DIFFERENTIAL SYSTEMS AND EXTENSION OF
LYAPUNOV’S METHOD

V. Lakshmikantham

Let I denote the half-line 0 < t < «, and let R™ denote n-dimensional Euclidian
space. We consider the differential systems

(1) X'= f(t, X); X(to) = Xp»
(to > 0)
(2) y' =g, y); vty = ¥o,

where x,y, f and g are n-dimensional vectors, and where the functions £(t, x),

g(t, y) are defined and continuous on the product space Ix R". In Theorems 1 to 11
below, we establish a number of results on the stability and boundedness of solutions
of the systems (1) and (2). Our results constitute an extension of work of Yoshizawa
[7], [8], Brauer [1], and Conti [2].

We adopt the notation R* = [0, ») and |x|=2Z].; |x;|,and we shall write d(x, y)
for lx -y l . Let a function V(t, x, y) > 0 be defined and continuous on the product
space Ix R™ x R™, and suppose that it satisfies Lipschitz’s condition in x and y
locally. In particular, we assume that V(t, x, X) > 0 for (t, x) in I X R?. Following
Yoshizawa [7], we next define the function

(3) V*(t, X, y) = lim sup %[V(t + h, x + hi(t, x), y + hg(t, y)) - V@, x, y)].
h—0

With respect to these functions we state the following lemmas.

LEMMA 1. Let the function W(t, r) be defined and continuous on I X R*. Sup-
pose further that the function V*(t, x, y) of (3) satisfies the condition

(4) VX(t, x, y) < W(t, V(t, x, ¥)).

Let r(t) be the maximum solution of the diffevential equation

(5) . r'= W(t, r), r(ty) = ro > 0.

If x(t) and y(t) arve any two solutions of (1) and (2) such that V(t,, X,, yo) < To, then
(6) V(t, x(0), y0) <r(® (t>t).

LEMMA 2. If the assumptions of Lemma 1 hold, except that the condition (4) is
replaced by the inequality

(7) A VL, x, y) + AXO V(L x, y) < W, ADV(E, x, 7)),
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whevre the function A(t) is continuous, positive and defined on 1, and

A*(t) = lim sup [A(t + h) - A(t)]/h,
h—ot

and if A(to) V(ty, X0, ¥o) < Tq, then
(8) AMVE, x®), y®) < 1O (> 1)

Remark. Taking A(t) = 1, we see that Lemma 2 reduces to Lemma 1. Since
Lemma 1 is an important tool by itself in the study of various problems of differen-
tial equations, we have stated it separately. Actually, it is an extension of a lemma
due to Conti [2], who assumes that V(t, x, y) has continuous partial derivatives with
respect to t and with respect to the components of x and y. F. Brauer improves
Conti’s lemma, assuming one-sided partial derivatives [1].

Proof of Lemma 1. Let x(t) and y(t) be any two solutions of (1) and (2) such that
V{(ty, X0, ¥o) < Iy. Define m(t) = V(t, x(t), y(t)). Then, using the hypothesis that
V(t, x, y) satisfies Lipschitz’s condition with respect to x and y, we obtain, for
small, positive h, the inequality

m(t + h) - m(t) < K[|e,h|+ |e,h]]
+ V[t +h, x(®) + hit, x(1)), y(O) + hglt, yt)] - V(, x(1), y(t),

where K is the Lipschitz constant at (t, x, y) and ¢, and ¢, tend to zero as h tends
to zero. This together with condition (4) yields the inequality

lim sup%[m(t +h) - m(t)] < W(t, m(t)).
h— 0t

The standard argument used in [3], [4] can now be followed to establish the result (6).

Proof of Lemma 2. Let R(t) be the maximum solution of
R' = [FA*(t)R + W(t, A R)]A™Y(t), R(ty) > Vi, X, Yo) -
Then it is clear from (7) that Lemma 1 can be used to obtain the inequality
V(t, x(D), y®) < RO (> t).

But R(t) = r(t) A"*(t), where r(t) is the maximal solution of (5) such that
R(t,) = ro A™(t,). Hence the result follows.

Remark., Lemma 2 can also be reduced to Lemma 1 by defining
L(t, x, y) = A(Q V(L x, y)
and verifying that L(t, x, y) preserves the properties of V(t, x, y). The former

proof was also pointed out to us by ¥. Brauer.

We assume hereafter that the solutions r(t) of (5) are nonnegative for t > t, so
as to ensure that W(t, r(t)) is defined. Such a requirement is clearly satisfied if we
assume that W(t, 0) = 0 for all t.
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THEOREM 1. Let the assumplions of Lemma 1 hold. Suppose also that
V(t, x,y) =« as d(x, y) — «. Then, if all solutions of (5) togethey with one solu-
tion of (2) can be continued for all t, all the solutions of (1) can be continued for all
t.

