NORMAL FUNCTIONS, THE MONTEL PROPERTY, AND
INTERPOLATION IN H™

G. T. Cargo

1. INTRODUCTION

The purpose of this paper is to exhibit an interrelationship among the subjects
referred to in the title. As a by-product, we obtain new and somewhat shorter
proofs of several known results.

2. SOME DEFINITIONS AND KNOWN THEOREMS

Let D denote the open unit disk, let K denote the family of one-to-one conformal
mappings of D onto itself, and let f be a function which is meromorphic in D. Then
f is said to be normal in D if the family {foS:8S¢€ K} is normal in D in the sense
of Montel. This class of functions was first introduced by Noshiro [9] in 1939; sub-
sequently, it was rediscovered by Lehto and Virtanen [7], who remarked that the sum
of a normal function and a bounded function (which is necessarily normal) is normal.
Lappan [6] proved

THEOREM 2.1 (Lappan). Corresponding to each unbounded novmal holomovphic
Junction f in D, theve exist a Blaschke product B and a normal holomovphic func-
tion g in D such that B and f+ g ave not novmal in D.

Throughout this paper, the Blaschke product

o0
_"’lznl Zn - 2
Zn 1 -2,2

1

is denoted by B(z; {z,}). (For a discussion of such products, see [11; p. 274].)

A function defined in D has the Montel property if the set of points on the unit
circle C where the radial limit exists coincides with the set where the angular limit
exists. In [4] the author proved

THEOREM 2.2. Corresponding to each holomorphic function f in D having an
infinite vadial limit at the point { in C, theve exists a Blaschke product B such that
B has an infinite vadial limit at § but fails to have an angulay limit there.

A sequence {z,} of points in D is called an interpolating sequence if, given an
arbitrary bounded sequence {Wn}, there exists a bounded holomorphic function f in
D such that f(z,) = w, (n=1, 2, ---). See [10], where further references are given.
Carleson showed that a necessary and sufficient condition for {zn} to be an inter-
polating sequence is that
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{2.1) igf IT [z, z ]>0
n#*k

where [a, b] = |a - b|/|1 - ab|. Both Newman and Hayman proved that {z,} is an
interpolating sequence provided sup (1 - [znl)/(l - [zn_ll) < 1.

Throughout this paper, we denote the hyperbolic non-Euclidean distance between
two points z; and 2z, in D by p(z, z,). (See [3; pp. 322-330] or [5; pp. 235-241].)

3. A UNIFYING PRINCIPLE

We observe that each of the above subjects involves Blaschke products. For
example, (2.1) holds if and only if

i{{lf |B'(z3; {z, 1)1 - |2]® > 0.

The following theorem singles out a property of Blaschke products which serves as
a unifying principle.

THEOREM 3.1. Let S be a subset of D having at least one accumulation point
on C. Then, corvesponding to each positive number vy, theve exists a denumerable
subset {z,} of S such that the non- Euclidean disks {z: p(z, z,) <y} (n=1, 2, )
arve disjoint and B(z; {zn}) is bounded away from zevo on the complement of theiv
union, that is, on the set

N {z: pz, z,) >} .

n=1

Preliminary vemarks. That Theorem 3.1 is sharp follows from [2; Lemma 1};
conversely, Theorem 3.1 shows that Bagemihl and Seidel’s lemma is the best pos-
sible. The reader should observe that Theorem 3.1 and the proof which we give be-
low are implicitly contained in Newman’s paper [8; pp. 504-505].

Proof. Set c = e‘47, and select a sequence {zn} of points from S such that
1-|z,|<e@-]z,1]) n=2,3, ). If m> n, then

1-]z_|<e™™1-|z,]), and |z |- ]z |> @ -c™™(A - |z,]).
From the inequality |z, |- |z,,]|z,|< 1 - |z,|, we conclude that
1- )z |lz | < @+ ™D - |z )
and, hence, that

|2m| - l2n] 1. cmen (m> n).

3.1
-1 1 [l len] 1700

Next, consider any point z in the set n{z: o(z, z,) > v}. There exists an inte-
ger N such that IzN < lz|< IZN+1|’ provided |z|> lzll. For n<N,

(3.2) (20, 21> (2], |2,]1> [lzx], [24]1> @ - N-®)/(1 + N
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by [3; p. 321] and (3.1). Likewise, if n> N+ 1,
(3.3) [Zn, 2] > (@ - Ny + c-N-1y

Observing that the condition p(z,, z) > v is equivalent to [z, z] > tanh y, we con-
clude from (3.2) and (3.3) that

|B(Z; {Zn}) I = H [Zn’ Z] * [ZN, Z] ° [ZN+1’ Z] * H [zny Z]

n<N n> N+1

> [tanhy IT{ (@ - ¥/ + O }]2.
1

We have assumed that |z|> |z;| and that N> 1; the remaining cases are left to the
reader.

Finally, let us prove that the disks are disjoint. From (3.1) we see that, for
m > n,

(2 2] > 1 - ™7/ @+ >0 -c)/A+0e).
Hence,
0(Zypyy Zq) > tanh™ {1 - ¢)/(1 + c)} =2y.

The disjointness now follows from the triangle inequality, and this completes the
proof.

