MEROMORPHIC CLOSE-TO-CONVEX FUNCTIONS

R. J. Libera and M. S. Robertson
1. INTRODUCTION
Kaplan [4] has called a function f(z), analytic in lzl < 1, close-to-convex in

|z| < 1 if there exists an analytic function ¢(z), convex and schlicht in |z] < 1,
such that

f'(z)
¢' (z)

(1.1) % >0 (|z|.<1).

Since F(z) = z¢'(z) is star-like with respect to the origin and schlicht in |z] <1,
(1.1) may be written in the alternative form

zf'(z)
F(z)

(1.1%) 9 >0 (Jzl<D.

Kaplan has shown [4] that every close-to-convex function f(z) is schlicht in lzl <1,
and that, under the hypothesis that f'(z) does not vanish in |zl < 1, the condition
(1.1) is equivalent to the alternative condition

92 '9
. ig f"(re* )) _
(1.2) 591 N (1 + re ——_f'(reie) do > -7

for 6, <8, 0<r < 1. The geometric interpretation of (1.2) is that w = f(z) maps
each circle |z|=r < 1 onto a simple closed curve whose tangent rotates, as 6 in-
creases, in such a way that it never turns back on itself sufficiently in the clock-
wise direction to reverse its direction completely.

In this paper we extend the concept of close-to-convex functions to meromorphic
functions

(1.3) f(z)=%+ ag + a1 Z + -+ + Ay 2% + .-

regular in 0 < |z| < 1 and with a simple pole at the origin. We say that f(z), when
given by (1.3), is close-to-convex in the punctured circle 0 < |z| < 1 relative to

F(z) if there exists a meromorphic, star-like, schlicht function F(z) in Iz] <1
with a simple pole at the origin, given by

b
(1.4) F(z)=——;1—+b0+blz+---+bnzn+--- (b_; # 0),

such that
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zf (z)

>0 for |z|< 1.

It is to be noticed that in the meromorphic case (1.5) does not imply that f(z) is
schlicht, as (1.1') implies when f(z) and F(z) are regular in |z] < 1. For example
if F(z) = -z~ ! and

-z2(1 - 29fY(z) =1+ 22, f(z)=2z"1-2z- %z3+ 0< Iz[ <1),

then f(z) is not schlicht in 0 < |z| < 1, since |a,| > 1. Nevertheless, when f(z) is
meromorphic and satisfies (1.5), then w = f(z) maps each circle |z| =r (0<r<1)
onto a smooth curve which, although it may intersect itself, may also have (as in the
regular case) “hairpin” turns, provided a complete reversal of the direction of the
tangent does not occur. By a modification of Kaplan’s argument [4], we show that in
the meromorphic case (1.5) is equivalent to

] o fM(pall
(1.6) ‘g > N (1 + retf £—(£.—2)d9 <7
0, f'(relf)

for 6, < 0,, 0 <r <1, if f(z) is analytic with a nonvanishing derivative in
0 < |z| < 1 and with a simple pole at z = 0.

Considerable interest has been shown for the coefficient problem for mero-
morphic schlicht functions

o0

(1.7) i) =2+ Za,z®  (0< |z|<1).
1

It is known that
2

(1.8) |ag] <g77 forn=1,2

but that |ag| may be as large as 1/2 + e~® [3]. Recently, Clunie [1] has shown that
(1.8) is true for all n whenever f(z) is univalently star-like in 0 < |zl < 1. This
was also shown earlier for 1 < n < 6 by Nehari and Netanyahu [5]; see also H.
Nishimiya [6] for 1 < n < 4. On the other hand Clunie [2] has recently shown that
the order O(n~!) is not the correct one for a, in the general case. In this paper,
we show that if f(z) is schlicht and close-to-convex in 0 < |z| < 1 with a simple
pole at z = 0, then the order O(n~?') is the correct one for a,. More precisely, we
prove the following three theorems.

THEOREM 1. Let

Zn

N =

OMS

(1.9) f(z) ==+ a

n

be rvegular, schlicht and close-to-convex in 0 < |z| < 1, relative to the mevomorpkic,
star-like and schlicht function
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b o0
(1.10) Fz)=—+ Lbyz®  (0<|z|<1, |b_|=1D;
0
then
(1.11) nla,|+ |by|<e (@=1,2, -,

where c is a real constant, 2 < ¢ < 2V2.

If f(z) in (1.9) is star-like, we may take F(z) = - £(z) in (1.10), so that
|bn| = |a, |- In this case (1.11) reduces (even when a, # 0) to

[ . 9.
(1.12) lan| <=5 with ¢ = 2;

this was shown by Clunie [1] (who assumed a, = 0, although his method of proof still
holds for a, # 0). We were unable to show that ¢ = 2 for all close-to-convex,
schlicht functions (1.9).

If f(z) is given by (1.3) and if for each r (0 < r < 1) the image curve I'., cor-
responding to |z| =r through the mapping w = £(z), has the property that each
straight line parallel to some fixed direction cuts I',. in at most two points, we say
that f(z) is convex in that direction. If £(z) is meromorphic and convex in one di-
rection, it need not be schlicht in 0 < lz| < 1. An example is given in (3.20).

