FINITE ORBIT STRUCTURE ON LOCALLY
COMPACT MANIFOLDS

L. N. Mann

1. INTRODUCTION

The following conjecture was raised by D. Montgomery. If a compact Lie trans-
formation group G opevates on a compact manifold X, then theve ave only a finite
number of distinct conjugate classes of isotrvopy subgroups Gy (x € X). The conjec-
ture was answered in the affirmative through the efforts of Floyd [3] and Mostow {6].
It is also known that if the manifold X is only locally compact, then locally there are
but a finite number of classes of isotropy subgroups [1, VII]. However, in the case
where the manifold X is not compact, a counterexample due to Montgomery exists
for the conjecture. In this counterexample [8], a circle group operates on a 3-
manifold having infinitely generated integral cohomology, and the action produces an
infinite number of distinct isotropy subgroups. It is precisely this counterexample
which suggests the main result of this present paper: the conjecture still holds when
X is an orientable cohomology manifold over the integers with finitely generated
integral cohomology (Theorem 3.5). Alexander-Spanier cohomology with compact
supports is used in the above.

Our techniques are based upon those of Floyd’s paper {3], in that we establish a
main lemma of the form (3.3) in Section 3. The author is grateful to Professor
Floyd for bringing this problem to his attention. The results of this paper will be
used, in a later paper, to investigate the action of compact Lie groups on complexes.
The question of whether the orientability of X may be dropped in (3.5) is still open.

2. DEFINITIONS AND PRELIMINARY RESULTS

X will always be considered as a locally compact Hausdorff space, and L as a
principal ideal domain. Ht(X; L) will denote the i-th Alexander-Spanier cohomology
group of X with compact supports. In all applications, L. will be either Z, the ring
of integers, or Zp, the prime field of characteristic p. HE&(X; L) will denote the

direct sum of the groups H%:(X; L), and reduced cohomology will be used for the 0-
dimensional groups.

For an open subset U of X and a closed subset A of X, we have the standard
homomorphisms

J;U: HY(U; L) — HE(X; L)  and  r},:HE(X; L) — HE(A; L),
In fact, we have the following exact cohomology sequence for U open in X:
i Jxu i rX,X-U i i+l
(2.1) — H (U; L) — H_(X; L) H.(X-U; L) —» H, (U; L) — ---.
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(2.2) DEFINITION. We shall say that the cokomology dimension of X with re-
spect to L is less than or equal to n (notation: dimj X < n, if HZ(U; L) = 0 for all
open UC X and all i > n + 1.

(2.3) DEFINITION. X is said to be cohomologically locally connected over L
(notation: clc over L) at a point x € X if, corresponding to each compact neighbor-
hood B of x, there exists a compact neighborhood A of x (A C B) with image rlB A

trivial for all i. If X is clc over L at each of its points, then X is said to be clc
over L.

The above notation and definitions are discussed in detail in [1, I].

The following proposition is a special case of a result of Raymond [7, pp. 955-
956]. It will allow us to interchange the conditions of finitely generated global co-
homology and cohomological local connectedness at infinity, in many of our results.
X will denote the one-point compactification X U {w} of X, where w is the point at
infinity.

(2.4) PROPOSITION. Let X be clc over L, and let dim, X be finite. Then the
following two condilions are equivalent.

i) Ht(X; L) is finitely genevated.
(ii) X is clc over L at w.

Proof. We show first that (ii) implies (i). If (ii) holds, then X is clc at each of
its points. Since X is also compact, it follows that H*(X; L) is finitely generated
[2, (3.5)], which in turn implies (i).

Suppose now that (i) holds. Let U be an open neighborhood of w in X. Then
B=X- U is compact in X. Choose A' and A compact in X in such a way that
Bc int A'c A'cint A. Then V' =X - A' and V = X - A are neighborhoods of
in X with Vvcvic U Since X is clc over L, it follows easily from [2, (3.5)] that
image r? AAT and image r? Arp are finitely generated for each i. Consider then the

following commutative diagram, where each row is of the form (2.1).
. ———>Hic(V) ———>Hi(5() — e

| A |

(2.5) oo — > gi-lAY — > HLV) —> HIEX) —— -
i-1 s1
l TA'B l viu
. —> B YB) —— HU) —— -
Since H(X) is finitely generated, an inspection of (2.5) shows that
. di . 4 s
image jy,(; = image j ;i
is finitely generated. Thus the local Betti numbers of X around w are at most “in-

creasingly infinite” [1, I, (2.1) ] and it follows from [1, I, (2.2)] that X 1s clc at w.

