CONNECTED SETS OF WADA

Paul M. Swingle
1. INTRODUCTION

It is well known that, in the closure of a connected domain D of the euclidean
plane E,, the familiar boring process of Wada [13, pp. 60-62] always gives an in-
decomposable continuum. Wilder has shown that this is not true in euclidean space
E,, (m > 3); for in [11] he gives constructions which lead to locally connected con-
tinua in E,. We are interested in various types of the Wada tunneling process, and
especially in connected towers obtained by using this process a finite or infinite
number of times; in fact, our interest was first aroused by the observation that the
intersection of some towers of connected Wada domains are indecomposable con-
nected sets with composant properties similar to those of an indecomposable con-
tinuum. Various modifications of the Wada tunneling give many types of sets; some
of these do not seem now to be characterizable with words so as to give results of
generality and interest. However, the Wada construction does lead to some of the
more peculiar sets.

Our imbedding space is E_, (m > 3) or the Hilbert cube I,. We obtain inde-
composable continua by several methods, all of which depend on modifications of the
shielding that Hunter and I used in [2]. The set of perhaps the greatest interest (it
is of a new type) we call a connected set M with a set Z of indecomposability; it is
a generalization of an indecomposable continuum, since M is indecomposable when
it is closed and Z = M. In general, these new sets, obtained by modifying a netting
type of construction used by Wilder in [11], have some properties of composants
similar to those of an indecomposable continuum.

All the ideas used here, and most of the proofs, are simple. However it is very
difficult to keep this simplicity from being hidden by the complexity of the notation
needed for the Wada constructions. Whenever possible, an attempt is made to pre-
sent an intuitive way of looking at these; this loses something in exactness, but may
help to show the simplicity, when accompanied by indications of the more exact con-
struction. The idea of shielding, used in [2], and that of a basic connexe densely ex-
tendable over a connected domain, used in [9], are devices whose purpose is to help
the intuition; these are both used below. In other places one may find the figures and
proofs given by Wilder in [11, pp. 276-278, 290-291] of help. Some of our methods
are used, in part, in [2], [7] and [9]; these references may be helpful.

Below, D always denotes a connected domain of our space; in D we construct,
by any one of various modifications of the Wada tunneling process, a domain D!,
which may or may not be connected but whose closure D! is connected and is equal
to D. Thus we have a descending tower (D D D!D D2>D ...) of Wada domains; since
a tower suggests the upward direction, we put the index h of the hth stage of the
tower construction into the upper position: DB, We denote the boundary of Dh by
F(DM), and we observe that these boundaries give an ascending lower
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{F(D) c FOY c FDH c --- ¢ F(D?) ¢ -« }. The connected sets of Wada in which we
are interested are either subsets of the union of these F(Dh), or else subsets of the

set ﬂ Dh,

Fundamental definitions are to be found in [5] and [12]. By a continuum we mean
a closed and connected set. We denote the null set by @.

Following Wilder [11], we use two fundamental types of construction: we call
these a chain type and a netting type. In E; the cross section of a tunnel used by
Wilder, in either type, is homeomorphic to the interior of a plane circle; in our
modifications, the cross section is homeomorphic to the (connected) plane domain
bounded by two concentric circles. This difference gives us our desired shielding,
and thus leads to connected sets, including continua, with indecomposable properties;
Wilder instead gets locally connected continua. In Em and Iy, any of these con-
structions can be justified by the usual theorems on simple chains; but in general
we do not give these justifications, since the methods used are well known. We need
a common notation for use throughout the various methods of construction: we in-
troduce this in the following section.

2. THE STEP CONSTRUCTION OF A CONNECTED WADA DOMAIN

By a region in Ey,, we mean any set which is homeomorphic to the interior of an
(m - 1)-sphere.

We give now the construction of a connected Wada domain D!, which has the
property that D* = D. In E, this is merely the well-known Wada tunneling process,
and there F(D') is an indecomposable continuum. Let ej and dj be positive num-
bers such that lim ej =0 = lim dj, for j=1,2, . Let q; €D (i=1, 2, -++), and let

q; be dense in D. Then there exists a simple chain C, of regions {Rg}
(g=1, 2, .., n;) from q, to q,, lying in D and such that each Rg is of diameter
less than e,;, and such that Rg is connected; furthermore, for each p € D - URg,
the distance p(p, Rg) is less than d,. Let URg = A{. Take the q; of next highest
subscript such that q; € D - K%; to conserve notation, say it is q,. It is known that
the simple chain C, can be extended, by a simple chain C, of regions {Ry} (h=nj,
ny+ 1, n; + 2, ...) from q, to q; so that C, together with C, is a simple chain from
q, to q,. Let Aé = LJRh - Ai. The chain C, can be taken such that each R;, is of
diameter less than e,, A} UA] is connected and, for p € D - (AlU A}), the distance
p(p, AlU Al) is less than d,. Obviously we can continue this simple chain construc-
tion by induction in steps (C,, C,, ***). We obtain disjoint connected sets Ail
(i=1,2,--,nand n=1, 2, ---) for each C;. Each chain region of C; is of di-
ameter less than e;j, LJAl1 is connected for each n and, for p € D - UAil, we have
p(p, UAil) < dp. Thus lJArl1 is the desired connected Wada domain D!. We say
that Al is the chain union for the ith step in the construction of D!: below, we al-
ways put i in the subscript position to indicate this step in the construction of a
Wada domain.

We desire intuitive help to explain later constructions, and to see connections
between various methods. In[9], and below in Section 5,-we obtain this help by
means of the basic connexe densely extendable over a connected domain D or Db
this basic connexe is homeomorphic, under an agreement similar to that used in [9],
to our desired connected Wada domain D' or Dh+l, Let D be contained in the xyz-
space E,;. Let Q be the bounded connected domain, bounded by %% + y2 = (1 - z)?
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and z = 0, such that, if (x, y, 2) € Q, then 0 <z < 1. We call Q the basic conical
domain. In Section 5 we say that the Wada construction, used above to obtain D!, is
a Wada mapping of this basic conical domain Q over D, which gives the Wada image
D! of Q; Q is the basic connexe for D!. It may be an intuitive help to think that the
Wada construction stretches Q and places it in position over D densely: it does this
in steps, such that, for i =1, 2, ---, the part of Q where z > (i - 1)/i and

z <i/(i+ 1) is homeomorphic to Al.

Often the Wada construction is used to give either n disjoint connected domains
or infinitely many of these with common boundary. In E, this common boundary is
an indecomposable continuum: the construction and result are well known. In E,
Wilder uses this same construction for his Theorem 1 of [11; pp. 275-278]: he ob-
tains a locally connected continuum as thls common boundary. Thus this construc-
tion gives disjoint connected domains D G=1,2,:-0r j=1,2, -+, n; n> 2)
such that U ;D! is dense in D and the ;D! have common boundary We let

D!= Ule , and we say that D! is a Wada domain, although it is not connected. We
assign j to its position in Dl because, in a tower of domains, we have only a minor
interest in a disconnected D! or D}; below, j in this position always means that the

construction may be for a disconnected D!; we usually omit j, when n = 1.

If we are constructing JD the chain union becomes A1 in place of A above.
However, for i held constant, we now let A1 U A1 G= 1 2, s 0r j= 1 2, n).
The properties of A1 with reference to ej and d; are then as they were above.

