ON THE ALGEBRAIC CLOSURE OF A PLANE SET

Z. A. Melzak

1. Let Z be a set of complex numbers. Where convenient, Z will be identified
in the natural way with the corresponding subset of the Euclidean plane E. We shall
always assume that {-1, 0, 1} c Z; otherwise, Z is arbitrary. Define Z, = Z,

N
Zpe1= {2t 2 a5z9=0, {ag, -, an} € Zno N> 1, ag# 03 (n=1,2, ).
j=0
Then Z,, Z,, -** is an ascending sequence of sets, and we call the set

o0
Zy = lim Z,= | 2z,
n=1

n—oo

the algebraic closure of Z. It is clearly the smallest set that contains Z and is
algebraically closed in the usual sense. In this note we shall study some properties
of the sets Z, and of the relation of Z, to Z. Thus, we consider, in a sense, the
algebraic closure apart from any algebraic structure.

If A denotes a set, an A-equatiorn is an algebraic equation in a single unknown
and with all coefficients in A. Any topological terms refer to the usual topology of
E, and any group-theoretic ones to the ordinary multiplication of complex numbers.

2. LEMMA 1. Zy - {0} is an Abelian group containing for every positive inte-
ger n every n-th voot of every one of its elements.

This follows directly from the definition of Z;,, and from the observation that if
z1, z2 € Zy, then the equations z,z-1=0, z+ 2,=0, z/z, - 2, = 0, and z" - zy =0
are Z-equations.

THEOREM 1. Z, is dense in E.

By Lemma 1, Z,, contains the group U of all roots of unity. It is easily verified
that Z,, contains two positive numbers, a and b, such that log a/log b is irrational.
For instance, z? - z - 1 =0 is a Z,-equation, so that a = (1 + 5Y2)/2 € Z; also,
z2-2z-a=0 is a Z,-equation, and therefore b = [1 + (3 + 2- 51/2)1/2] /2 € Zy.
Suppose now that log a/log b is rational. Then aP= b9 for some positive integers
p and q, which implies that (3 + 2-5¥2)%/2 = r + 5125 with r and s rational. This
implies further that r? - 3rs + 5s? = 0, which leads to r = s = 0, and this is a contra-
diction.

It follows that the module {n log a + m log b}, where n and m range indepen-
dently over the rational integers, contains numbers of arbitrarily small absolute
value, and hence is dense on the real line. Therefore the group S, generated by a
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and b, is dense in the positive reals. Finally, SU = {z:z =su, s € S, u € U} is
dense in E, and so is Z, since it contains SU.

LEMMA 2. If Z, contains an open set, t{zen z, = E.

If Z, contains an open set, it must contain an open disk
D={z:|z-2z]|<r, r>0, z, +0}.

Let zg € Z, be arbitrary, z, # 0. As u varies over D, the roots of the Z ,-equation
Z,Z - Zou = 0 fill out the disk z,D/z,. It follows now from Theorem 1 that

{z: |z| > 1} c Z,; hence, by Lemma 1 and the assumption 0 € Z, it follows that

Zw = E.

For the next few lemmas we require the concept of vector addition of plane sets:
if X and Y are sets of complex numbers, then X+ Y={z:z=x+y,x€ X,y ¢ Y}.

LEMMA 3. If X is a Jordan curve, then the set 2X = X + X contains a translate
of the interior of X.

Let z, € X be arbitrary, and let z be any point inside X. Given a point u € X,
let v be the fourth vertex of the parallelogram z,uzv, the four points being the ver-
tices in cyclic order. As u ranges over X, the corresponding v = v(u) traces out a
curve T which is congruent to X, and passes through the interior of X. Hence, by
the Jordan separation property, T cuts X, which means that there exist points u,
and v, on X, such that zju,zv, is a parallelogram. Therefore z = uy + v, - 2,
which proves the lemma.

LEMMA 4. If X is an arc other than a straight segment, then 2X contains a
Jordan curve.

Without loss of generality, let X be a simple arc with the end-points 0 and a.
For p,q € X (p # q), let X(p, q) denote the subarc of X with the end-points p and q.
For any p € X the translate X + {p} will be denoted by Xp. Since X is not a seg-
ment, it follows that there exists a translate Xp such that X(p, a) is not a subset of
Xp. Let t be any point of X(p, a) which is not in Xp, and let

W= X, UX(p, t) U X, t) + {a}) U X¢.

W is then a closed circuit consisting of four arcs, each of which is a subset of 2X.
By its construction, W does not reduce to an arc (although it may contain a subarc
consisting of multiple points of W). Hence W contains a Jordan curve, and the
lemma is proved.

THEOREM 2. If Z, contains an avc J, then Zy = E.