(2.6) DEFINITION. A space X with dim ;j X finite is said to be a Wilder n-
manifold over L if the local Betti numbers around each point are equal to 1 in di-
mension n and equal to 0 otherwise [1, I]. A connected Wilder n-manifold is
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orientable if Hn(X L) = L. It is locally orientable if each point has an open con-
nected or1entab1e neighborhood. A cohomology n-manifold over L (notation: n-cm
over L) is a connected locally orientable Wilder n-manifold over L.

It follows from [1, I, (2.2) ] that an n-cm over L is clc over L.

(2.7) DEFINITION. Let {Yj} be a sequence of closed subsets of the space X
and let {L;} be a sequence of principal ideal domains. Following Floyd in [3] or
[1, VI] we say that {Y;} converges regularly to Y over {L;} if, given y € Y and
a compact nelghborhood B of y, there exists a compact nelghborhood AcBofy
and an integer J such that the homomorphisms

H*(B N Yj; L_]) - H*(A N Yj; L_]) ’
H*(B N Y; L) — H*A N Y; L;)

are trivial for all j > J.

Note the connection between regular convergence and clc as defined in (2.3).
Lemma (2.8) below is required to demonstrate in (3.3) that if G is a toral group and

the order of each Gj is the power of a prime, say p. J then the one-point compacti-
fications of the fixed point sets of the Gj converge regularly over {Z J} to the one-

point compactification of the fixed point set of G. Its proof is entirely analogous to
that of a corresponding lemma of Floyd in [1, VI] and it will therefore be omitted.

. (2.8) LEMMA. Let X be the one-point compactification of the space X such that
X is clc over Zp (p fixed, prime), and such that each component C of X is a cm

over Z pwith dimpC < n. Now let G be a toral group ov an abelian t'ransformatzon
group of order p® on X (leaving w fixed), and suppose that Ag D A|D --- D A (nt1 )

is a sequence of compact invariant subsets of X with r’z . . =0 over Z, for each
. jAJ+1 P
j. Then

%k

r, . =0,
FOAO,FOA(HH)!

wheve F is the fixed point set of G on X.

(2.9) LEMMA. Let X be an n-cm ovey Z, such that H’(":(X; Z,) is finitely gen-

ervated, and let G be a toval group on X. Then F(G) has a finite number of com-
ponents.

Proof. Let Gj={g¢ G| order g divides 2J}. Then the F(Gj) converge to
F(G). It will be suff1c1ent to show that the number of components of each F(GJ) is
bounded by a fixed integer.

For a transformation group H of order 2 on a locally compact Hausdorff space
Y of finite cohomological dimension over Z,, it follows from [1, III] that
dim Hz(F(H); Z,) < dim H’;(Y; Z,). By induction, this result can easily be extended
to an abelian transformation group of order 2%. We see then that

dim HZ(F(GJ.); Z,) < dim HL(X; Z,) = I

for each j, where I is some non-negative integer. Now each component of F(G ) is
a cm over Z,, and in fact each contributes a Z, factor in its top dimension cohomol-
ogy group. Hence each F(GJ) consists of at most I components, and (2.9) follows.



90 L. N. MANN
3. MAIN RESULTS

(3.1) DEFINITION. X will be said to have the sirengthened form of clc at a
point x € X if, corresponding to each compact neighborhood B of x, there exists a
compact neighborhood A of x (A C B) such that r, = 0 over all Z, (p prime).

(3.2) REMARK. If X is clc over Z at x € X, then X has the strengthened form
of clc at x.

(3.3) Let X be an ovientable n-cm over Z such that X has the stvengthened
Sform of clc at w. Let G be an elementary group operating on X, and Gj a sequence
of closed subgroups of G with lim Gj = G. Then F(G;) = F(G) for j sufficiently
large.

Proof. If we define gw = w for all g € G, then G operates on X. It may first
be verified that if a toral group H operates on X and X, all the essential properties
of X and X are inherited by the fixed point sets F(H) and F(H). By [1] or [4], each
component of F(G) is an orientable cm over Z, and by (2.8) it follows easily that
F(H) has the strengthened form of clc at w. Therefore the procedures of Floyd in
[3] may be employed to reduce (3.3) to the case where G is a toral group, and the

order of each Gj is a power of a prime, say p?j

By (2.4), HX(X; Z ) is finitely generated for each prime p. Therefore, by (2.9),
F(G) has a finite number of components. Let x € F, and let C be the component of
F = F(G) containing x. Then x € C C C for each j, where Cj is the component of
F; = F(GJ) containing x. Now C is open in F. Therefore C = F N U, for some open
UcX. Now xe€C; nUD C NU = Fn U. By [1, VI] or [4], there exists an open
neighborhood V of x such that F NV = F; NV for j large, say j > J;,. We have
then xeC;NUNVOCNUNV=FNUNV =F;NUNV D CjﬂU NV for
j > J,. Therefore, for V' =U N V'and j > J,,