It is obvious that this construction can be repeated, with the connected Wada do-
main D! or le in place of D above; this gives a connected Wada domain D? dense
in D!, or a disconnected Wada domain D = U D‘2 dense in D! = U D!, The con-
struction can be repeated by induction; thus we shall have connected sets Ah
(h =1, 2, --+), of obvious nature, similar to the above for h = 1; and we shall have
Wada domains Dh (not necessarily connected) such that D = D0 >D!>...pho ...
and Db+! is dense in Dh,

3. THE WILDER CHAIN CONSTRUCTION, (C.1)

Wilder, in his construction for Theorem 1 of [11, pp. 275-278], uses the interior
of a semitorus for his chain region; apparently, this is done in order to see easily
that the construction is possible. For a Wada domain Db = Uth G=1, 2, -, n),
his method of proof needs the following four conditions: (1) Each chain region of

jAP is of diameter less than e, and lim el=0 (i=1, 2, ---). (2) For gh=UJ;aP
(f =1, 2, -, g), each p e Dh-1 = Kh ig at a distance from Kh less than d}g1 where
lim d =0 (g=1, 2, ---). (3) No connected rectilinear 1nterva1 which contains a
point of Ah is contamed in the union of more than three chain regions of Dh

(4) The boundary set F i» consisting of the part of F(JAh) not contained 1n JAk
(k=i-1o0or k=1+ 1) is arc-wise connected. We call conditions (1) to (4) the
Wildev-Wada Conditions for the construction of a Wada domain D!}; and we call Db
a Wildev-Wada domain. Each chain region is taken homeomorphic to the interior of
an (m - 1)-sphere, unless otherwise stated. For the connected domain D®, we omit
j from these conditions throughout.

Let {DP} be a tower of Wada domains such that D! is dense in D = D° Let
Fb= F(Dh) - F(DR-1). We call {F(Dh)} a boundary tower of Wada, and Fh a coat-
ing of F(Dh-1); we say also that Fh is a coating of F(Dt), for all t < h. Also, a
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union of successive coatings, UFe (a < e<b; a, b fixed and greater than t) we
call a coating union of F(Dt). Thus we have:

LEMMA 1. Let {F(DD)} be a boundary towev of Wada, let D = DY, and let each
Db be a connected Wada domain, Let {D8} be the subclass of {DP} such that D8
is a Wilder-Wada domain. Then the coating F& of F(D&-}) is locally and avc-wise
connected. If G takes on successive values (a < g < b; a, b fixed and greatev than
t), then the coating union LJFg of F(DY) is locally and arc-wise connected,

Proof. We follow Wilder’s proof in [11, pp. 277-278]. Let F§ = F(D)n F(AD
and M' = UF% i=1,2,--). Let M"= F& - M'. From the nature of F8 we see

that D&8-1 5 M". We desire to prove that F& is both locally connected and arc-wise
connected.

Consider the case where p € M". Let R (RC D&-1) be the interior of an
(m - 1)-sphere, with p as center and radius e. By the Wilder-Wada Condition (1)
and our construction, there exist at most a finite number of the Aig with chain
regions of diameter greater than e/4; let V be the union of these Aig. Let R' be the

interior of an (m - 1)-sphere with p as center, with radius less than e/4, and such
that R*'NV = . Let q €e R'"NF8&, and let pq be a rectilinear interval. Thus R'D pq.
Suppose x € DENpg. Then there exists an arc axb such that axb - (aUb) is con-
tained in D8N pg. Thus, by the Wilder-Wada Conditions (1) and (3), axb is contained
in the union of at most three chain regions of at most three successive A§. Hence,
by the Wilder-Wada Condition (4), there exists an arc ab contained in F& and in the
union of the boundaries of these three regions. We see.that each of the three regions
is contained in R, since each contains a point of axbN R', and each, by the nature of
R', is of diameter less than e/4. Hence R D ab.

Let {t;} (f=1,2,+, v or f=1, 2, --:) be the class of all possible disjoint arcs
axb C pq; let {t;} be the class of corresponding arcs ab above. Since RD ab,
RD Ut; If d; is the diameter of tf, we see by the Wilder-Wada Conditions (1), (3),
and (4) that lim df = 0. Hence pq - U tr+ Ut% is a locally connected continuum, and
so it contains an arc pqg € RN F8& for each q € R'NF8&, Therefore F8 is connected
im Kleinen at p and, by Theorem 7 of [5, p. 94], it is therefore locally connected at
p; in fact, the proof shows that F& is locally arc-wise connected at p. The case
where p € M' can be treated in a similar manner. It then follows that F€ is arc-
wise connected, because by the local property, there exist arcs pa and bq, for
p, q € F&; and there exists an arc ab contained in a finite number of the Fig, by the

Wilder-Wada Condition (4). Therefore the coating F8 of F(D8-!) has the desired
properties of the lemma.

Consider now the case where D® is a Wilder-Wada domain for all g (a< g < b;
a, b fixed and greater than t). We wish to show that the coating union F& of
F(DY is both locally connected and arc-wise connected. If in the proof above we use
D? in place of Dg“l, it follows at once that LJFg is locally arc-wise connected.

We now prove that LJFg is arc-wise connected. Let p, q € UFg. Then there
exist u and v such that p € F% g€ FV, and a<u< w<v<b. Hence UA;’ is
dense in both F" and FV, and UFW is locally arc-wise connected. Thus there
exists p' in some FY, and so there exists an arc pp' C UFW. Similarly, there
exists q' in some F}cf and an arc qq' contained in UFW. By the Wilder-Wada Con-
dition (4), there exists an arc p'q' c FY from FY to F]. Hence we see that UFW
is arc-wise connected, and the lemma is true.
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COROLLARY 1.1. If {F(DM} is a boundary tower of Wada, D = DY, and each
Db is a connected Wildev-Wada domain, then UF(Dh) - F(D) is arvc-wise connected;
it is locally connected for h=1, 2, ««-, n; n=1, 2, +--.

Problems of interest concern the types of sets obtained when the Wilder-Wada
Conditions are changed. If (4) is changed to

4" the closure of jF? is a compact continuum,

then we retain local connectedness in Lemma 1, although we may lose arc-wise con-
nectedness. If we did not take lim e!l’l = 0 in (1), then an F(Df) could be the cartesian
product of an indecomposable continuum and the unit interval. In Section (4), we ob-
tain indecomposable continua, in spite of the fact that the Wilder-Wada Conditions

(1) to (4) may be satisfied: this results because our chain regions are annular.

4. AN INDECOMPOSABLE CONTINUUM CHAIN CONSTRUCTION, (C.2)

The older examples of indecomposable continua each had shielding (although it
was not called by that name); it was by means of this that indecomposability was es-
tablished. We define shielding as follows:

Let W be a connected subset of E,,. Let {P(R', R")} be the class of all pairs
P(R', R") of regions such that R'"NR"=0 and R'"OW # @ # R"NW. Let {T;} bea
class of subcontinua of E,. Let there exist, for each pair P(R', R"), a T; and a
domain H such that F(H) ¢ T;U F(R") and both H and E,, - H have points in com-
mon with WN R", and such that (F(H) - F(R"))NW = g. Let M be any set such that
MNW=8 and MD UTi. Then we say that M, or {Ti}, shields W densely and is
a shielding of W. If T; is an arc or a simple chain, each of which has meaning for
< with respect to its elements, we say that T; passes from R'to R", then back
again through R'.