Suppose that g(t, y) = 0. In this case, the result is a refinement of the global
existence theorem of Conti [2] and Brauer [1]. The proof of the theorem is immedi-
ate (one uses a result of Wintner [6] as in [1]).

For any fixed (t,, y,), let y(t) be any solution of (2) which exists in [t,, «). If
there exists a sequence 1ty} (tx — ) such that y(ty) — p € R® as k — «, we say
that u is a cluster point of y(t). We denote by M the set of cluster points of y(t).

THEOREM 2. Let the assumptions of Lemwma 2 hold. Suppose A(t) — « as
t — . Suppose that (a)
(9) b(d(x, y)) < V(t, x,y),

wheve the function b(r) is continuous and nondecrveasing in r, and b(r) > 0 for
r> 0, (B) M is the cluster set of y(t), and (y) all the solutions of (5) vemain
bounded as t — . Then M is the cluster set of every solution x(t) of (1).

Proof. Since M is the cluster set of y(t), it is enough to prove that
d(x(t), y(t)) = 0 as t — . If x(t) and y(t) are any two solutions of (1) and (2)
such that A(t,) V(t,, x,, v, < ry, we deduce from Lemma 2 that

(10) ADVE x@®), y®) < r®) > t).

Let {tk} (tx — =) be a sequence such that Ix(tk) - y(tk)| > €, for some € > 0 and
for each k. Then it follows from (9) and (10) that

At be) < Aty V(tk, x(tw), y(t) < rit) < B,

since all the solutions r(t) of (5) are assumed to be bounded as t —«. Since
b(e) > 0 and since A(tx) — « as tyx — «, there is a contradiction, which implies that
M is the cluster set of x(t). Hence the proof is complete.

Suppose that x(t) and y(t) are any two solutions of (1) and (2). In order to unify
our results on stability and boundedness, we list the following conditions.

(i) For each o > 0 and t, > 0, there exists a positive function B(t,, @) that is
continuous in t, for each a and such that if d(x,, y,) < a and t > t,, then

d(x(t), y()) < B(to, @).

(ii) The B in (i) is independent of t,.

(iii) For each € > 0 and each t, > 0, there exists a positive function n(t,, £)
that is continuous in t, for each € and such that if d(x,, y,) < n(t,, €) then
d(x(t), y(t)) < € for all t> t,.

(iv) The 7 in (iii) is independent of t,.

(v) For each o > 0 and each t,> 0, there exist positive numbers B and
T(ty, @) such that d(x(t), y(t)) < B provided d(x,, y,) < @ and t> t, + T(t,, ).

(vi) The T in (v) is independent of t,.

(vii) (i) and (v) hold simultaneously.
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(viii) (ii) and (vi) hold simultaneously.

(ix) For each € > 0, o > 0 and t, > 0, there exists a positive number
T(t,, €, @) such that d(x(t), y(t)) < € provided d(x,, y,) < @ and t> t, + T(t,, €, a).

(x) The T in (ix) is independent of t,.
(xi) The conditions (iii) and (ix) hold simultaneously.
(xii) The conditions (iv) and (x) hold simultaneously.

Remark. Corresponding to the definitions above, if we say that the differential
equation (5) has the property (ia), we mean that the following condition is satisfied:

(ia) Given a > 0 and t, > 0, there exists a positive function B(t,, a) that is
continuous in t, for each a and that satisfies the inequality r(t) < B(t,, @) if ro < o
and t > t,.

Conditions (ii) to (xii) may be reformulated similarly.

The following theorems on stability and boundedness are extensions of many re-
sults of Yoshizawa [7, 8]. We assume that

(11) the function b(r) is continuous and nondecreasing in r, b(r) > 0 for r > 0,
and b(d(x, y)) < V(t, x, y). On occasion, we may also assume, below, that
(12) b(r) o as r —w,

THEOREM 3. Let the assumiptions of Lemma 1 hold, together with (11) and (12).
Suppose further that the differential equation (5) satisfies one of the conditions (ia),
(iia), (va), (via), (viia), and (viiia); then the systems (1) and(2) satisfy the corre-
sponding one of the conditions (i), (ii), (v), (vi), (vii), and (viii).

