C® (m - 1)-manifold, a bundle of (m - n - 1)-spheres over V.

Now let o = ”p - q” Then V C Ta, and T§ admits the cross-section
x — (%, Apq(x)), the image being contained in V+. Put A = v(Ap).

Define f: Ap — Tq by taking f(x) to be the point on Lx at distance a from x,
chosen from the two possibilities in such a way that f is continuous and f(p) = q.
Since (p, q) is not a singular point of the end-point map 7, neither is (x, f(x)) for x
sufficiently near p on V. We can suppose without loss of generality that each
X € Ap has this property. Then f imbeds Ay, in Tg. Put B, = f(Ap), and let Bf;
denote the set containing (p, q) in T("; which is mapped diffeomorphically onto B,
by 7.

The set Q of nonsingular points of 7 on T} is an open (m - 1)-manifold im-
bedded in T}, and containing BY. Let Y be the C™-distribution of n-planes on Q
associated with the connexion in the bundle T;';l given by the metric of R™. Thus
the elements of Y are orthogonal (in the metric on T}, induced from R™) to the
(m - n - 1)-sphere fibres in Tf. Hence Y is an integrable distribution. The inte-
gral manifold of Y through (p, q) is mapped by 1 onto V.

Now for each x € A, Y(x, f(x)) is by definition tangent to B§ at (x, {(x)). Thus
¥ is contained in an integral manifold of Y. But (p, q) € Bf, and so B, € V. Thus
f and Apq agree on Ap. This proves the lemma.



102 S. A. ROBERTSON

Next we examine the differential dix of A = qu.

Choose a system of cartesian coordinates x,, +--, x,,, for R™ such that the n-
plane 7(p) tangent to V at p has equations x;, =0 (k=n+ 1, ---, m), and the
(m - n)-plane v(p) has equations x;=0 (i =1, ---, n), with p = (0, ---, 0). Then
q=(0, *-, 0, dpy,1, ***5 dp), for some q, € R not all zero. Thus some open neigh-
bourhood of p, say the neighbourhood A, above, is given by equations
%y = g {xy, -+, X)), for some C* functions g, (k=n+ 1, -+, m) defined on an
open neighbourhood € of O in R®. From now on, the indices i, k will run through
1, >, n and n + 1, -.-, m, respectively.

Any tangent vector T to Ap at x = (x1, ***, Xy can be expressed in the form
T = (17, ***, Ty € R™ with

(6.2) Ty = ? 7, D, g (%),

where x, = (x;, -, X)) € R". (Here, as elsewhere, we identify the tangent space to
R™ at any point of R™ with the space R™ itself.)

Likewise, any normal vector N to Ap at x is of the form N = (v, -+, Vi),
where

(6.3) Vi = —i: VkDi gk(x*) .

Suppose now that T, N are respectively the orthogonal projections of the vector
x - q into 7(x), v(x). Then the components of T, N are related by the equations

and
(6.5) E T; D g1(X,) + v = g1(X,) - qx.
1

Let C,: I — V be a C®-curve beginning at p as before, with nonzero tangent
Ci)(O) = p' at p. Then the tangent Cci(O) =q' to Cq at q is equal to drpy(p").

By using Lemma 6.1 and the above equations, we find that q' = p' - {, where

n
]
g, = —Piqk Z D;,.g,. (O)p...

r=1

Differentiating (6.3) with respect to t, we then see that T'+ £ = p' and so q'= T'.

Now T = MVq (x), where M is a positive real number (which may vary with x).

Hence
dT/dt = V4(x) dM/dt + MdVq(x)/dt, and so T'= MV4(p) -
Further,

Va0 =1lim_ o {V (x) - Vo) }/t = lim_,;1{ V ®)/t}.
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We therefore conclude that the line Q spanned by q' is the limit as t — 0 of the line
spanned by V4(pt). Since 7(p) is parallel to 7(q), and 7(p) has equations xy = 0,

we can identify these spaces with R™ in the obvious way. Then d)\pq is an iso-
morphism of R™ with itself.

LEMMA 6.6. The isomorphism dipq has exactly two eigenvalues, one positive
and one negative, of which N*(p) and NA(p) are the respective eigenspaces.

Proof We see that p' € A(p) if and only if p' is a negative multiple of V. (p).
But q' is a positive multiple of ¥, (p) by the above. This yields the stateme ci for
A(p), and A*(p) is dealt with in a s1m11ar way.

The following elementary fact should also be noted.
LEMMA 6.7. If x ~y, then Vy(x) and V4(y) are parallel, for any x,y, q € V.

Proof. The tangent space to R™ at x is v(x) @ 7(X), and so x -q=a + f3,
where a € v(x), B € 7(x). Now

-q=(F-x)+(x-q) and y - x €p(x).

Hence y - q=¢a' + 8, where a¢' = (y - X) + @ € y(x). But v(x) = v(y), and 7(x) is
parallel to 7(y). Thus x - q and y - q project onto identical vectors B in 7(x), 7(y)
respectively. Since these projections are (positive) multiples of V(x), Vq(y), the
lemma is proved.