Let I be an indecomposable continuum in E,; let {R} be a countable basis of
regions for I, and let I be such that, for every Ry and R; (k # j), there exists an
arc t from Ry to Rj to Ry, with t € S - I. The class of arcs t is a class {T;} of
shielding of I.

LEMMA 2. Let the class {T;} of disjoint connected sets be such that UTi
shields densely the connected set W. Then W is an indecomposabdble connected set.

Proof. Suppose that there exist connected sets U and V such that W= UUV
and U # W £ V. Then there exists a pair P(R', R") of regions such that

R'NV=@g=R"NU and R'NU=z@+R"NV.

Hence there exists a continuum F(H), by the above, such that F(H)N V = ¢, although
HNV # @+ (Em - H)N V. Thus V is the union of mutually separated sets V NH and
(Em - HHNV, and so V cannot be connected. Hence W is indecomposable.

We need the following here and later. Let p, q €e D E,,. Let W be the union of
the chain regions of a simple chain C from p to q, whose last link is R,. Then we
say that F(W) - F(Ry) = Z is a cylindvical surface open at one end. Let S' and S"
be the interiors of two (m - 1)-spheres such that S' O S'. We say that S = [pl p €8S’
and p ¢ S"] is an annular rvegion of Er,. We call S' the outer and S" the inner
vegion of S. Take pairs P(S', S") and a simple chain of inner regions SH
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(i=1, 2, -) from p to q such that the outer regions Si also constitute a simple
chain from p to q: we call this a simple chain C of annular vegions from p to q.

Let K' be the union of the outer regions of C, and K" the union of the inner re-
gions; and let K = K' - K". Then, by an annular cylindvical domain open at one end,
we mean the set of all points of K except those in the closure of the last annular
link of C.

We now give an example of an indecomposable connected set M c D C E,, due to
E. W. Miller [7, Example B, p. 796]. We then show how to modify this to obtain an
indecomposable connected set M cC D C E,; in turn, we modify this to obtain an in-
decomposable continuum.

Let A be a simply connected domain such that A c D c E,. Let {R{} be a
countable basis of regions of D - A. Let {zi} (i=1, 2, -) be a class of disjoint
simple continuous arcs, such that each z; is contained in D - A and z; NF(A) is an
end point of zj; further, let there exist, for each pair P(R', R") of regions of {Rf},
a z; passing from R' to R", then back again through R'. Let M= (D - A - UZi)-
Then M is connected. Since Uzi shields M, by Lemma 2, M is indecomposable.

Letnow Dc E,, and let A and {R¢} be as above for E, . Let {Z;}
(i=1, 2, --+) be a class of disjoint cylindrical surfaces, each open at one end; let
also the first region in the simple chain, which gives Z;, have points common with
A. For each pair P(R', R") of regions of {R¢}, let there exist a Z; whose con-
struction chain has a subchain, with end regions contained in R' and with a mid-link
contained in R". Let M= (D - A - UZi)- Then, as above, M is an indecomposable
connected set. Now let each Z; bec an annular cylindrical domain open at one end.
Then the same argument shows that M is an indecomposable continuum. The con-
struction presents no difficulty. In order for the notation to agree with that of Sec-
tion 2, let Al = AUZ, and A{ =Z; ~A (1=2,3, ). Then D' ={JA! (1=1,2, ),
as in Section 2. Similarly, J-A{1 is defined as in Section 2. We note that the construc-
tion of the class {All} is by induction, as in Section 2: at each step in this process,
a P(R', R") is used to obtain the next Ail. The pair P(R', R") for Ail must be
chosen so that no AJ1 (j < i) contains either R' or R™ thus here we do not use all
pairs P(R', R"), although for the two other cases above we can do so. We note also
that M = F(D'). Therefore we have

LEMMA 3. Under the constvuction (C.2), theve exists a tower of connected Wada
domains DR (h=1,2,---,v or h=1, 2, ---) such that each F(D") is an indecompos-
able continuum and Dy, = D; also, each coating F2 of F(Dt) (t < h) and each coating
union is an tndecomposable connected set,

We delay giving theorems on towers, where the types of constructions are mixed,
until we have other types. We consider next chain constructions from the standpoint
of Wada mappings of basic connexes.

5. BASIC SETS DENSELY EXTENDABLE OVER D BY A
WADA CONSTRUCTION

We consider here two basic connexes and their possible shielding, which can be
densely extended over D by a Wada construction, as suggested in Section 2. We say
that this Wada construction gives a Wada mapping of the basic connexe, together
with the possible shielding, when these are stretched and placed into position over D
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densely, as suggested for Q in Section 2. We call the set of points as extended over
D the Wada image of the basic set.

Let the imbedding space be the xyz-coordinate space. The line interval from
(0, 0, 0) to (0, O, 1), but minus (0, 0, 1), we call the basic vray N. We note that N is
the axis of the basic conical domain Q of Section 2. Hunter and I in Theorem 1 of
[2, pp. 4-5] mapped N, with its shielding, over D, and obtained a Wada image, which
was an indecomposable connected set. See [9, pp. 817-818] for another explanation
of this and related Wada images. The Wada image, for Theorem 1 of [2], was Uti
(i=1, 2, ), where t; is an arc pj-1 pj, and each Utf (f=1,2, -+, 3 and
e=1,2, ) is an arc from p, to pe. This basic ray also was mapped, in [2, pp. 7-
8], so that its image was a decomposable connected set in Theorem 5, and a locally
connected one in Theorem 6; this latter result has similarities with Wilder’s map-
ping of Q in Theorem 1 of [11], described in Sections 2 and 3 above.

We now take N, with shielding, and obtain an indecomposable continuum con-
struction (C.2); we then take Q in place of N, and obtain the same result.

Let us consider the nature of the inverse image of the shielding, for the inde-
composable trajectory of Theorem 1 of [2]. Let the conical surface Z; (i=1, 2, --*),
with vertex at (0, 0, 1), intersect z = 0 in x% + y% = (1/i)2. Let Z; be the part of this
lying between z = 0 and z = i/(1 + i). The basic ray N is a limiting set of the class
{Z!}; we say that the Z! close down on N. Each Z; has as its Wada image the
cylindrical shielding Z; in [2, p. 5]; as i increases, the stretching by the Wada
mapping becomes greater, as suggested for Q in Section 2. Thus N U UZ{) is
mapped, in the proof of Theorem 1 of [2], into (Uti) ] (UZi), where ljti is an in-

decomposable connected set, and Z; is its shielding.