Proof. Suppose the differential equation (5) has property (ia). Then, correspond-
ing to @ > 0 and t, > 0, there exists a positive function B(t,, @), that is continuous
in t, for each o and satisfies

(13) r(t) <B(t, @)

if ro< @ and t,> 0. Since b(r) — « as r — «, there exists an L = L({,, @) such
that

(14) b(L) > B(t,, @).

Let x(t) and y(t) be any two solutions of (1) and (2) for which V(t,, X, Vo) < Ip < @.
Then it follows from (11) that

b(d(xo, ¥0)) < Vity, Xo, ¥o) < @
Since b(r) is nonnegative and increasing, d(x,, y,) < b~'(a) =y. Also, by Lemma 1,
(15) V(t, x(t), y®) < r(t) for t>t,.
Now assume that there exist two solutions x(t), y(t) of (1) and (2) for which

d(x,, ¥o) < v have the property that d(x(t,), y(t,)) = L. for some t=1t; > t,. Then
from the relations (11), (13), (14), and (15), we obtain the inequality
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b(L) < V(ty, x(ty), y(t)) < r(ty) <B(ty, @) < b(L),

which is a contradiction. It therefore follows that if d(x,, yo) <7 and t > t,, then
d(x(t), y(t)) < L(ty, @). This proves (i).

The proof of (ii) is essentially the same, since S(t,, @) is independent of t, in
this case.

The proofs of the other statements are also similar. We shall only indicate the
proof of the conclusion (v). Since equation (5) satisfies condition (va), given a > 0
and t, > 0, there exist positive numbers B and T(t,, @) such that

(16) r(t) < B

for all ro < o and t> t, + T(ty,, @). Since b(r) — « as r — o, there exists an M
such that

(17) b(M) > B.

Let x(t) and y(t) be any two solutions of (1) and (2) for which V(t,, x,, yo) < ro < @.
Then, as in the previous case, d(x,, y,) < v. If there exist two solutions x(t), y(t) of
(1) and (2) that satisfy the condition d(x,, y,) < v and such that d(x(ty), y(t)) > M
for some sequence {ty} (tx — =), then, as in the proof of (i), the relations (15), (16)
and (17) imply the inequality

b(M) < Vg, x(ty), y(t) < r(t) < B < b(M).

This contradiction shows that the systems (1) and (2) satisfy (v), and this completes
the proof.

THEOREM 4. Let the assumptions of Lemma 1 hold, together with (11). Sup-
pose further that the diffevential equation (5) satisfies one of the conditions (iiia),
(iva), (ixa), (xa), (xia) and (xiia); then the systems (1) and (2) satisfy the correspond-
ing one of the conditions (iii), (iv), (ix), (x), (xi) and (xii).

Proof. For each € > 0, if d(x, y) = €, we deduce from (11) that b(e) < V(t, x, y).
If the equation (5) has property (iiia), given b(¢) > 0 and t, > 0, there exists a posi-
tive function 7(t,, €) such that

(18) r(t) < b(e)
if ry < nlt,, €) and t> t,. Suppose x(t) and y(t) are any two solutions of (1) and (2)

such that V(t,, x4, v,) < ry < nity, €). By (11) and the monotonicity of b(r), this im-
plies that

d(x,, yo) < b~nlt,, €)) = 0(t,, €).
If we now assume that there exist two solutions x(t) and y(t) of (1) and (2) for which

d(x,, ¥o) < 0(ty, €) and d(x(t,), y(t,)) = € for some t = t, > t,, then, using Lemma 1
and the relations (11) and (18), we are led to the contradiction

b(e) < V(t,, x(t), y(t)) < r(ty) < b(e).

Therefore the systems (1) and (2) fulfill condition (iii).
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By following the proof of Theorem 3 and that given above, we can easily construct
proofs of the remaining conclusions of the theorem. We omit the details.

THEOREM 5. Let the assumptions of Lemma 2 hold, togethey with (11) and (12).
Suppose A(t) — « as t — o, and suppose fuvther that the diffevential equation (5)
satisfies one of the conditions (ia) and (iia). Then the systems (1) and (2) satisfy the
corvesponding one of the conditions (v)and (vi). If in addition A(t) > 1, then the
systems (1) and (2) have the properties (vii) and (viii), respectively.

Proof. We first show that (v) is implied by (ia). Let x(tf) and y(t) be any two
solutions of (1) and (2) such that A(ty) V(ty, Xo, ¥o) < . Then it follows from Lemma
2 that

(19) A V(t, x(), y(©)) < r(t) for t > t,.

Since the equation (5) satisfies (ia), given @ > 0 and t, > 0, there exists a positive
number B(t,, @) such that r(t) < g(t,, @) if ry < a. Since b(r) — « as r — «, there
exists an L such that

(20) b(L) > B(t,, @) .
Now, choosing r, < a, we obtain the inequality
d(x,, ¥o) < b™Ha A7(ty)) =v.

