NIL IDEALS IN GROUP RINGS

D. S. Passman

Let R be a commutative ring having no nonzero nilpotent elements. We consider
nil ideals in the group ring R{G]. In this paper conditions on G and R are found
that ensure that Nil R[G], the upper nil radical of the group ring, is trivial. We
also obtain necessary and sufficient conditions for the existence of nontrivial nilpo-
tent ideals. In the particular case where R is a field K, the above results yield suf-
ficient conditions on G and K for the semi-simplicity of the group algebra K[G].
These are similar to and, in fact, motivated by the results of S. A. Amitsur in [1] for
fields of characteristic zero.

If there exists a positive integer m with mR = (0), then we set ch R, the charac-
teristic of R, equal to the smallest such positive integer. Otherwise, chR =0. In
the first case, let 7(R) = {p1, P2, ***, Px; be the set of prime divisors of m = ch R.
Then since R has no nontrivial nilpotent elements, it is immediate that each prime
occurs only to the first power. The integers m/pl , m/pz, e m/pk are relatively
prime, so there is a linear sum

nym/p; + nym/p, + =+ + nm/p, = 1.

This induces a decomposition

of R as an internal direct sum of nonzero ideals, where

Rpi =n;m/p;R={r eR:p,r=0}.

Hence, for any group G,

R[G]=R_ [G]+ RPZ [G]+ --- + Rpk [G].

PI[

An ideal of the group ring is then nil or nilpotent if and only if its projection into
each factor is. This effectively reduces all ch R # 0 considerations to the prime
case.

We say an element o € G is a p element if it is of order pJ for some ji> 1.

THEOREM 1. Let R be a commutative ring having no nonzevo nilpotent ele-
ments. Suppose that ch R # 0 and that G has no p elements for all p € 1(R). Then
Nil R[G] = (0).

First, we need a few lemmas. Let I" be any ring. We write Comm I' for the
commutator of T', the set of all finite sums of elements of the form ab - ba with
a,ber,

LEMMA 1. Let p be a priwmie, and let k and n be avbitvary positive inlegers.
Then for all xy, x5, +--, x, €T,
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k k k pk
(x1+ %, + - +x )P =xP + x5 4+ xP s py+ oz,
1 2 n 1 2 n | %4
wheve y € T’ and z € Comm T,
Proof. Observe that
k k k k
(x1+x2+---+xn)p :fo +XIZJ +---+xﬁ +t,

where t is the sum of all words of the form

X X- cee xl

11 12 k

P
with at least two different subscripts occurring.

If words w; and w, are cyclic permutations of each other, that is, if

then
W, - W, = ab - ba € Comm I", with

- X- ere X
11 12 1j-—1

, b= xijxi— P <1

jt+1 Pk

Hence, modulo Comm I' all cyclic permutations of a word w are congruent. But
an easy counting argument shows that the number of such words is divisible by p.
Thus the result follows.

For convenience we introduce the following notation. For all
a=2.ry0€R[G],

we set 6(a) = r,, the coefficient of the identity of G.

Now Comm R[G] is spanned over RZ by all elements of the form o7 - 70 with
0, 7€ G. But o7 =1 if and only if 70 = 1, so we have proved

LEMMA 2. If z € Comm R[G], then 6(z) = 0.
LEMMA 3. Let R be a commulative rving having no nonzevro nilpotent elements,
and let chR=p> 0. If

a=ryl+r,o,+-+r o €R[G]

is nilpotent and no o; is a p element, then 6(a) = r, = 0.
k
Proof. Suppose aP = 0. Then

k k k _k k k
0=aP =r11) 1+r12) 012) +---+r§ O’E + pb + z
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k
by Lemma 1. Now pb = 0 since ch R = p and, by assumption, no of is equal to 1.
Hence,
k
rlf =-6(z) =0

by Lemma 2. Therefore r, = 0.

Proof of theovem. It suffices to show that for each p € 7(R), Nil R [G] = (0).
But R, has characteristic p, and G has no p elements. If

a=2ir;o € Nil R,[G],

then for all 7 € G, a7r~! is nilpotent. Therefore by the preceeding lemma,
g(ar-1) = r. = 0. Hence, a=0.

For the case where ch R is zero, we have the following result.

THEOREM 1II. Let R be a commutative ving without nonzevo nilpotent elements.
Suppose (R, +) is torsion free. Then for any group G, Nil R[G] = (0).

We first consider a special case.