Let now A' be the domain in xyz-space bounded by z =0, z = -1, and x% + y2 = 1.
Then, in A'UN U(UZ{), each Zi above is a cylindrical surface, open at one end, as
defined in Section 4. Change each Z} into an annular cylindrical domain, open at one
end, as defined in Section 4, where these close down on N in a manner similar to
that of the surfaces. Now map A' UNU (UZ{) into its Wada image in D such that:
A' goes into A, where A is a connected domain and A c D; each Z; maps into Z;;
if D! = A U({JzZ;), then D! = D. By Lemma 2 and by Knaster and Kuratowski’s
Theorem 37 [4], we see that F(D') is an indecomposable continuum, when each Z!
is an annular domain; also, D! is a connected Wada domain, since Z; is here a do-
main. If Z; is a cylindrical surface, then F(D!) - UZi is an indecomposable con-
nected set. In the first case, the image Uti of N is a composant of F(D?).

Substitute now the basic conical domain Q in place of N above, and let {Zi}

close down on Q rather than on N. Let
Dl=AvU (UZi) U (image of Q).

If Z; is an annular domain, then F(D!) is an indecomposable continuum. Although,
both here, and for Wilder’s Theorem 1 in Section 3, the basic connexe mapped by the
Wada construction is Q, in one case indecomposability is obtained, while in the other
local connectedness is obtained. The presence of shielding causes the difference.

The method of this Section has been intuitive: its purpose is to give quick under-
standing of the possible (C.1) and (C.2) types of construction. These are both chain
types. Our remaining constructions are netting types.
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6. THE WILDER NETWORK CONSTRUCTION

We are interested in two network constructions in D, each of which gives a con-
nected Wada domain D! such that D! = D. One of these is that used by Wilder, in his
proof of Theorem 8 of [11, pp. 290-291], and with its use F(D!) is a locally connected
continuum. With the use of the other, F(D!) is a continuum with a set Z of indecom-
posability; when Z = F(D!), F(D!) is an indecomposable continuum. The second net-
work construction (C.4) is a modification of the first, which is (C.3) below.

We describe the constructions (C.3) and (C.4) in the xyz-space E,. Each of
them uses a chain construction of nettings, and this extends to higher-dimensional
spaces. In (C.4), chains of annular regions, which we call annulay chains, are used.
See Section 4 for these.

Through each point (x, y, z), where x, y, and z are integers, take straight lines
parallel to the three coordinate axes, respectively. This fills E; with a set of unit
cubes, with edges on these lines and vertices at these points. Any set, homeo-
morphic to the union of these lines, we call a netiing of arcs; we call the homeo-
morph of one of these cubes a netting cube. Consider now the connected domain H
of E;. Omit from the above netting an edge of a netting cube whenever the edge is
not contained entirely in H; if the remaining set is connected, and if each edge that
remains is an edge of a cube contained in H, and H contains at least one netting
cube, we say that this set is a neflting of H. Let d; > 0, and let N be a netting of H.
We say that the netting N d;-fills H if every region R in H, of diameter greater
than d;, contains a netting cube of N (we recall that “region” always denotes the in-
terior of a sphere). We use N to denote both the netting and the point set composing
that netting.

Let N be a netting of arcs of a connected domain H. Let ab be any simple con-
tinuous arc of N; replace ab by a simple chain of regions, and let C,;, be the union
of its chain regions. If t and t' are any two arcs of N, with vertex p of N such
that p = tNt', then C¢N Cyr is the chain region, with p as center, common to C; and
Cyr; if t and t' have an arc in common, then the corresponding chains have a simple
chain in common. With this replacement of an arc of N by a simple chain, we call
the resulting set a simple chain netting N'. If N is a netting of H, then we take
N'C H. A chain netting cube of N' is the subset of N' obtained by replacing the
edges of an N cube by the simple chains of N'.

Let N' be a simple chain netting of the domain H. Replace the simple chains of
N' by annular chains: then the inner regions of these chains form a simple chain
netting N,, and the outer regions also form a simple chain netting N,. Then we say
that N = N, -N, is an annular chain netling. It has the property that H - N is the
union of two disjoint connected domains; one of these is N,, and it is called the inner
domain of N. Let p € N, and let R be a region such that p € R, such that R con-
tains a point of the inner domain of N, and also of the outer domain, and such that
the set Q = NN R is homeomorphic to the interior of a sphere. When these condi-
tions are satisfied, we say that Q is an opening into N. (In order to see that there
exists a netting N with opening Q, and with a connection T described below, one
may take the basic netting of arcs with cube edges which are rectilinear intervals.
We need this existence below, although we do not wish to confine our nettings of
arcs in this manner.)

Let N and N' be disjoint annular chain nettings. Let T be a simple chain of
regions with the following properties: T has only points of its first region in com-
mon with N, and only points of its last region in common with N'; T does not have a
point in common with either the inner domain of N or the inner domain of N'; each
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link of T is homeomorphic to the interior of a sphere. Then T is said to be a con-
nection from N to N'. We define in a similar manner a connection between N and
N' when each of these is a simple chain netting.

In both of the constructions (C.3) and (C.4), we construct a class of disjoint
nettings {N;} (i=1, 2, -**) such that the maximal diameter of a chain netting cube
of Nj is less than e; and lim e; = 0. It follows that each chain region of Nj is of
dlameter less than e;. Let {T } be a class of disjoint connections such that T
a connection from Ni to Nj;1, and the diameter of T; is less than e;. Let {Q; }
be a class of openings such that Q; is an opening of Ni and Q;nT; = ﬁ, in case Nj;
is an annular chain netting. Let dj > 0, and let lim d; = 0. We assume that
UmiuTty) G=1, 2, --) is contained in D.

In the construction (C.3), each N; is a simple chain netting. For i =1, let
Vi =#; for i > 1, let V; = U(NfUTf) (f=1,2,---,1i-1). Then the classes {N;}
and {T;} are taken so that N;uU T; d;-fills D - V;. Then we say that U(NiU T;)
(i=1, 2, ---) is the network of the (C.3) construction; here it is the domain D?!; if
one substitutes D! for D in the definition of the network, then it is D2,

In the construction (C.4), each Nj is an annular chain netting and each N; has an
opening Qj;. In the definition of the (C.3) network, replace N; by N; - Q;. Then we
say that U(TiU N; - Q;) is the network of the (C.4) construction. Since it is the
network for D, it is D!. Below, we place a further condition upon the (C.4) network
construction.

In each case, the network for D is a Wada connected domain D.

7. THE WILDER NETWORK CONSTRUCTION (C.3)

The proof, given by Wilder for his Theorem 8 in [11, pp. 290-291], is for a dis-
connected Wada domain D! = , DU ,D?; also, his class {Ti} of connections is more
complicated, and this implies that his ; D! is uniformly locally connected; however,
the uniformity depends on the nature of F(D). In a tower, F(DP-1) would not permlt
this uniformity for DP. We need a netting type of construction, so that F(DbP) is a
locally connected contlnuum and our (C.3) network constructlon can give this. For
if we take this construction so that the Wilder-Wada Conditions of Section 3 are
satisfied, the proof of Lemma 1 will hold, in the case when the Dh of the tower are
of (C.3) construction.

In the (C.3) network of the previous section, let A} = N,u T, and, for i>1, let
A1 =NjUT; - A1 1. Then D! LJA1 (i=1,2, ). We construct .Al, A}, Al --- in
that order, satisfying the condltlons of Sectlon 6. When D! is not connected we de-
fine jAj in a manner similar to A = lA Then D! U Dl, as in Sections 2 and 3;
we defme Ah and D! and obtain a tower of Wada domams here, as we did there.

