ON MODULAR FORMS OF LEVELS TWO AND THREE

John Roderick Smart

1. We consider the problem of parametrizing all modular forms of dimension r
on certain subgroups of the modular group, namely, on the principal congruence sub-
groups of levels two and three. As a consequence of the parametrization of the
forms, all multiplier systems for the dimension r are determined. We rely on the
results of Maak [4] for the determination of all one-dimensional representations for
the principal congruence subgroup of level 2. We then use his method to determine
the characters on the principal congruence subgroup of level 3.

The parametrization of modular forms for the full modular group has been car-
ried out by Rademacher and Zuckerman [8], [9]. We use arguments similar to those
of Section 8 of [9].

2. The homogeneous modular group I'(1) consists of all 2-by-2 matrices
V =(ab | cd) (written in one line) with rational integral entries and determinant 1.
To each element of this group there corresponds a modular substitution

az + b

vz = cz+d’

Note that V and -V = (-a, -b I -c, -d) correspond to the same substitution. We de-
note the group of substitutions by I'(1). This group is known to be generated by

Sz=z+1 and Tz =-1/z.
The principal congruence subgroup of level N, T(N), consists of all those V € T'(1)

for which V = +1 (mod N), where I=(10 , 0 1), and where we mean element-wise
congruence. We shall be interested in cases where N = 2, 3.

A fundamental region for the modular group is the set
R(1) = {z=x+iy; |z|> 1, |x|<1/2, y> 0}.

A fundamental region for the group I'(N) is the set

7
U vir@),
k=1

where V1, ---, V; are the representatives of the coset decomposition of I'(1)
modulo I'(N). Let r be a real number. A modular form of dimension r for the
group I'(N) is a meromorphic function F(z) in the upper half-plane which satisfies

F(Vz) =¢((V) (cz + d)™F F(z)
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for each V=(ab | c d) € I'(N). Here #(V) denotes a complex number of absolute
value 1 which, in the case r is integral, is a character of the group. Otherwise, ¥
satisfies a certain “consistency condition” (see for example [3, p. 73] where the
notation is slightly different). It is further assumed that F(z) has a finite number
of poles (measured in the appropriate local variable) within the closure of the funda-
mental region for I'(N).

The function

n(z) - eﬂiz/lz H (1 - eZﬂ'il’lZ) (3Z > 0)

n=1

is a modular form of dimension -1/2 for the full modular group, with no zeros in
the upper half-plane. Therefore, h(z) = log 77(z) can be defined as a single-valued
analytic function in the upper half-plane. We take the principal branch of the log-
arithm throughout this discussion. The behavior of h(z) under modular substitutions
is known (for a recent short proof, see [6]). We list these results in the form in
which we shall use them, which is slightly different from that given in [6]. For
V=(@b]|cd eI(1),

(2.1) log n(Vz) = log n(z) + (sign c)? % log (cz + d) - (wi/4) sign ¢ + 7i®d(V)/12,

with -7 < Slog(cz+ d) <7 for ¢+ 0 and

c/le] ifc=o0,

(2.2) sign ¢ =
0 otherwise.
Furthermore,
b/d ifc=0,
(2.3) (V) =& (2 3) -

(a+d)/c + 12(sign ¢)s(a, |c|) if c#0,

where s(h, k) is the Dedekind sum

k

(2.4) sth, k) = 22 (u/k - [/k] - 1/2) (uh/k - [ph/K] - 1/2)
p=1

and the symbol [ u] represents the greatest-integer function.
3. I'(2) is a free group of rank 2; its generators are

2, _ -1q2 _ Z
SZ—Z+2, T STZ—m.
Suppose that F(z) is a modular form of dimension r for I'(2), with the multiplier
system.¢#. Then H(z) = F(z) nzr(z) is a modular form of dimension 0 with a multi-
plier system #'. But this means that #' is a character on I'(2). All characters on
I'(2) have been determined by Maak [4]. We outline his results, since we shall need
them later. If @ and 8 are real and
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(3.1) hap(z) = 1%(22)nP(z/2) 7~ @+B)((z + 1)/2),

then

(3.2) haB(Vz) = (V) haB(z) , (V) =-exp{ ﬂi\IlaB(V)/lz} ,
where

TapV) = ¥ap (5 )

(3.3)

= ol (2/2 22) +pe (;c b/<21) - @+ )2 (“22 b g T e C)/z) ;
furthermore,
0 vap(32) =50, w0y ( 3 2) -5

Thus H(z) has one of the multiplier systems given above. We suppose that
(3.5) H(z + 2) = e2ma H(z), H(z/(-2z + 1)) = e2Tih H(z),