Suppose that there exist two solutions x(t) and y(t) of (1) and (2) satisfying the con-
dition d(x,, ¥,) < v and such that d(x(ty), y(tx)) > L, where tx — «. Then it follows
from (11), (19), and (20) that

At b(L) < Aty V(ty, x(ty), y(tw) < rty < Bltg, @) < b(L).

Since A(ty) — « as tx — « and since b(L) > 0, this implies a contradiction; hence
the systems (1) and (2) satisfy (v).

If A(t) > 1, then, following the proof of Theorem 3, we also find that the systems
(1) and (2) have property (i). Hence they have property (vii). Similar conclusions
hold for the other case. The proof is complete.

THEOREM 6. Let the assumptions of Lemma 2 hold, togethey with (11). Sup-
pose A(t)— « as b — o, and suppose fuvrther that the differential equation (5)
satisfies one of the conditions (iiia) and (iva). Then the systems (1) and (2) satisfy
the corresponding one of the conditions (ix) and (x). If iz addition A(t) > 1, they also
have the corresponding one of properties (xi) and (xii).

Proof. For any € > 0, if d(x, y) = €, then by (11), b(e) < V(t, x, y). If equation
(5) satisfies (iiia), then given b(e) > 0 and t, > O, there exists a positive number
1(t,, €) such that
(21) r(t) < b(e)

if ro < nlt,, €) and t> t,. Let x(t) and y(t) be any two solutions of (1) and (2) such
that

A(ty) V(ty, X, ¥o) < T < n(t,, £).

In view of (11), this means that
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bd(%o, ¥0) < 7(to, €) AMty)
and by the monotonic property of b(r),
d(xg, ¥o) < bi(n(ty, €) A~H(ty) = .

Now if there exist two solutions x(t) and y(t) of (1) and (2) for which d(x,, y,) < @
and d(x(ty), y(tw)) > € for some sequence {tk} (tx — =), then it follows from (11),
(19) and (21) that

At b(e) < A(ty) V(ty, x(t), y(t)) < r(y) <b(E).

This leads to a contradiction, since A(ty,) — < as t, — <« and b(g) > 0. Hence it
follows that the systems (1) and (2) satisfy (ix). If in addition A(t) > 1, then, in
analogy to the proof of Theorem 4, we find that the systems (1) and (2) satisfy (iii).
This implies that they satisfy (xi). The proof in the other case is similar. We leave
the details to the reader.

We now extend the preceeding results to perturbed systems. Corresponding to
(1) and (2), we consider the systems

(1%) x'=f(t, x) + F(t, x), x(ty) = X,
(t, > 0).
(2%) y'=gt,y) + G, y), yto) =Y,

If the solutions of (1*) and (2*) satisfy the conditions (i) to (xii) for all the per-
turbations F and G for which

(22) |F(t, x|+ |G, 9] < 7V, x,5) >0,

we say that the systems (1) and (2) satisfy the definition (i) to (xii) weakly.

The following analogous theorems for weak boundedness and stability may be
stated.

THEOREM 7. Let the assumptions of Lemma 1 hold, except that the condition
(4) is replaced by

(23) V¥, x,y) +aV(, x,y) < W(t, V(E, x, ),

wherve o = Kn (K is the Lipschitz constant at (t, x, y)). Suppose also that the hy-
potheses (11), and (12) are fulfilled, Then, if the diffevential equation (5) satisfies
one of the conditions (ia), (iia), (va), (via), (viia), and (viiia), then the systems (1)
and (2) satisfy weakly the covresponding one of conditions (i), (ii), (v), (vi), (vii) and
(viii).

THEOREM 8. Let the assumptions in the first sentence of Theovem T hold, to-
gether with (11). If the differential equation (5) satisfies one of the conditions (iiia),
(iva), (ixa), (xa), (xia) and (xiia), then the systems (1) and (2) satisfy weakly the cor-
responding one of conditions (iii), (iv), (ix), (x), (xi) and (xii).

Proof of Theovems T and 8. Since V(t, x, y) satisfies Lipschitz’s condition in
both x and y,
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V[t+ h, x + h(i(t, x) + F(t, x)), y + h(g(t, y) + G{t, y))] - V{t, x, y)
(24) < K[|F@, 0|+ |G, w]Ih
+V(t+h, x+hf(t, x), y+ hglt,y) - V(t, x, ),

for h positive and sufficiently small. Now, using (22) and (23) and noting that
a = K75, we obtain the inequality

V(L x, y) < W(t, V(t, x,y)),
where
V**(t, x, y)

= lim sup l(V[’c + h, x + h(f(t, x) + F(t, X)), y + h(g(t, y) + G{t, y))] - V(t, x, y)).

h—ot h

If x(t) and y(t) are any two solutions of (1*¥) and (2*), we can obtain the desired re-
sults by applying directly the proofs of Lemma 1 and Theorems 3 and 4.