LEMMA 4. Let K be a finite field extension of the vational numbers Q. Then
Nil K[G] = (0).

Proof. Let D be the integral closure in K of the rational integers Z. Then K
is the quotient field of D.

Suppose Nil K[G] # (0). Then by multiplying by a suitable group element and a
field element, we can suppose

o =dyl+d,o,+--+d o €D[G]

is nilpotent and d, # O.

The norm map NK/Q maps D into Z, and by assumption, NK/Q(d 1) # 0. Choose
‘a prime p with

p > absolute value of NK/Q(dl) ,
> all the finite orders of the o;,
> the degree of nilpotence of a .
Then
0=a® =df1+dob ++ Lo +pg+2z,

where 8 € D[G] and z € Comm D[G]. Hence d¥ = pd with d = -0(8) by Lemma 2.
Thus if t = [K: Q],

Ng /0(@)P = N /o (dh) = Ny /6, (pd) = Ny /(@) -

But p does not divide NK/Q(dl), so this is the required contradiction.
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To reduce the general problem to this special case, we need the following two
lemmas, whose proofs are immediately clear.

LEMMA 5. Let R¥ be the canonical rving extension of R having a unit element.
Then Nil R[G] c Nil R*[G].

LEMMA 6. Let S be a multiplicative subset of regular elements (nonzevo divi-
sors) of R. Then Nil S-IR[G] = S~ Nil R[G].

Proof of theorem. By Lemma 5, we can suppose that R contains a unit element.
The hypotheses of the theorem state precisely that the nonzero integers Z, in R
form a multiplicative subset of regular elements. So by the preceeding lemma, we
need only consider the ring Z 'R, or in other words, we can assume that R is a
unitary over-ring of the rationals Q. Note that neither of these extensions of R can
introduce nonzero nilpotent elements in the ring.

The result now follows by the Hilbert Nullstellensatz. Let

@ =r;0y +r,0, + - +1r 0, € Nil R[G],
and let R = Q[ry, rp, ---, r,] € R. Then o €Nil R[G]. Let M be a maximal ideal
of R. The image of ¢ under the map

R[G] —» R/M[G]

is an element of Nil R/M[G]. But R/M is a finite algebraic extension of Q, so by
Lemma 4, the image is zero.

Hence, ry, rz, +++, rn € M for all maximal ideals M. That is the r; belong to the
Jacobson radical of R. But R is a finitely generated commutative algebra, and a
second application of the Nullstellensatz implies that ry, rp, -+, r, are nilpotent.
Finally, since R has no nonzero nilpotent elements, o = 0.

Now, Theorem I yields sufficient conditions for the nil radical to be zero. That
it need not be zero can be seen from the following example.

Let A be an abelian group having no elements of even order, and let X = {1, X}
be a group of order two. Set G equal to the semi-direct product of A by X, where
x acts on A by sending each element to its inverse. We consider K[G] for K a
field of characteristic two.

PROPOSITION. With the above notation,
(i) if A is finite, Nil K[G] = K - ( 27 p);
peG
(ii) #f A is infinite, Nil K[G] = (0).
Proof. We use the notation a, b € K[A] so that any element of K[G] can be

written uniquely as a + bx. If a = 2 ky0, we set a~l= 23 koo‘l. Notice that
CEA OEA
ax = xa~1,

Now, if a is nilpotent, then since K[A] is commutative, a generates a nil ideal
in K[A]. But by Theorem I, Nil K[A] = (0), so in this case a = 0.

Let a + bx € Nil K[G], then
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(a + bx) (a-! + bx) = (aa~! + bxbx) + (bxa~! + abx),
=(aa"!+ bb™1) + (ba + ab)x,
= (aa~! + bb™?) € Nil K[G].

Thus aa~!=bb~! since ch K = 2.

Therefore,
(a + bx)? = (aa + bxbx) + (abx + bxa),
=f{aa +bb™!) + (abx + a"1bx),
= (aa + aa™1) + (abx + a~1bx),
=(a+ at)(a+ bx).
Thus if (a + bx)™ = 0,
0=(a+aH™ !+ bx)
so that (a + a~1)™-1a = 0, Moreover,
(a+ ;1'1)m'1 al - x[@+al)™talx=0.