0 <a, g<1. Since I'(2) is a group of genus 0, that is, since its fundamental region
has genus 0, it has an invariant function A(z) that maps the fundamental region one-
to-one and conformally onto the plane (see [1] for the important properties of A(z)).
For definiteness, we take a particular fundamental region with cusps at 0, 1, i~; its
other properties will not matter. The function A(z) has a zero at the cusp i», and a
pole at z = 1. The function n(z) has zeros at the cusps of the fundamental region.
We see that H(z) has the same zeros and poles as F(z), with the exception of the
cusps. Let the zeros be at o, -+, 07, the poles at p;, -+, pp; define

P Z
o(z) = II (\@ - Agy) II (A(@) - Moy )7,
j=1 k=1

and let G(z) = H(z) ®(z). Then G(z) has no zeros or poles in the fundamental region,
except possibly at the cusps; it is a modular form of dimension 0 for I'(2); and it
satisfies the same functional equations (3.5) as does H(z). In view of (3.5), G(z) has
at the cusps the expansions (see for example [5, p. 493])

(3.6) G(z) = 2 a,e2™(®n)z/2
(3.7 GT(Z) — E bn e27ri(B+n)z/2. ,
(3.7) Gp(2) = 2 ¢ e2Trm)z/2 (5 - (sT)-1),

n=m3
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where Gv(z) = G(z) IV -1o G(V “lz). Since G(z) has no poles in the fundamental re-
gion, except possibly at the cusps, integration of G'/G around the boundary of the
fundamental region of I'(2) modified by small circular detours at the cusps gives the
relation

(3.9) m,+a+my+B+mg+y=0

as the circular detours are allowed to approach their points.
Write
(3.10) ‘ a' = -8(m, + a), B' = -8(m, + B),
and consider the function hyigi(z) defined in (3.1). Using (3.4), we see that
(3.11) halBl (Z + 2) = e-ZWia ha,B,(Z),
(3.12) hyigi(2/(-22 + 1) = e 2P h 0, (2) .
Furthermore, using the known expansions for 7(z) and the relations
h,p@ | T =, 2(B-2)/2 hgo(2), | [=1,
we find that
(3.13) hy g (z) = exp[-27i(a@ + m,)z/2] + -,
(3.14) by g z)|T= ¥, 2(‘8'"0“)/2 exp[-27i(8 + m,)z/2] + ---.
Since h,1:(z) is a form of dimension 0 on I'(2), it too satisfies a relation like (3.9),
indeed, the same relation. Now define K(z) = G(z) hy'g 1(z). Comparing (3.5) with
(3.11) and with (3.12), we see that K(z) is invariant w1th respect to the substitutions
of I'(2). Also, comparing the expansions (3.6), (3.7) and (3.8) with (3.13) and (3.14)
and taking into account the relation (3.9) satisfied by both G(z) and hy, Bl(Z), we see
that K(z) has no poles in the closed fundamental region for I'(2). Thus, K(z) is a
constant K. We obtain
- -yv! -3 1 1
F(2) = Kn 2% (2)n™®" (22) 7P (2/2) n@ B (@ + 1)/2)

(3.15) Z P !
- I (@) - Moy)) 1L (M2) - M) -

j=1 k=1

Thus we have proved the following proposition.
THEOREM 1. The modular form (3.15) of dimension r satisfies the velation

F(Vz) = ¢(V) (cz + d)" F(z) (V=(ab | cd eT(2),
wheve
(3.16) ¥(V) = exp[-7ir ®(V)/6 + wir (sign ¢)/2 - ﬂi\Ifa.B.(V)/lz]

and ®(V) and \Ifa,B.(V) are defined in (2.3) and (3.3), respectively. Conversely,
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every modulay form of dimension r for T'(2) is of this type, with the multiplier sys-
tem given above. The \(z) appearing in (3.15) is the modular invariant on T'(2), it
takes each value once,and it has a pole at 1 and a zevo at iw.

4. We outline the discussion for the case of I'(3), which is a free group of rank
three and with the generators

z S-1T-183TSy = 22+ 3

3 — -1Q3 — e ———— e
S°z=z+3, T STz—_3z+1, T

First we compute all characters for I'(3). Following Maak [4], we write
log hy g, (2) = @ log n(3z) + B log n(2/3) + v log n((z + 1)/3)
(4.1)
- (@ + B +y)log n((z + 2)/3),

where the principal branch of the logarithm is meant. By (2.1),

(4.2) log h,, B'V(VZ) = mi¥, BY(V)/ 12 + log h,, m,(z) ,
where
a 3b a b/3 a+c(b+d-a-c)/3
aBY(V)_ (0/3 d)+B(D(3c d)+7@(3c d-c )
(4.3)
a+ 2c (b+ 2d - 2a - 4c¢)/3
—(a+B+y)¢I>( 3c d- 2c )
Thus,
(4.4) h, BY(Vz) = exp[7i ¥, BY(V)/ 12] b, 67,(z) .