7. INTEGRABILITY OF A AND A¥*

THEOREM 17.1. A and A* ave integrable.

Proof. As before, let p, g be distinct, with p ~ q. Then p is a critical point of
Aq, of index j, say. If j=0 or j=n, then A and A* are trivially integrable. We
may therefore suppose that 0 < j < n.

Let Ap be the open neighbourhood of p on V introduced in Section 6, and let

x€ApN S, q)=Sp.

Then, by Lemma 6.1, y = A(x) € Lx. Also, the line Lx is the orthogonal projection
of the line xq on V(x) and Vg(x) is contalned in the orthogonal projection of xq on
7(x). Directly from the definition of Sp, we see that Vq Sp = V(Aqf Sp). Consider
the projections of xq on the (m - j)-plane vp(x) normal to' S, at x and the j-plane

7, (x) tangent to S, at x. Clearly vp(x) D v(x) and 7p(x) C 7(x). But the projection
OIE xq into 7,(X) coincides with its projection into 7(xX), these being spanned by the
vectors V(A |Sp)(x) and V, (x), respectively. Hence the projections of xq into
P(x) and V(X) coincide also

Now x is a critical point of A | Sp, and it is nondegenerate since y cannot be a
focal point of SP with base x (see the proofs of Lemmas 3.1 and 3.2). Since Aq| Sp
has a local maximum at p, we see that x is a local maximum of Ay[ Sp. Now we
need only apply Lemma 6.6 to the above observations to see that A(x) is tangent to
Sp at x. This proves that A is integrable. Similar arguments apply to A*.
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8. PROOF OF THEOREM 1.1

We begin by treating 1-transnormal manifolds.

THEOREM 8.1. Any 1-transnormal n-manifold in any R™ is homeomovphic to
R™,
Proof, Let V be such a manifold, and let q € V. Then q is a nondegenerate

minimum of Aq, and Ag has no other critical point. Hence V is homeomorphic to
an open n-cell, which proves the theorem.

Remark. Conversely, R™ can be r-transnormally imbedded in R™ if and only
if r = 1. For then R™ is a covering space of finite order r.

Proof of Theorem 1.1. The only reason for considering Sp rather than S(p, q)
itself in the proof of Theorem 7.1 was to ensure that xq is not tangent to V at x.
Should it happen that for some z € S(p, q), the line zq is tangent to V at z, then L,
is not determined by projection of zq on v(z). However, the line L, joining z to
W = Apq (z) is well-defined. Also, by Lemma 6.7, it cannot happen that both zq and
wq are tangent to V (at z and, w respectively). Suppose then that V is 2-trans-
normal. The hypothesis that v is regular is automatlcally satisfied, and (qu_)Z i
the identity. Thus if necessary we can interchange the roles of x and y in Theorem
7.1 to obtain the result that for 2-transnormal manifolds, S(p, q) is contained in a
single integral manifold of A. Similar remarks apply to U(p, q) and A*,

Let V be 2-transnormal. One of the two critical points of Ag (q € V) is q it-
self, a nondegenerate minimum. The index j of the second critical point p of Ag
cannot be 0, since V is connected. If j = n, then V is homeomorphic to S%, by
Reeb’s theorem.

Suppose therefore that 0 < j < n. The unstable manifold U of Agq at p is
homeomorphic to R"7J, and every integral curve of Vg which lies upon it is infinite
in length; U is an integral manifold of A*. The closure Cl(S) of the stable mani-
fold of Aq at p is a smooth manifold consisting of the j-cell S attached to the
point q. Thus the integral manifolds of A are homeomorphic to s3,

We have now shown that V can be decomposed into two mutually orthogonal
families of differential manifolds such that each member of one family meets each
member of the other in exactly one point. This implies at once that V is diffeo-
morphic to CI1(S) X U, which is equivalent to the statement of Theorem 1.1 with
V; = CI1(8S), V, =U.

Finally, we observe that if V is a compact hypersurface, then V is diffeo-
morphic to S®. It is convex because p is the point at which A g attains its maxi-
mum value on V, and p is the nearest point to q on 7(p).

Concluding vemarks.

(1) Identify R™, R{ with the orthogonal complements R™® @ O, O ® R{ in
R™ @ R{ = R™*+L, Then imbeddings of V in R™ and V' in R{ determine an im-
bedding of V X V' in Rm+{_ It is a straightforward matter to verify that V X V' is
transnormally imbedded if and only if V and V' are transnormally imbedded, and
that the normal maps v, v' of V, V' are regular if and only if the normal map v"
of VX V' is regular. The order of v" is the product of the orders of v and v'.

(2) The statement of Lemma 3.2 suggests the following classification problem.
Find all manifolds V that can be imbedded in a euclidean space in such a way that
for each q € V the distance function Ay is nondegenerate.
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