Our construction conditions in Section 6 insure that we have the Wilder-Wada
Conditions (1), (2) and (4); it is to be noted, in Condition (3), that the ‘three’ could be
any greater fixed finite number: this makes it easier to see that the (C.3) network
can be assumed to satisfy all of these conditions. Thus we have:

COROLLARY 1.2. If {D®} is a tower of Wada of (C.3) construction, D = Db,
and the Wilder-Wada Conditions hold for each DY, then UF(Dh) - F(D) is avc-wise
connected; and it is locally connected, for h=1,2, -, n and n=1, 2, -



86 PAUL M. SWINGLE
8. THE (C.4) NETWORK CONSTRUCTION

The (C.4) network of Section 6 has associated with it a connected domain Dh"l,
where D is D° We also associate with it a set Z' ¢ D and a countable basis {H}}
of regions of D about Z'. The set Z' may be any subset of D. Each H! is homeo-
morphic to the interior of an (m - 1)-sphere. If z € Z', R is any region in D, and
z € R, then there exists an H; such that Hj C R.

The construction of the (C.4) network is by induction. Thus one takes
(Ny, N, N3, -+, Nj, **+), in the order of the subscripts, and with the properties
stated in Section 6; with each Nj; is associated its opening Qi and its connection
T;. The first steps in this construction are as follows. Let H, = H} € {H{}. Con-
struct N,, and take Q,U T; C H,. Then take N, so that it d,-fills D - (N,UT, - Q,)
and has the other properties desired in Section 6, also so that H, D Q,U T,. Let H,
be the H; (i # 1) of smallest subscript such that (N,UT,) U(N,UT,) does not con-
tain H,. Next, take a subclass {HZf} of {H!} such that H,s contains the openings
into both Nj¢ and Nj¢_j, and such that, H,¢ contains the connections from N, to
both N,; ; and N, ,; thatis, let

Hye D (Qas 1 UT e 1) U(QaeUTyy).

In the inductive construction, Hys is always taken as the next Hj which is not con-
tained in the union of the H{U T, previously constructed.

Hence, for a given Nzf, the (C.4) Network has these properties: If i < 2f, then
the inner domain of N,f does not contain a point of Nj. If i > 2f, there exist p and
g in Nj such that p is a point of the inner domain of Nzf and q is in its outer do-
main; there exists an arc pq C Nj; and the arc pq must go through Hjysf, as must
every arc of N;. For i > 2f, we say that N; has the property of passing through
H;¢ in going from the inner to the outer domain of N3¢, since its arcs and chains
have this property.

We can let Al = (N, - Q)U T, and, for i > 1, we write
1 2y 1
A =(N; -QJUT; - Aj ;.

This is similar to what we did in Section 7, and it brings the notation into agreement
with that used in Sections 2 and 3. In an obvious manner, we give meaning to J-A{‘
and D, Thus we have

LEMMA 4. There exists a tower {DB} of connected Wada domains, where each
DM is obtained by the network construction (C.4), and Db = D, for each h; each
F(DY) is an indecomposable continuum.

Proof. Let Z'=D. We see that F(Dh) is a continuum. Suppose it is decom-
posable into proper subcontinua V and W. Then a pair P(R', R") of regions can
be taken such that

i

VNR"=¢ =WNR' and VNR'z2@+WNR".

Because of the nature of {H;}, there must exist an Hp¢ C R'. For large enough
i > 2f, there exist points of N; N R" (and therefore points of R"N F(Dh)) in both the

inner and outer domain of Np¢. Since Ny N F(DD) = ¢, we see that UNZf gives

shielding to F(Dh): obviously, the N; here are those used in the construction of Db,
By the proof of Lemma 2, it follows that F(D?) is an indecomposable continuum.
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9. THE (C.4) NETWORK AS A CONTINUUM WITH A
SET OF INDECOMPOSABILITY

In the previous section, a set of regions about Z' contained all the netting open-
ings and connections. If Z' # D, then UAif now does not shield F(D!) densely in

D; instead, its shielding for F(D') is certain only for Z'. Thus we need to modify
our definition of shielding, which we do as follows.

Let Z and W be nondisjoint subsets of En,, and let W be connected. Let {Ti}
be a class of connected subsets of E,,, - W. Let P(R', R") be any pair of regions
such that R"NW % 86 # Z N(R'NW). Then we say that {Ti} , or any set M which
contains UTi, shields W out from Z, or is a shielding of W out from Z, if and
only if, for every pair P(R', R"), there exists a domain H such that F(H) is a con-
tinuum contained in some T; UF(R'), such that F(H)N (W - R') = @, and such that
R"N W contains points both of H and of E,, - H; in other words, if F(H) is a sepa-
rating boundary continuum exterior to R' which separates W in R".

We need to define the following concepts. The subset V of the connected set W
is a region-containing subset of W, if for some region R it is true that VO RN'W
and RN'W = @. We say that a nonnull subset Y of W is a set of indecomposability
of W if and only if, for every region-containing subset C of W, C D Y; then, Z is
the set of indecomposability of W if Z is the maximal Y. We say that W is a con-
nected set, with a set Z of indecomposability, if a nonnull set Z of indecompos-
ability exists. If W also is closed, we say that W is a confinuum with a set 7. of
indecomposability.

If I and I' are two indecomposable continua in E,, with a set Z of tangency,
then IUI' is a continuum with the set Z of indecomposability. Also the closure of
the biconnected set S, with dispersion point a of [4: p. 241], is a continuum with set
a = Z of indecomposability.

LEMMA 5. Let D! be a connected Wada domain of (C.4) network construction,
such that D* =D and D' = |JA}. Let also {A};} shield F(DY) out from a set Z.
Then every vegion-containing connected subset V of F(D?) is dense in 7. N F(D?Y).

Proof. Suppose the lemma is false, so that there exists a region-containing V
of F(D!) such that V does not contain Z N F(DY). Let R' be a region, and z a point
in Z suchthat z € R' and R'NV = . Since V is region-containing, there exists a
region R" such that R'"NR"= g and V > R"N F(D!). Recall now the class {H,¢} of
the (C.4) construction of Section 8. There exists an Hys and the corresponding Aéf
with the following properties: R' contains Hzf; A 3¢ contains points of R"NV; Hyg¢
contains the opening of Aéf; and H,¢ contains the connections from Aéf to A%
(t=2f-1 and t = 2f+ 1). Since D' D Al; and so AL,NV = g, it follows that
Aéfu F(R') contains a separating boundary continuum F{(H) of the definition of

shielding out from Z. Thus V cannot be connected, which is a contradiction.
Therefore the lemma is true.

THEOREM 1. Theve exists a connected Wada domain D' of the (C.4) network
construction, such that D* = D, F(D!) is a continuum wilh a set Z. of indecompos-
ability, and ¥ (DY) is not an indecomposable continuum.

Proof. Here D! = UAil, and Ail = 1Al satisfies the Wilder-Wada Conditions (1)
and (2). Thus D! is a connected Wada domain. For any chosen subset Z' of D, the
class {Hp¢} has a subsequence closing down on each z € Z'N F(DY) = Z. Each Hyg
contains the opening and the connection of both Aéf_l and Aéf. For t > 2f, each A%,
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passes through the opening of A%‘f and has points in common with both the inner and
the outer domain of Nzt of A%f. Therefore it follows that {Aéf} is a shielding of

F(D!') out from Z, and therefore the hypothesis of Lemma 5 is satisfied. Therefore
F(D') is a continuum with the set Z of indecomposability.