THEOREM 2. Let

(1.13) f(z) =

N

o0
+ Z;anzn
0

be regulay and convex in the direction of the imaginary axis, in 0 < |z| < 1, and real
on the real axis. Then

(1.14) -1<a,< 3,
2(1 + a 1/2
(1.15) |an|_<_”‘(—‘n—l)_”‘5% (n>1),

and these inequalities are shavp for n odd. If £(z) is also schlicht, then
(1.16) la | <2v2/n, |a;|<1.

THEOREM 3. If {(z), given by (1.3), is an odd function convex in the directions
of both coordinate axes, for 0 < lz] < 1, and if the coefficients a, are all real, then
1(z) s necessarily schlicht in 0< |z| < 1, and

2(1 - |a1 I)l/z
n

(1.17) 2] <

(n odd, > 1).
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2. CLOSE-TO-CONVEX FUNCTIONS
Let f(z) and F(z) be defined as in (1.3) and (1.4), and let (1.5) hold. Using the
notation of Kaplan [4], we let i exp[iP(r, )] be the unit tangent vector to the image
curve of |z|=r (0 <r < 1) through the mapping w = f(z), and we let
Q(r, 0) = arg F(relt).
Because of (1.5) (and with proper choice of the argument) we have

(2.1) | P(r, 0) - Qlr, 6)| < /2.

Since F(z) is meromorphic and star-like, we also have 9Q/26 < 0. Then, by an
argument similar to that used by Kaplan [4, p. 173], we obtain

(2.2) P(r, 6,) - P(r, 8,) > - for 0, < 0,,
and (2.2) is readily seen to be equivalent to

02 19 1 (reif)
2.3 S 2)2(1+re19————.~— do <.
2.3) 0, fr (r619))

Thus (1.5) now implies (2.3) instead of (1.2).

Conversely, if f(z) is given by (1.3) and f'(z) # 0 in 0 < |z| < 1, then (2.3) im-
plies the existence of a star-like, schlicht function F(z) of the form (1.4) such that
(1.5) holds, that is to say, f(z) is then close-to-convex (although not necessarily
schlicht). Since f(z) is no longer analytic at z = 0, the argument of Kaplan [4, pp.
174-176] must be modified, although the general procedure is much the same. We
have

(2.4) P(r, 6 + 27) - P(r, 6) = -27.

LEMMA. Let t(8) be a real function of 0 for -« <0 < o such that
(2.5) t(6 + 27) - t(9) = -27,
(2.6) t(0,) - t(8,) > -m  for 6, < 8,;

then theve exists a veal function s(8) which is non-increasing and satisfies the con-
ditions

(2.7 s(6 + 27) - s(8) = -27,
(2.8) |s(o) - t(6)] < m/2.

The proof of the lemma is the same as Kaplan’s [4], except that now s(6) is de-
fined as

(2.9) s(6) =g.1.b. t(8") + 7/2.
6 <0
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Take t(8) = P(p, ) (0 < p < 1), and denote the corresponding s(8) of the lemma
by s(p, 8). For r < p, define

2 _ p2(2W (s(p, o) + a)da
2.10 r, 0) = B S ) ’
(2.10) ap( 21 Jo p24r2.- 2pr cos(f - @)

so that qp(r, 6) is harmonic for r < p. This definition of qp(r, 8) differs from the
one used by Kaplan in the regular case, since s(p, @) - @ in his definition is re-
placed in (2.10) by s(p, @) + . Define the function

(2.11) Qp(r! 6) = Qp(r; 6) -0

(replacing qp(r, 6) + 6 used by Kaplan). Then, since s(p, @ + 6,) - s(p, @ + 6,) has
a period 2w, it follows by straightforward computation that for 6, < 6,

2 _ rzj‘z” s(p, @ + 6,) - s(p, @ + 6) da < 0

(2.12)  Qu(r, 62) - Qulr, 61) =2 >

0 p%+ 1% - 2pr cos a

We next define hp(z) to be the analytic completion of qp(r, 6), so that the imagi-
nary part of hp(z) is identical with the harmonic function qp(r, 8), and such that
% hp(0) = 0. We define Fp(z) by the equation

(2.13) Fp(z) =% exp [hy(z)] + 0,

and we write

(2.14) Fp(z)=iz'—l+ Co+ C12Z+ - (0<|z|<p).
Then
(2.15) c_1 = ehp(o), le.1| = lei%hp(o) |=1.

Fp(z) is analytic for 0 < |z| < p and has a simple pole at the origin. We also
have

. zFF',(z)

_ BQP(r; 6)
(2.16) N TF—pTZT =

' )
s)t[zhp(z) - 1] =—H— -1 =—85Qp(r, 6) < 0.

