RATIONAL APPROXIMATION TO |x|
D. J. Newman

The function |x| plays a central role in the theory of polynomial approximation.
Indeed, Lebesgue’s proof of the Weierstrass approximation theorem is based solely
on the fact that the single function |x| can be approximated. One can even give a
proof of Jackson'’s approximation theorem by simply using an appropriate polynomial
approximation to lx .

Quantitatively speaking, |x| has “order of approximation” 1/n. In precise
language this means that (with C,;, C, positive absolute constants)

(1) there exists an nth-degree polynomial P(x) such that, throughout [-1, 1],
C,
| 1x] - PG| <=L

(2) there does not exist an n*P_degree polynomial P(x) such that, throughout
[-1, 1] ,

1] - PG| < 2.

Suppose we now turn to the question of approximation by rational functions
rather than by polynomials. While it is true that in this context the function |x|
loses much of its special significance, it is nevertheless of some interest to deter-
mine the order of approximation to |x| by nth_order rational functions (the prob-
lem was actually suggested by H: S. Shapiro).

Now it is known that, in some overall sense, rational approximation is essen-
tially no better than polynomial approximation, and this suggests the naive guess
that the order of approximation of |x| by nth_order rational functions is also 1/n.
The truth, however, is remarkably far from this guess. Indeed, the purpose of the

present paper is to show that this order of approximation is actually e‘Cﬁ .

Notation. n is an integer greater than 4, § = exp (—n'l/z), and

n-1
_ k _ o bp(x) - p(-x)
p(X)—kl;IO(x+£), r(X)—pr)er(-x)‘

By the order of a rational function we mean the maximum of the degrees of its
numerator and denominator. [Note that the order of r(x) is n when n is even].

THEOREM (A). ||x]| - r(x)| < 3e'\/; throughout [-1, 1].

(B). Theve does not exist an n*M-ovder vational Sunction R(xX) such
that ||x| - R(X)|_<_-%-e-9\/_rT thvoughout [-1, 1].
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Remark. The gap between the exponents -vn and -9vVn can be narrowed some-
what without much change in the proof; but we are far from eliminating it. Only in

this crude sense then can we justify the statement, made in the introduction, that the

order of approximation is e V",

n .
LEMMA 1. ][I 1- & <e"/;.

j=1 1+ 8=

- tg et for all t> 0, it follows that

c j - 5\ 1-£°
(3) ];_[ £ < exp (_23'2 & ) = exp (-Z‘g’ " )

A simple computation shows that, since n > 4,

Proof. Since

p |

4) 26(1 - £ > 1.

We also recall that 1 - t < e~t, and we conclude that

1 1
®) 1-£° 1—exp(—n'1/2)'>‘\/_ﬁ-

Inequalities (3), (4), and (5) now combine to give the lemma.

p(-x)
e ' < exp (-Vn).

LEMMA 2. For exp(-vn) <x< 1,

Proof. Suppose that £j+1 <x< sj, 0<j<n. Then

p(-x) H gx - x H x - £ :ﬁgk-ﬁ-}fsi-ﬁ
PO | 7 Do B w xksjel x o+ £F k=o£k+§nk=j+1£j+£k

n-j-1 n

O Lo [ 1-&"_ q 1-&

m:n-j1+gm m=1 1+£m m=1 1+£m,

and the result follows from Lemma 1.

Proof of (A). Since |x| and r(x) are both even, it suffices to prove the required
inequality for [0, 1]. For 0 < x < exp(-Vn) this is quite trivial, since here
p(-x) > 0, so that 0 < r(x) < x. Hence

x| - r(®)| = x - r(x) < x < exp(-Vn).
For exp(-Vn) < x < 1, on the other hand, we see that
p(-x) B 2x

px) + p(-x) | ~ I . I1)3((}2)| — | 5((X>)<)

(6) |x—ﬂﬁ|=24
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Applying Lemma 2, we conclude from (6) that |x - r(x)f < 2/ (expvn - 1), and
since n> 2, 2/ (exp«/— - 1) < 3exp(-V¥n). The proof is complete.

LEMMA 3. Let b>a> 0, and let £ be any complex number. Then

b
S log

a

t+
t -

e

T >

e

Idt w2

Proof. Write £ = u+ iv (u, v real). We may clearly assume that u# 0. Then,
for t> 0,

1/2 1/2
|t+€ t+ v+ v / o - 1ul? / (Bl
t-¢ (t - w? + v2 — \(t+ |u])? t+ [u]
Hence
b t- |u]|at /el tt-1]at
S log > S - S log t+ 1]t
a t+ |u| a/ |ul
S 1t -1 _ 72
t+ 1 T2
LEMMA 4. Let P(x), not identically 0, be any nth_degree polynomial. Then

P(-x)
P(x)

Proof. Write 6 = exp(-Vn). If the lemma were false, we would have the rela-
tion

theve exists a point in‘[e-‘/‘n-, 1] where | x > exp (-6 Vn).

1

(1) jﬁ

On the other hand, we have the equation

1 1 1
(8) S log it === P(-1) dt Iogt t dt + ES log :+
o o £ Vo -

logltg((t;:) a - GJ"S at _ _én.

’

dt
t

P

1
where £ runs through the zeros of P(t). Noting that 5 ! log t dt = -n/2 and ap-
6

plying Lemma 3 to the n terms in the right member of (8), we obtain

1
P(-t)
(9) 55 loglt B Z —2(1+1r)
The contradiction between (7) and (9) gives the lemma.

Proof of (B). Assume that there exists an R(x) satisfying the inequality.
Choosing
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we note that R;(x) is even and of order 2n, and vanishes at the origin. Also we see
that

(10) x| - R1(x)| < exp(-9Vn)

throughout [-1, 1].
Now write R (x) = x% S(x?)/ Q(x%), where Q(x2)> 0 throughout [-1, 1], and ob-

serve that, by (10), S(x?) > 0 for exp (-V2n) < x < 1. Hence, for exp(-V2n) < x< 1,

Qx%) - xS(x%)
Qx%)

The application of Lemma 4 to the polynomial P(x) = Q(x%) + xS(x%) insures the
existence, in exp(-v2n) < x < 1, of a point where

X

> |x Qx?) - x5(x?)

(11) |x - Ry(x)| = Q%) + x8(x2) |

L Q&%) - x8(x%)

QD) 5 x56D) > exp(-6vV2n) > exp(-9vn).

(12)

Together, (11) and (12) contradict (10), and the proof is complete.

We conclude with the following observation: Approximation of |x| in [-1, 1] is
equivalent to approximation of vx in [0, 1]. In fact, if R(x) approximates to VX,
then R(x%?) approximates to le; and conversely, if R(x) approximates to I}i |, then
R(VX) + R(-VX)

2
tion to VX is also exp (-cvn). This degree of approximation is also possible for
xa, where «a is any positive noninteger rational.

approximates to vx. Thus we conclude that the order of approxima-
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