Therefore, by addition, (a + a~1)™

Now if o € A, then

= 0. Hence a + a-?! is nilpotent, so a = a™%

o(a + bx) € Nil K[G],

and oa = (ca)”!. Suppose a # 0, and choose ¢ so that 8(ca) # 0. Then since 1 is the
only element of A which is its own inverse, the number of nonzero terms of ca, and
hence of a, is odd since (ca) = (0a)~'. Butif 7 € A and the coefficient of 7 in a is
zero, then 9(77'a) = 0, which inplies that the number of nonzero terms is even.
Therefore, all elements of A must appear.

Thus if A is infinite, a = 0 and (bx)x =b € Nil K[G]. Consequently, b = 0.
Therefore (ii) is proved.

Now assume A is finite and thus is of odd order. Then every element of A has

a square root. Suppose a = 2 ky0. Fix 0,, 0, € A, and choose 7 so that
TEA
72 = o7to;1. Then 70, = (70,)"Y. But (7a) = (7a)~?, so kcrl = kg,. Hence a =k 27 o.
gEA

We also see that
(a+ bx)x = b+ ax in Nil K[G],

so we obtain similarly the result that b=k 2J o. Clearly,
OEA
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z =k 2 p € Nil K[G];
PEG

therefore,

(a+bx)-z=(-Kk) 2o
g€eA
is nilpotent. Hence k = k, and (i) is proved.

Necessary and sufficient conditions for the existence of nontrivial nil ideals in
R[G] are not immediately apparent. However we have found them for nilpotent
ideals.

THEOREM III. Let R be a commutative ving having no nonzero nilpotent ele-
ments and such that ch R # 0. Thern R[G]| has a nontrvivial nilpotent ideal if and
only if G contains a finite normal subgroup H whose ovder is divisible by some
p € m(R).

LEMMA 7. Let J be a group, and let H,, H;, -+, H, be a finite number of its
subgroups. Suppose theve exists a finite collection of elements o3j € J
(i= 1,2, -, n; j=1, 2, -, f(l)) with

J = U H;oy; (The union is set theoretic.)
1,j

Then for some index i, [J: H;] < .

Proof. By relabeling, we can assume all the H; to be distinct. We prove the re-
sult by induction on n, the number of distinct H;. The case n =1 is clear.

If a full set of cosets of Hy, appears among the H,0y,j, then [J: Hy] < », and we
are finished. Otherwise, if H,7 is a missing coset, then

HnT C U Hioij.
1,_]

But H 7N H o . is empty, so

nj

Thus all the cosets H,0,; can be replaced by finite unions of cosets of the re-
maining Hj;. Doing this yields a representation of J in terms of a smaller number
of subgroups, and the result follows.

For any group G set
A ={0 € G: o has only a finite number of conjugates in G} .
If 0,, 0, lie in A, then so does 0,0, since for any 7 € G

(0,077 = [v7Yo, 7] [77 Yo, 7] 72,
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and there are only a finite number of possibilities for each factor. Thus A is a sub-
group of G, and it is clearly characteristic.

We denote by ¢ the projection of R[G] into R[A], that is,
v: R[G] — R[A].
If @ =Zryo € R[G], then

Yl@) = 2 rgo € R[A].

ogeA
For convenience, given o = Zr;0 € R[G], we write
Supp @ = {0 €aG: r0¢0},

which is the support of «.
LEMMA 8. Let a € R|G], and suppose that for all o € G

Yo taoa) =0.

Then if a,= (@), az=0.

Proof. Write o = a,+ B, where
B=r)Ty + r 41 T, (r, ¢ 1).

For each p € Supp ¢,, [G: C(p)] < =, C(p) being the centralizer of p. Let

g= (1 cp.
pESupp,
Then [G: J] < «; and for all 0 € J, 07'a,0=0a, Set H;j=J NC(ry) (i=1, 2, **-, n).

Assume @2 # 0, and choose a & € Supp a2. For each i, if 7; is conjugate to
E'rj'l by an element of J, choose 035 € J so that

-1 _ -1
03; TiO'ij = £'rj .
Let 0 € J. Then
o 'aca = (@, + 07180) (a, + B),
=aZ+ 071800, + a8+ 0"B0B.

Now Y (0 'aoca) = 0. Hence the £ term of a2 must be cancelled out by a £ term in
one of the remaining three summands. Thus it is clear, since

Supp (071Boa,) N A = Supp(@8B) N A =0 and £ € A,
that & € Supp (07 Bop) .

Consequently there exist 7y, T; with
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But this means that o € H;0;;

Therefore we have shown that
J = U Hi Uij .
i,j

Hence by the preceeding lemma, for some index i, [J: H;] < . But H; ¢ C(73), so
[ G: C(7;)] < . This is the required contradiction since 7; £ A.