Hence Fp(z) is a star-like, schlicht function for 0 < |z] < p. Following the
argument of Kaplan [4, p. 176}, we choose a sequence p, — 1 so that Fj (z) — F(z)

uniformly in every closed domain within the unit circle. F(z) is then schlicht and
star-like in 0 < |z| < 1, and

(2.17) sl(zlfzg)) >0 (0<]z|<1),

as in the regular case.
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3. BOUNDS ON THE COEFFICIENTS ,

Let f(z) and F(z), defined by (1.9) and (1.10), respectively, satisfy the conditions
of Theorem 1. We may assume that |b_,| = 1, b_; = e!®, and that (1.5) bolds. Then
there exists a bounded, regular function w(z), with w(0) = 0 and |w(z)| <1 in
|z] < 1, such that

(3.1) -s¢=:cozEFfT(1;—zjl +itana=i—15—(‘w—’%§%,
by
(3.2) w'(0) = ——i-e’zml seca, -cosa>0.
Moreover,
(3.3) [22£'(z) - € zF(z)]w(z) = [2% £'(z) + e 1¥ zF(z)],

[+ 0] 00
(3.4) [— 2el®cosa + 2 (ka - i@ bk)zk+1]w(z) = 2i(ka, + e"i® b )zKtL
0 0

n-1

[— 26l cos o+ 2o (kay - el bk)zk“] w(z)
]

(3.5)

n o0
= 20 (ka, +e"i0p )zk+l 4 20 ¢, zK,
0 n+2

where Z% ckzk converges in |z| < 1. Let z = rei® (r < 1). An integration gives

n-1
4cosa + 25 |kay - el® by |? r2kt2
0

1 21'- . n—l . 2
= 5= ~2ei® cos a+ 2u (kay - b )z¥1|" do
2w J, 0
1 27 . n-1 . 2
(3.6) > o7 2e%cos a+ 2o (kay - et p )zk+l] . Iw(z) |2 de
= 0 5
2w | B o 2
) 1 -ia k+1 k
=§7750 %:(kak+e **b )z + Eckz de
nt2

n
> 2 |kay + e1%p |fr2kt2 (r< 1),
0
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n-l . 2 2 _
(3.7 dcosfa + 2 |kay - €% | > 2 |kay + e by |2,
0 0

n-1
|na, + e-i® bn|2 <4cos?a - 2, {|kax+e® bklz - |kax - €% bklz}
0

(3.8)
n-1
=4cos?a - 4cosa R 2 ka, by,
0
n-1
(3.9) n? Ianlz + |bn|2 <4coa-4cosa® 2 kagby - 2% (na,b,e?),
0
n-1
(m)a,| + |b,])? < 4cos®a - 4cos 2 kla by |+ 4nla_b_|
1
(3.10)

n
< 4[1 + 2 k|akbk|].
1
Since F(z) is univalent in 0 < |z| < 1, it follows by the area theorem that
o0
(3.11) Zxlb|* <1 (|b_,]=1.
1

If we assume that f(z) is schlicht in 0 < |z| < 1, we also have, by the area
theorem,

©0
(3.12) 2ikla, f* <1.
1
An application of the Schwarz inequality yields
n n 1/2 /n ) 1/2
(3.13) 2 k|a by | < (Z) klaklz) (E k|by| ) <1.
1 1 1 -

By (3.10) and (3.13), we may now write
(3.14) nla |+ |b |<2/2 (n=1,2, ).

It should be noticed that we may replace the condition that f(z) be univalent in
0< Izl < 1 by the weaker condition (3.12), in order to obtain the bounds (3.14). This
completes the proof of Theorem 1.

If f(z) satisfies the conditions of Theorem 2, we then have, on |z| =r (0<r<1),
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>0 (O<e<mw,

(3.15) Szf'(z) = —-é%ﬂtf(reig)

<0 (m< 8 <2m.
Thus
(3.16) 2 (2 f’(z)) >0 (z|<).

It follows that f(z) is close-to-convex in 0 < |z| < 1, relative to the star-like func-
tion

(3.17) F(z) = -}Jl- + Z.

Since b_,=-1, o =m, b,=1 and b, =0 for n> 1, we see from (3.8) with n=1
that

(3.18) la, - 1" <4, -1<a, <3;

and, for n> 1,

(3.19) n?|a | <4(1+a))<16, |a,|<4/n.

If £(z) is also schlicht, then |a,] < 1 and |a,| < 2V2/n follows. The inequalities

{3.19) are sharp for all odd values of n > 1, as the following example shows. The
function

© k  _2k+1
_1 )~z
(3.20) f(z) == + 3z + 4 ? kT

satisfies the equation

-z%f'(z) _1-2°
1-22 "1+ 22°

(3.21)

Therefore it satisfies (3.16). It is not schlicht, since |a1| > 1. This completes the
proof of Theorem 2.

In Theorem 3, £(z) is odd and convex in the directions of the axes of reference,
in addition to being real on the real axis. Consequently both f(z) and if(iz) satisfy
the conditions of Theorem 2. Thus (3.19) holds with a, replaced by -|a1|, and hence
reduces to

(3.22) n? |an|2 <41 -]a;]) (modd,>1).

It is easily seen that f(z) has to be schlicht in 0 < |z| < 1. This completes the
proof of Theorem 3.
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