There are two cases to consider, depending on whether J is or is not a subarc
of a logarithmic spiral with the origin as its pole (degenerate cases of circles with
their center at the origin, and straight lines through the origin, are included with
such spirals). Suppose first that J is such a subarc. Let y € Z, be a point, to be
chosen later, and put

Jy={w:w=yz, zeJ} C Z,.
We have then

K={z:z°+az+b=0,a€ed,,bedy} C Zy,
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and since Z, is dense in E, it is easily proved that for some y € Z,, the set
. — a2
{w:w=2a%-4b, aeJy, bedy}

contains an open set. Hence K contains an open set, and so, by Lemma 2, Z,, = E.

Suppose next that J is not a subarc of a spiral. Without loss of generality, as-
sume that J does not contain the origin, and that it subtends at the origin an angle
less than 7/4. Let ¢: E — E be the mapping which sends the point z = r exp i# into
the point w = log r + i# (under our conditions on J, no difficulties arise from the
multiplicity | of the argument or from the smgularlty of the mapping at the origin).
Now L = ¢>(J‘) is an arc other than a straight segment, and we have

= {Z: Z =X]1XpX3Xy, X; € Jd, i=1, 2, 3, 4} = (b—l(ZL + ZL).

By Lemmas 3 and 4, 2L + 2L contains an open set, hence so does J* By Lemma 1,
J4 c Z, and the theorem follows from Lemma 2. The following is an easy conse-
quence of Theorem 2:

THEOREM 3. If Z,, + E, then every point z € E is a condensation point of
E- Z,

Suppose that this is false, and let z € E be a point which is not a condensation
point of E - Z,. Then there exists an open disk D about z, such that D N (E - Z,)
is at most countable. Hence Z, contains an arc (for instance, an open segment) ly-
ing inside D. Therefore Z, = E, by Theorem 2, which is a contradiction.

3. In this section we show that there exist sets Z which are “thin” or “small” in
a certain fairly strong sense, but for which Z,, = E nevertheless. We remark first
that if Z, = E, then Z must be uncountable. Further, by a slight modification of the
procedure used to prove the existence of Hamel bases, it may be proved that there
exist uncountable sets Z for which Z # E.

Let X be a plane set, and let 6(X) be its diameter. For any numbers p and o
(p>0,0>0) let

o0

M(X, 0) = inf 2. [6(A )]
j=1

where the 1nf1mum is taken over all coverings U°° Aj of X subject to the condition
6(A <o (=1, 2, --+). The limit

M,(X) = lim My(X, o)
oc—0

exists, since Mp(X, o) is a nonincreasing function of o, and it is called the p-di-
mensional outer Hausdovff measure of X. If 0 < Mp(X) < =, then Mp(X) = 0 for

q < p, and Mg(X) =« for q < p. The Hausdorff dimension d(X) is defined to be the
infimum of the numbers p for which Mp(X) = 0.

THEOREM 4. There exists a linear set Z such that d(Z) = 0 and Z, = E.

A complex number x is called a Liouville number if the inequality

0< |x-p/la|<q™
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has a solution, for each positive m, in rational integers p and q (q > 1). It follows
that a Liouville number is real, and it is well known that it must be transcendental.
Let L, R, and P denote the sets of all Liouville numbers, all rational numbers, and
all rational integers, respectively. Let {r;} (i=1, 2, ---) be an enumeration of the
set R - P, and let r; = p;/q;, where p;, q; € P and q;>1 (i=1, 2, ---). We have
then

[ee] o0
LcC ﬂ U (p;/a; - ai™, pi/a; + a;™,
n=1 i=1

from which it follows easily that d(L) = 0. Let Z = L U P; then d(Z) = 0. Now every
real number other than 0 is the root of a linear equation whose coefficients are Liou-
ville numbers (see [1]). Hence, by the definition of Z,, Z,, ---, the set Z, contains
the real axis, hence Z; = E, and, a fortiori, Z, = E.

4, We conclude with some problems. What is the structure of the sets
Z1,/Z2, ***, Zy, when Z = {-1, 0, 1} ? Is 2 contained in any of these sets? Is it
true that if Z is measurable with respect to the plane Lebesgue measure, then
either Z,, = E or else, for each measurable set A, p(A) = u(A - Z,)? Is it true
that each measurable subgroup of E is a subset of a union of logarithmic spirals,
each one of which intersects the subgroup in a set dense on that spiral? Let Z con-
tain -1, 0, and 1, and call z € Z (z # 2z2) superfluous if (Z - {z}), = Z,; let also the
core of Z Dbe the set of its non-superfluous elements z (z # z2); what is the structure
of the cores of sets, and of sets with empty cores? Let {-1, 0, 1} ¢ Z, and define
Z* to be the smallest group containing Z, and such that with every z € Z* and every
positive integer n, Z* contains also every n-th root of z; which propositions proved
here for Z, hold also for Z*? What is the structure of the quotient groups Z,,/Z*?
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