We show now that D! can be taken so that F(D!) is a decomposable continuum.
Let R be a region, and Z' a subset of D such that RNZ' = §. We take the (C.4)
network D! as in Section 8. However, consider the nature of the class {Nj} of
netting in Section 6. The opening and connection of each Nj is in a region H; about
a point of Z'. Hence this opening and connection can be taken with no points com-
mon with R. Because of its netting construction, N; - R can be taken connected.
Then U(Ni -R)=D! - R is connected. Thus F(D!) - R can be taken connected.

An indecomposable continuum cannot have this property, and so F(D!) can be de-
composable.

Obviously, we can use nettings of cylindrical surfaces, each with opening and
connection, in place of nettings of annular chains in (C.4). Then D - LJAl1 and
D - lJAl1 would each be indecomposable connected sets; if we define the term

“closed” for these sets as “closed in itself,” they are examples of indecomposable
continua, which are not bicompact.

10. CONTINUA WITH SETS OF INDECOMPOSABILITY

We now give theorems which show relations between continua and sets of inde-
composability; especially, we develop the composant theory for them.

THEOREM 2. If M is a continuum with a set Z of indecomposabilily containing
at least two points, then M is non-aposyndelic at each point of Z, and it may be
aposyndetic elsewhere.

Proof. Consider the case where p and q are in Z and M is aposyndetic at p,
with respect to q. By definition [3, p. 404], there exists a subcontinuum H of M,
and an open subset U of M, such that M - qD> HD U D p. By definition, H is
region-containing, and so HD Z, since Z is a set of indecomposability of M. But
then M - q D HD Z O q, which is a contradiction. Therefore M is non-aposyndetic
at each point of Z. If p € M - Z, we conclude from the last part of the proof of
Theorem 1 that M could be aposyndetic at p.

THEOREM 3. Theve exists a connected Wada domain D*, of (C.4) construction
such that F(D!) is a continuum, whose set of indecomposability consists of a single
point Z, and such that F(D) is locally connected at 7.

s

Proof. The regions of the class {H{} of Section 8 close down on the point Z.
We note that the netting N, can be taken so that each N} N H; is connected; similar-
ly, each N;NH;j (t > 1) can be taken connected. Thus F(D!) is locally connected at
Z.

In Theorems 4 and 12 we need the following definitions, which we gave in [8, p.
90]. Let the connected set M be the union of the sets M; (i =1, 2, -*+, n), and let
M' be any one of these. By the essential part of M', always denoted by E(M'), we
mean the part of M' which is not contained in the union of the closures of the re-
maining sets M;. If each E(M;) # #, then we say that M is the essential union of
these Mj. We say that M has Rx-local essential union at x if and only if, for every
region Ry containing x, there exists a region Ry C Rx such that Rx N M has essen-
tial union of sets Ryn Mi (i=1, 2, ---, n), for M; ¢ M. Further, M is an
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n-indecomposable connected set if and only if M has essential union of the con-
nected subsets M; (i=1, 2, ---, h) for h=n but not for h=n + 1. And we say that
M is locally n-indecomposable at x if and only if it is connected and if, for every
Rx, it has Rx-local essential union for connected subsets Mj (i =1, 2, -+, h) for

h = n, but not for h = n + 1. However, for n= N, we change “not for h=n+ 1” in
both cases to “not for a higher power h.” Thus we have

THEOREM 4. If M is a continuum whose set Z of indecomposability Z is the
closure of a domain with vespect to M, then M is locally 1-indecomposable at each
point of this domain, but it may be locally N -indecomposable elsewhere.

The proof follows easily from our definitions and from the construction of D! in
Theorem 1. '

Let M be a continuum with the set Z of indecomposability, and let p, q € M; by
Tpq We mean a subcontinuum of M which contains puq. We define the composant
Tp of M with respect to p as follows:

Tp = [q| there exists a non-region-~containing qu].

A composant of an indecomposable continuum M is an example.

Notation. Below, M is a compact continuum with the set Z of indecomposability.
Let {H;j} be a class of regions with respect to M such that for each i, H{N Z # @,
and such that the class has, for each z € Z, a subsequence of regions closing down
on z. Then, for each H; and each p € M - ﬁ;, there exists a maximal subcontinuum
W; of M - H; such that p € Wy. We call this the W; for p ¢ H; and by {Wi}p and
(LJW,-L)p we denote the classes of these subcontinua and their union, respectively. If
Ty = (UWi)p, then T, is said to be a composant of countable union type. See M of

Example a,, which follows the proof of Theorem 6 below.

THEOREM 5. Let M be a compact continuum with the set Z of indecomposabil-
ity, and let p € M and Z + p. Then T, D (LJWi)P + 0, and Tp is dense in Z.

Proof. Since M is a compact continuum, there exists (by Theorem 34 of [5, p.
21]) an irreducible continuum joining p and H)'; let W, be the maximal subcon-
tinuum of M - H;' that contains p. Since there exists z € HiNZ and HjN W;j = §,
the subcontinuum W; does not contain Z. Thus, by definition of Z, W; is not a
region-containing subcontinuum of M. Hence the composant T, contains (UWi)p-

We see that (UWi)p + B, because Z # i), and so there exist an HY' such that p ¢ ﬁi’.

If pg Z, then there exists a W; for each Hj, and a subsequence of {Hj'} closes
down on each z € Z. Hence Ty contains the set ( Wi)p, which has z as a limit
point. Therefore Ty is dense in Z when p £ Z. Consider the remaining case, where
p € Z # p. Here also there exists a subsequence of {Hl"} closing down on each
z'€ Z - p, and so (UWi)P, contained in Ty, has z' as a limit point. Hence the
theorem is true.

THEOREM 6. If M is a compact continuum with the set 7. of indecomposability,
and Z contains a proper open subset of M, then evevy Tp is a composant of count-
ableunion type. If Z does not contain a proper open subset of M, then theve can
exist a composant T which is not of this type.

Proof. If Z contains a proper open subset of M, then any subcontinuum W' con-
taining Z contains a region with respect to M, and therefore W' is region-containing.
Let W be a non-region-containing subcontinuum of M such that p € W. Then, by the
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nature of W', W does not contain Z, and so tHere exists z € Z - W. Hence there
exists an H{ such that H{'ﬂ W =0 and z € H;. Thus there exists a W; which con-

tains W. Therefore T, = (UWi)p, and so T is of countable union type.

Let M be contained in the xyz-space, and let Z be a point on the z-axis. Let C
be the Cantor ternary set on the rectilinear interval from (1, 0, 0) to (0, 1, 0). For
c € C, let P, be the plane containing the z-axis and c. Let I. be an indecomposable
continuum such that I. € P, and Z € I.. For c¢ # e, I. may be revolved about the z-
axis into Ig; I. - Z and I, - Z are disjoint. The set LJIc = M is a continuum with
the set Z of indecomposability. The regions of {H;'} close down on the point Z.
Hence there does not exist a maximal subcontinuum W; of M - Hj which contains Z.
Thus Tz # (UWi) 7z and so, by definition, T, is not of countable union type. Thus
the theorem is true.