C;NVI=C NV,

Fix j >J,. Now C is an r-cm (r < n) over Z. Therefore C is an r-cm over ij,
and C N V', an open subset of C, has the local Betti numbers of S* over ij
Therefore C; N V' has the same local Betti numbers over ij. But C;N V' isan
open subset of Cj which is an rj-cm over Z, pj- Therefore rj=r. If C % C;, then

C is a proper closed subset of Cj, which leads to a contradiction since C and Cj
are of the same cohomology dimension over Zp [1, 1, (4.6) ). Therefore C = C; for

1= d.

Since C consists of just a finite number of components, we could simply con-
sider all j > max_, J, (where s is the number of components of F) and obtain our
result, if it were not for the possibility that some sequence of non-empty components
of the F ’s might converge to an empty limit. We shall show through a regular con-
vergence argument that this unpleasant situation cannot occur.

We consider now X and use (2.8) to show that {F } converges regularly to I
over {Z } The strengthened form of clc of X is of course required for this

argument By a technique of Floyd in [3, (4.4) ], we may employ closed coverings to
obtain

BU(Fy; Zp) = HY(F; Zp))
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for all i and for all sufficiently large j. We outline this argument, using the char-

acterization of strong vefinements and determining pairs for cohomology with com-
pact supports which is given in [5, (5.1)]. Because of the regular convergence of F;
to F, we can obtain a sequence ag, &1, ***, Q2,41 Of finite closed covers of X with

oy ﬂ F strongly refining o, _; N F (coefﬁc1ent group 7, ) and with o N I

strongly refining o5 _; N F (all coefflc1ent groups ij), for k=1,2,+-,2n+ 1 and
for each j. Then by [5, (5.1)],

0per N FJ- and ool nFj
determine H*(FJ-, ij) up to n, and
@, .1 N F and ay +1 N F

determine H*(F' Zy, ) for each j up to n. Since, however, F- converges to I, we

may identify the nerves of o N F: and oy N F for j large. It follows therefore
that H! (FJ, ZP ) = HY(F, Zp) for all i and for all sufficiently large j, say j > K.

We cons1der from now on only j > max(K, J), where J = maxg J¢ (as defined
previously). Let F represent the set-theoretic union of {w} and all components
of F; that contain a component of F. From our previous considerations, we see
that FJ =F. To conclude the proof of (3.3), it will be sufficient to show that F - F
is empty. Let C be a bounded component of F - F Then, since

HO(Fj Z,) = HO(F; Zp) = HOE}; Zp)

and since HO(F-; Z ) counts the number of bounded components of Fj, it follows
y P;

that CJ must be empty We suppose therefore that there exists an unbounded com-
ponent C of F - F and, since

HU(F, - {w}; Zp) = H(F; - {o}; 2,)

for i > 1, it is a simple matter to show that HC(C*, Z ) =0 for i> 1. But since X

is orientable, C is an orientable rj-cm over Z Py Therefore rj= 0 and C* is at

most a point. Bllt it can’t be just a point, since we had assumed that it is unbounded.
Therefore F; - F;= ¢, and (3.3) follows.

(3.4) REMARK. It is interesting to note that the orientability of X was really
used for the first time in this paper at the very end of the proof of (3.3). However,
its contribution to the proof of (3.3) appears to be essential, since the C¥ could con-

ceivably consist of real projective spaces (minus a point) treated as cohomology
manifolds over Zp (p an odd prime).

(3.5) THEOREM. Let G be a compact Lie group acting on an ovientable cm X
over Z, having finitely genevated cohomology ovey Z. Then there exist only a finite
numbeyr of non-conjugate isotvopy subgroups Gx (x € X).

Proof. We first consider the case where G is connected and abelian, that is, a
toral group, and show that there exist but a finite number of isotropy subgroups in
X. It is easy to verify that X satisfies the conditions of (3.3). Suppose that there

exists a convergent sequence of points {XJ} in X such that Gy #G, for r # s.
Tr S
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Let x, be the limit of the xj. We may suppose that the ij converge to an elementary

subgroup H of G Applying (3.3), we see that F(Gx ) = F(GXS), for large r and s,
r

%y
from which a contradiction easily follows. Theorem (3.5) now follows for an arbitrary
compact Lie group G, by the technique of Mostow in [6].
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