4, SOME CONSEQUENCES

Theorem 3.1 is obviously connected with the interpolation problem mentioned
above; see [8; pp. 504-505]. Indeed, every set of points in D having at least one ac-
cumulation point on C contains a countable subset which constitutes an interpolating
sequence. To see this, choose {zn} as in Theorem 3.1, and let By be the Blaschke

roduct whose zeros are zj, ***, Z)_1, Zi+1, ***- Then, for some positive number a,
?Bk(z) | > IB(z; iz, }) | >a for all z satisfying the equation p(z, zy) = y; and by the
minimum modulus principle, IBk(zk) | >a (k=1, 2, ), so that condition (2.1) holds
for the sequence {zn

Next, let us prove the first part of Theorem 2.1. Let f be an unbounded normal
holomorphic function in D. Select a sequence {’g‘n} of points in D such that
f((¢,) @« as n — «, For each positive integer n, take z, to be any point for
which p(z,, &,) = 1, and observe that Iznl — 1 as n — o, Using Theorem 3.1,
select a subsequence {znk} of {z,} such that B(z; {znk}) is bounded away from

zero on the set

[o ]

U {2 pte, 2,) - 1}

k=1

Let h(z) = f(z)B(z; {znk}). Then h(znk) =0 (k=1,2, *) and h(6 ) =~ as k — .
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Using Lemma 3 (or Lemma 4) of [6], we conclude that h is not normal in D.

As a third application of Theorem 3.1, let us give a new proof of Theorem 2.2,
Let the set S in the statement of Theorem 3.1 be a non-radial line segment con-
tained in D and having one endpoint at . Assume for the moment that the hyper-
bolic non-Euclidean distance between the radius to ¢ and the set S is positive, that
is, that

(4.1) inf{p(z, rf):z€S;0<r<1} > 0.

Take y to be this distance, and select {zn} as in Theorem 3.1. Then

inf{|B(r¢; {z,})|: 0<r< 1} > 0, and £(z)B(z; {z,}) has the desired properties.
To see that (4.1) holds, let 6 (0 < 8 < 7/2) be the angle between the radius in ques-
tion and the segment S. Then, if a is in S, and if b is on the radius, a simple
geometric argument yields the conclusion

la-b|> |¢-alsing> (1- |a|)sin 6 =2a(1- |a])/( - a),

where a = sin 6/(2 + sin 6). This, in turn, implies that [a, b] > ¢, that is, that
pla, b) > tanh ~la; for, otherwise,

la-b|=(@ - |al®)[a, b]|1 - a(a - b)/(1 - ab)|"?
<a(t - |afya - |ale)
< 2a(1 - |a])/@ - @),

which is a contradiction.

As an analogue of Lappan’s theorem, we prove the following result, which is a
slight extension of a previous theorem [4].

THEOREM 4.1. Corvrvesponding to each normal holomorphic function £ in D
approaching « along some boundarvy path, theve exist (a) a Blaschke product B and
(b) a normal holomorphic function g in D such that tB and f + g do not have the
Montel property.

Proof. Let f be the function described in the theorem. By [1; Corollary 1], the
path along which f(z) approaches « must terminate at some point of C; and then, by
[7; Theorem 2], we conclude that f(z) has « as an angular limit at that boundary
point. Part (a) of the theorem now follows from Theorem 2.2; and part (b) follows
by [6; Lemma 2].

5. ANOTHER TECHNIQUE

Let us conclude by proving a slightly weakened version of Theorem 3.1, which
suffices for most of the applications in the preceding section and, moreover, which
illustrates a technique that turns out to be useful in other connections. The reader
should have no trouble in using the ideas of this section to give a new and shortened
proof of Theorem 3.1. Under the hypothesis of Theorem 3.1, we shall show the
existence of a denumerable subset {z,} of S such that the disks {z: p(z, z,)) <y}

are disjoint and B(z; {z,}) is bounded away from zero on U{z: o(z, z)=v}.

The proof proceeds as follows. Letting H, = {z': p(z, z') = v}, one can easily
verify that
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(5.1) r,=supq|z'|:z' e H} <1,
1, lala-z | _ @+]zha-[aD
(5.2) 0<1-[a,z] < |1-FT%|< Tl
for |z| <1 and 0< |a|< 1, and
(5.3) inf{|z']:z' €eH,} -1 as [z]|—1.

Let c,=1-2"" (n=1, 2, +=-). Then choose z; to be any point in S - {0}, and
select z, in S in such a way that

(5.4) [z2, 2] > cz for all z in H,
and
(5.5) [z,,z] > ¢; forall z in H,, .

In view of (5.1) and (5.2), (5.4) holds provided
-1 1
(1+r21)(1 —rzl) (1 - |zz|)<§(1 - C3);

and (5.5) holds for |z,| sufficiently close to 1 in virtue of (5.3) and the fact that

[z1, 2] = 1 uniformly as |z|— 1. Continuing this process by induction, one can

select a sequence {z,} in such a way that [z, z] > ¢, for all z in H, provided
J

j # n. Doing this, we see that

oo

11_[ [z ,2]>c ¢, = c_ _j(tanhy)c -

for all z in H, (m =1, 2, --*), which completes the proof.
m
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