LEMMA 9. Let S={x,, x,, -+, X, } be a finite novmal subset of G. If
H = <8> the subgroup genevated by S then H is novmal in G and for all o € H,

mj m my
3 OC=X; X, X

n
for some integers my, my, ---, m,. In particulayr, if each x; is of finite ovder, then
so is H.

Proof. Clearly, H is normal.
Any element of H can be written in the form

+1 +1 +1
TOXT eer XT

w=X - -
11 1 1t

b

and we prove the result by induction on the length t of the word. For t =1 there is
nothing to prove.

Consider the smallest subscript occurring in the representation of w. Name it
j. Then
+1 +1, F1

W=WwW, X, W, =X, (X.
175 72 J(J

_tl) _ Ut
wy xj W, = xj Wy,
since S is normal.

But w; has one less element, so we can write

| _mk Mgy mp
W3 = X X1 Xn

omitting the first terms with zero exponent,

I j <k, we are through. Otherwise, there exists an element of smaller sub-
script in this representation of w, and we apply this process again. Clearly this
procedure terminates after a finite number of applications since S is finite, and the
desired result follows.

Proof of Theorvem III. Suppose H is a finite normal subgroup of G with order
divisible by p for some p € 7(R). Choose a nonzero r € Ry, and set
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a = 27 rh € R[G].
heH

Then « is nilpotent and central in R|[G], so it generates a nilpotent ideal.

Conversely, let N be a nontrivial nilpotent ideal of R[G]. Suppose
N™ 2 (0), N™-(0).

For some p € 7(R), the projection of N™ into R,[G] is nonzero. We choose @ in
this image with 8(a) # 0.

Then for all o € G,
oc-leca =0,

so by Lemma 8, a, = Y(a) is nilpotent. But 0(a,) = 8(a) # 0. Thus by Lemma 3,
Supp @, contains a p element A. Now X € A, and if we let S be the finite set of
conjugates of A, then S is normal. By the preceeding lemma, H= <S> is a finite
normal subgroup of G with order divisible by p, since A € H. This completes the
proof.

We now consider the question of the semi-simplicity of the group algebra K[G].
We let Rad I denote the Jacobson radical of any ring T'. -

THEOREM 1V. Let K be a field of chavacteristic p > 0, and let G have no ele-
ments of order p. If K is a separably genevated non-algebraic extension of some
subfield K,, then K[G] is semi-simple.

THEOREM V. (Amitsur [1]) Let K be a field of charactevistic zevo. If K is a
non-algebraic extension of the vational numbers, then for all groups G, K[G] is
semi-simple.

Proof. We consider the first result. Let (x) = (x) be a transcendence base for
K over K,. This base is not assumed to be finite but just non-empty. Set K, = K (x).
Then by Theorem II of [2],

Rad K, [G] c K;® Nil K,[G],
K,
and since the nil radical is zero by Theorem I above, K,[G] is semi-simple.
But now K is a separable algebraic extension of K,, and by Theorem I of [2],
Rad K[G] = KX Rad K,[G].
Kl
So Rad K[G] = 0, and K[G] is semi-simple.
Theorem V follows similarly.

The latter theorem asserts, in particular, the semi-simplicity of all group alge-
bras over nondenumerable fields of characteristic zero. However the former one
does not yield a corresponding result for characteristic p > 0 because of the separ-
ability condition. But this result can be obtained as follows.

LEMMA 10. Let H be a subgvoup of G, and let a € K[H]. If a is quasi-regulay
in K[Gl, then it is in K[H].
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Proof. This follows immediately because the projection of any quasi-inverse of
a into K[H] is also a quasi-inverse of a.

THEOREM V1. Let K be a nondenumevable field of chavactevistic p> 0, and let
G be a group having no elements of ovder p. Then K[G] is semi-simiple.

Proof. Let
a=21ky0 € Rad K[G],

and let H be the subgroup of G generated by Supp a. Then H is finitely generated,
and a € K[H]. If b is any element of K[H], then ba is quasi-regular in K[G], and
hence in K[H], by the preceeding lemma. Thus a € Rad K[H]. But K[H] is a
finitely generated algebra over a nondenumerable field. Thus, by Corollary 4 of [3],
a € Nil K[H]. By Theorem I, the nil radical is zero, and thus a = 0.

Therefore with the assumption that G has no elements of order p, the basic re-
sults of [1] carry over to fields of characteristic p > 0.
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