Also, consider Example a, of [4, p. 244] and Figure 3 of [4, p. 254]. Let C be a
nondense and perfect subset on the segment [(1, 0), (1,1)]; for each c € C, let L(c)
be the set of all points (x, y) € E, which satisfy the equation y = ¢ + x"!sin 7/x for
0 < x<1. Let M be the closure of | JL(c). Let Z = {(x, y)| x=0}. We see that
M is a continuum with the set Z of indecomposability. Let z € Z; then the closure
of each L(c) is contained in T, ; hence T, = M. However, (UWi)Z = Z, and so
T, # (UWi)z- Thus T, is not of countable union type; this means that T, is not
the union of a countable number of proper subcontinua of M each of which is not
region-containing; this is contrary to the nature of a composant of an indecompos-
able continuum. It is easy to modify this continuum so that M is compact.

In connection with the example M = U I. (c € C), the following is of interest.
Since each I.U I, is a non-region-containing subcontinuum of M which contains Z,
Tz = M. Let {Rj} be a countable basis of regions for M; Let W! be the maximal
subcontinuum of M - R; which contains Z. Then UWl contains the union of the set
of composants for Z of each I; it also contains each I., where I. NR; = @. There-
fore UW{ = M= Tgz. The Wi' are region-containing; a nonnull Wj is not (see [5, p.
75, Theorem 107]). Let M=I_UI. (c # e). In the sense of [5, p. 75], the composant
of M with respect to Z is M itself; our T z is the union of the composant of I
which contains Z and of the composant of I, with this property.

LEMMA 6. Let M be a compact continuum with the set Z of indecomposabilily.
If T, and T ave both composants of countable union type of M, and TpN Ty # 8,
then Tp = Tq; also, M - Tp is dense in M.

Proof. Let x € Tp N Tq. By definition of composant, there exist Tpx C Tp and
Tpx C Ty Since Tpx and Ty, are each non-region-containing, we see that M - Tpx
and M - Tyx are each dense in M. By Theorem 15 of [5, p. 11], the continuum
Tpx UTgx must be non-region-containing. Hence q € T,. If y € Ty, we see, ina
similar manner, that y € Tq. Therefore Tp = Tgq.

Since Tp is of countable union type, Tp = (UWi)p- By definition of W;, W; does
not contain Z, and so W; is not region-containing. Therefore M - W; is dense in
M. By Theorem 15 of [5, p. 11], M - T is dense in M.

THEOREM 7. Let M be a compact continuum with the set Z of indecomposabil-
ity and, for each p € M, let Ty be of countable union type. Then M is the union of
an uncountable numbeyr of disjoint composants, each of which is dense in Z; also,
each M - Tp is dense in M.

Proof. This follows at once from Theorem 15 of [5, p. 11], Lemma 6, and
Theorem 5.
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COROLLARY 17.1. Let M be a compact continuum with the set Z of indecom-
posabilily, and let Z contain an open subset of M. Then M is the union of uncount-
ably many disjoint composants; each composant Tp is dense in Z,and M - Tp is
dense in M.

Proof. This follows from Theorems 6 and 7.

We say that a continuum M is irreducible, with vespect fo a subset Z, between
two points a and b (a, b € M) if and only if every T,;, of M is region-containing
and contains Z.

COROLLARY 7.2. Let M be as in Covollary 1.1. Then theve exist a, b, c € M
such that M is irveducible with rvespect to Z, between each paiv of these.

Proof. Take a, b, and ¢ each from a different composant of M. Then there
does not exist a non-region-confaining T,};. Hence each T_}, D Z. Therefore the
Corollary is true.

THEOREM 8. Let M be a compact continuum which is the union of continua M;
(i=1,2, -, n n>2), where each M; is a continuum with a set Z; of indecompos-
abzlzty, and Z;i contains an open subset of M;; and wheve also, for i # j, M;N M;
consists of at most a countable number of components, each of which is not regzon—
containing, Then theve exist p; € My such that any subcontinuum W of M which
contains Jp; also contains UZ ie The possible p; € M; are dense in Mj.

Proof. By Corollary 7.1, each M; contains uncountably many composants, Each
pair Mj and Mj has the property that M;iN M;j consists of a countable number of
components, and that each of these components is ina Ty of M; and also in a T of
M;j. The set of all composants that contain points of two M; is countable. Take p1
in M;, but in none of this countable set of composants. Then any subcontinuum of M;
which contains both p; and a point of an M; (j # i) must contain Zj, because of the
proof of Corollary 7.2. Thus we see that the theorem is true.

Let Z be a subset of the connected set W. We say that W is widely connected
with vespect to Z if and only if every nondegenerate connected subset V of W is
such that VD Z. An example is a biconnected set W with dispersion point Z.

THEOREM 9. If M is a compact continuum with the set Z of indecomposability,
and Z. contains an open subset of M, then, under the continuum hypothesis, M con-
tains a set W which is widely connected with vespect to Z and satisfies the condi-
tion W = M.

Proof. We follow the proof of Theorem 1 of [6, pp. 254-256]. Let {B,} be the
class of separating boundary continua of M; it is known to be of power 2No; also, by
Corollary 7.1, the class {Tp} of disjoint composants of M is of this power. I-Ience
we can take py in By and py in some Tp. We see that if H is a domain bounded
by By and p € H, but H does not contain all of Z, then TN By # @; for since By
bounds at least two domains, we see by Corollary 7.1, that there exist uncountably
many disjoint composants Ty such that T, N By # 0. Therefore each py can be
taken in a different Tp. Let W = Upa (ax < 2, where Q is the first ordinal with
power 2No). Then W is connected, because it contains a point of each B,. It con-
tains but one point of each Tp; hence each nondegenerate connected subset V of W
is not contained in any Tp, and therefore V must be a region-containing subcon-
tinuum of M. Therefore V O Z, and hence W is widely connected with respect to Z.
because each region with respect to M contains a B, N M, W =M.

THEOREM 9.1. Let W be a widely connected set with vespect to Z, and let Z
contain a subset H open with vespect to M, wheve M is as in Theorem 9. Then
W - H is fotally disconnected,
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Paf_'_o_of. _Suppose that W - H contains the nondegenerate connected subset C.
Then C > Z and Z D H. Thus there exists a region R such that C D RN M. Hence
CNH # @, which is a contradiction.

11. CONNECTED TOWERS OF WADA

We give here some typical theorems involving towers of Wada domains. Varia-
tions of these are easily stated and proved. One can get local connectedness in the
chain construction (C.1), even if the connected Wada domain is constructed with
branches in its simple chain unions; however, in what follows, we take the chain
construction without branching, so as to give the desired type of shielding to Dh,

THEOREM 10. Let {D8} be an infinite toweyr of connected Wada domains, of
chain construction (C.1) or (C.2), or of indecomposable network construction (C.4),
such that each D8 = D, and such that n D8 does not contain a domain. Then, for
every integey n> 2 and for n = N, D is the union of n disjoint indecomposable
connected subsets, each dense in D, one of which is an while the others ave of
the form (\JFDe, wheve Ff = F(DY) - F(Df-1) and each t is some g, and wheve
{pf}, c {DE}.