THEOREM 9. Suppose that the assumptions of Lemma 1 hold, except that the
condition (4) is replaced by
(25) VA, x, ¥) + @ V(E, x, 7) < Wt VL, x, y)eft)e Pt

where B is posilive and satisfies the inequality @ > Kn + 8. Let the assumptions
(11) and (12) hold. Then, if the differvential equation (5) satisfies the conditions (ia)
and (iia), respectively, the systems (1) and (2) satisfy weakly the conditions (vii) and
(viii), respectively.

THEOREM 10. Let the assumptions of Theorem 9 hold except for (12), (ia) and
(iia). Let the diffevential equation (5) satisfy condition (iiia) or (iva), respectively;
then the systems (1) and (2) satisfy weakly definition (xi) or (xii), respectively.

Proof of Theovems 9 and 10. Proceeding as in the proof of Theorems 7 and 8, we
obtain the inequality

V(L %, y) + V(L x, ) < WL, V(t, x, y)ePt)e Bt.

This is similar to condition (7) of Lemma 2 with A(t) = ePt. Hence, using Lemma 2,
we find that

V(t, x(t), y) Pt < r(t)  (t>tg),

where x(t) and y(t) are any two solutions of (1*) and (2*) such that

Bt
e °V(t0, Xy yO) < rg.

Now, following the proofs of Theorems 5 and 6, we can establish the theorems.

Last, we shall consider the existence of periodic solutions of (1). Suppose that
the functions £(t, x), g(t,y), and W(t, r) are smooth enough to ensure the uniqueness
of solutions. Let f(t, x) and W(t, r) be periodic in t, with period 1. Then the fol-
lowing statement is {rue. .
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THEOREM 11. Let the function W(t, r) be continuous, nondecrveasing in r, and
defined on 1 X R*. Let the function V*(t, x, y) of (3) satisfy condition (4). Suppose
that V(t, x, y) = 0 if and only if x = y, and let the diffevential equation (5) possess a
periodic solution with peviod 1. Then, if the system (2) possesses a bounded, non-
decreasing solution in the sense of B. Viswanatham (5], the system (1) has a pevi-
odic solution of period 1.

Proof. Let y(t) be the bounded, monotonic solution of (2), with y(t,) = y,. Con-
sider the solution x(t) of (1) such that x(t;) = y,. Define m(t) = V(t, x(t), y(t)). Then
m(t,) = 0. Suppose that r(t) is a periodic solution of (5). It is possible to choose t,
and r, such that r(t) - r, > 0. For each small, positive &, let r(t, £) be any solu-
tion of r'= W(t, r) +& such that r(t,, €) = r,. Defining P(t, €) = r(t, €) - r, and
noting that W(t, r) is nondecreasing in r, we find that

P'(t, €) > W(t, P(t, €)) + €.
By proceeding as in the proof of Lemma 1, we can easily obtain the inequality

m < Pt e) (>t

But
lim P(t, €) = lim r(t, & - ry = r(t) - ry.
£—0 £—0

Hence,

(26) m(t) = V(t, x(t), y©) < r®) - 1o (> t).

Denote the point x(t,) by P,, and the point x(t, + 1) on the solution x(t) by Pj,.
Let T be the transformation that takes any point P, to the corresponding point P,
obtained by the above process. Since the function f(t, x) is assumed to be periodic
in t, with period 1, any solution passing through any point fixed under the transfor-
mation defined above is clearly a periodic solution. Hence it is enough to prove the
existence of a fixed point under the above transformation. Since r(t) is periodic and
since r(ty) = ry, r(tp+n) -r,=0 (n=0, 1, 2, ---). It therefore follows from (26) that

V(to + 1, X(to + n)s Y(to + n)) =0 (n = 0’ 1, 2; ".) ’

which implies that x(t, + n) = y(t, + n). Since y(t) is bounded and monotonic, it is
clear that the points x(t, + n) form a bounded, monotonic, denumerably infinite set.
If their upper bound is also included, the set becomes inductively ordered. Hence
the application of Lemma 7 in [4] yields a fixed point, and the theorem is proved.

Theorem 11 generalizes our result in [4].
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