It follows that exp[7i¥ygy(V)/12] is a character on I'(3).

To verify that all characters are found in this way, we compute the values of
¥y gy for the generators of I'(3):

(4.52) aBy(S ) = 8a,
(4.5b) Yo, (T'8°T) = 88,
(4.5¢) st T lsdTs) = 8y.

Yagy

The computation is straight-forward; we can make it easier by using the following
result of Rademacher [7, p. 463].

THEOREM. If ¢> 0 and (d+ 1)2 = 0 mod c, then

_p. + 2 - 3c

s(d, c) = 90 ,

with u = (c, d + 1) and with the upper or lower signs taken together.

Next we choose for I'(3) a fundamental region that has cusps at i«, 0, +1, -1.
The modular invariant £(z) [3, pp. 611-613] that maps this fundamental region one-
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to-one and conformally onto the whole plane has a pole at i» and a zero at z = 0 (we
do not use the invariant £ given in [3], but rather & - 1; this is for the technical rea-
son that we desire the modular invariant to have its pole and zero at cusps).

Suppose that F(z) is a modular form of dimension r on I'(3). Then
H(z) = F(z)7%%(z) is a modular form of dimension 0 on I'(3). It has one of the
multiplier systems characterized above. Let

H(z + 3) = €272 H(z),  H(z/(- 3z + 1)) = e2TB H(z),
(4.6) .
H((4z + 3)/(- 3z - 2)) = 2™ H(z),

with 0 < o, B, ¥ < 1. As before, F(z) has Z zeros at 0}, -+, 0z and P poles at
p1, *~, pp, where the o’s and the p’s are points of the closed fundamental region
other than the cusps. We define ©(z) as before, using £(z) in place of A(z), and
then set G(z) = H(z) ©(z). The function G(z) has a Fourier expansion in the local
_ variable appropriate to the cusps i», 0, +1, -1. Let the first nonvanishing term of
these expansions have exponent m; + @, m, + 8, mz + ¥y, m, + 8, respectively. As
before,

(4.7) m +o+my+fB+mg+y+my+ 6=0,
Define
(4.8) o' = -3(m, +a), B'=-3(m,+p), y'=-3(mz+v)),

and consider h(z) = hy gy (z). We find that

h(z + 3) = e2M%n(z), h(z/(-3z+ 1)) = e 2MBy(z),
(4.9)

h((4z + 3)/(- 3z - 2)) = e ~2TW n(z).

Further, when h(z) is expanded in its Fourier series at the cusps iw, 0, +1, -1, the
exponent of the first nonvanishing term is -m, - o, -m, -8, -m; -y, -m, - §, re-
spectively. In this connection, it is helpful to note the relations

w0 hygy @ |T=2,30- 21, o) (o] =D,
hypy @ | ST =e,30-0V2h @) (Je,)=1)

with -6 = a + 8 + y. We see also that the first exponents for hg: Tt (z) satisfy (4.7),
so that we need not expand this function at -1 to deduce that the Pirst exponent is
-m, - 6. Putting these facts together, we conclude that hg: By (z) G(z) is a constant
K. Hence

F(z) = Kn 2" (2)n™% B2)n™" (2/3) 0™ ((z + 1)/3) 0% ((z + 2)/3)
(4.11)

Z P
- I (@) - £ IT (6@ - £G0y) 77,
J=1 k=1

with 6' = a' + 8' +9'.

THEOREM 2. The modular form (4.11) of dimension r satisfies
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F(Vz) =¢(V)(cz+d) " F(z) (V=(ab|cd eT(3)),
whevre
(4.12) ¢ (V) = exp[-7ir®(V) + wir (sign ¢)/2 - Ti¥ 1 gios (V)/12]

and ®(V) and ¥y, (V) ave defined in (2.3) and (4.3), vespectively. Conversely,
every modulay form'is of this form. The function £(z) is the modulay invariant for
I'(3); it takes each value once, and it has a pole at i~ and a zevo at z = 0.

Remarks. The methods given above seem to work also for I'(4); however, the
details are not so neat. The principal congruence group of level five, I'(5), is also
of genus 0 and therefore possesses a modular invariant which maps its fundamental
region one-to-one and conformally onto the plane. This group is free and has rank
eleven. There exist only six “transformations of order 5” that are pairwise left-
inequivalent with respect to I'(1), namely 5z, z/5, (z + 1)/5, *-+, (z + 4)/5. Thus, it
is not clear how one can define a function with the properties of hyg(z). It seems
that in the case of modular forms of levels greater than four, new methods will be
needed for the determination of characters and for the parametrization of modular
forms on the principal congruence subgroups.
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