Proof. In the constructions (C.1), (C.2), and (C.4), it is to be noted that the
class { F(D8)} gives shielding densely to ﬂDg. Thus, by Lemma 2, an is an
indecomposable connected set.

Let D = D% We see that F! = F(D!) - F(D° and F? = F(D?) - F(D!) are disjoint;
thus {F8} is a disjoint class. For n= 2, 3, ---, N, transfinite number theory al-
lows us to arrange the class { F&} into n disjoint subclasses {Ff}. (e=2, 3, ---, n
or e=1, 2, ---), each with infinitely many elements. Let (LJFf)e be the union of the
elements of {Ff}.. Since each FP is a limiting set of Fh+t, (| JFf), is connected.
Because n > 2, and in a tower D8 D D&+l each {Ff}_, shields (LJFf)C (c # e)
densely in (C.1), (C.2), and (C.4). Hence, by Lemma 2, each (| JFf). is an inde-
composable connected subset of D, and therefore the theorem is true.

Let M be a connected set, a, b € M. By K;1, we mean a connected subset of M
such that KD aUb. In[7, p. 797], we defined a composant K, of M with respect to
p by the equality Kp =[q] there exist Kpq such that Kpq # M].

THEOREM 11. Let {D8} be an infinite tower of connected Wada domains, of
any mixturve of the chain constvuctions (C.1) and (C.2); let each D8 be dense in the
compact domain D; and lel n D8 be such that it does not contain a domain. Then
the indecomposable connected set an has uncountably many disjoint composants,
each of which is dense in D; if C is a connected subset of one of these composants
Kp, and Kp# C, then Kp D C.

Proof. Let {Rj} (j=1, 2, --+) be a region basis of an. Let p € an. Then
p is in each DE. Consider a given Rj. Two cases arise: Either there exists a k
such that, for all g > k, there exists a simple chain C8& of links, from the construc-

tion of DE, which has its end regions contained in Rj, and one of whose links contains
p; or, for g > k, there exists the simple chain C& from p to Rj. Let K% be the

union of the chain regions of C&. Let R be a chain region used in the construction
of D€, and let R' be one of those used in the construction of Df (f > g). In a Wada
construction, if R D R', then RD R'. Thus K§ > E%H. Let K(p, Rj) = nﬁﬁ Then
K(p, R;j) is a continuum joining p and _f{—j, and it is contained in an. Therefore
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we have the class {K(p, R)} (=1, 2, ---); let Kp = UK(p, Rj). Then K} is a con-
nected subset of [ D8 which is dense in D, and p € Kp. Let Kp be the composant
of an with respect to p, which we defined above. Thus Kp D Kp.

Let C be a connected subset of an, such that p € C; if C # D, then, because
{F(D8)} shields an densely, Kp D> C. Therefore Kj, = Kp, and any two compos-
ants are either equal or disjoint. Each Kp is the union of a countable number of
subcontinua nK , and the F(D8) are countable; hence, by Theorem 15 of [5, p. 11],
the composants are uncountably many in number. Thus the theorem is true.

COROLLARY 11.1. In each connected and compact domain D of Emy or of 1,
theve exists a widely connected subset W such that W = D.

Proof. This is the same as for the original widely connected set, as given in
[6, pp. 254-255]; Theorem 11 is used to obtain the indecomposable connected set

D8, which is the sum of uncountably many composants.

We note the following: If in Theorem 10 the tower has even infinitely many D&
of the Wilder network type (C.3), the conclusion remains true, provided that each of
the subclasses {D }e contains infinitely many DE of the other types, to give the
shielding needed in the proof. In a mixture of types in an infinite tower, or of coat-
ing in a finite tower, these shielding types predominate in determining the resulting
set.

We note also that the conclusion of Theorem 11 remains true if we have a mix-
ture of other types of construction of the D&, so long as we have infinitely many of
the chain types to give the class {Kg } of that proof: for we need not use a Kg for
each D& of {D8}.

If in Theorem 10 each D€ is assumed to be disconnected, then an contains
uncountably many indecomposable connected subsets, each a tower intersection of
connected Wada domains. If an contains a domain H, other modifications are ob-
tained with proofs similar to the above.

The definition of n-indecomposable connected sets, needed in Theorem 12, is
given in Section 10. For other theorems concerning these sets, see [8], [10], {1] and
their references.

THEOREM 12. Let {D8&} be a tower of Wada domains such that each D8 is
contained and dense in a compact connected domain D of Eyp;

_ ngU ZDgU ey an;

for each j,{ ng} is a tower of connected Wada domains; each iD& is contained and
dense in le; and each D8 is of (C.2) chain type constrvuction. Then

Urm® =FD) (g=1,2, -, £>1),

and F(D ) is an n-indecomposable continuum. Also, an (g=1,2, ) is an n-

indecomposable connected sel; in fact, D is a disjoint sum, similar to that in the

conclusion of Theovem 10, with “n-indecomposable” substituted for “indecompos-
able.”

Proof. Since F(D') ¢ F(D?) c --- c F(DY), we see that | JF(D = F(Df)
(g=1, 2, -, f; £>1). Moreover, F(Df) = F(lDf)U F(;DHu - U F(,DY); also,
F(ij) = F(le)U F(jDZ) U UF(JD ) for j=1,2, .-, n. Thus F(DY) is the essential
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union of the n sets F(J-Df) and, by Lemma 3, each F(ij) is an indecomposable con-
tinuum.

For F(DY) to be an n-indecomposable continuum, the second part of the definition
must be satisfied. Suppose that it is not: then F(Df) is the essential union of the
n+ 1 connected subsets Mj (i=1, 2, «--, n+ 1). Thus E(M;) # 9, for each i. Be-
cause each proper subcontinuum of an indecomposable continuum is a continuum of
condensation, it follows that Mi cannot be a proper subcontinuum of any one F(ij).
Hence two M;j (call them M' and M") must be such that for one F(jDY), say it is
F(;D%) = |Bf it is true that

E(M")N E(;Bf) 2 g 2 EQM") N E(;BY).

Let q € E(M")N E(1BY). For each j, F(;D!) D F(D!). Thus q € E(;BY) implies that
q € F(D!) is false. But le C 152, and therefore q € lDZ. Thus, by Theorem 34 of
[5, p. 21], there exists an irreducible continuum T' in M', joining q to F(;D2).
Since T' c M'c F(Df), T' must be contained in F(;Df). Therefore T' and E(M")
cannot be disjoint, and so E(M') NE(M") # §. This is a contradiction. Therefore
F(DY) is the essential sum of n, but not of n + 1 connected subsets. Hence F(DY) is
an n-indecomposable continuum, which was to be proved.

Consider now the case for ﬂDg. Each D8 = ;D8U ;D8 U-.. U 1,D%. By Theorem
10, for each of the values j=1, 2, ---, n, the intersection nng €=1,2,:) isan
indecomposable connected set. Thus we see easily, from our (C.2) construction,
that n D8 is the essential union of the n indecomposable connected subsets n ng
(=1, 2, -+, n). It remains to prove that it is not the essential union of connected
subsets M; (i=1, 2, -, n+ 1). The proof is similar to the case above: By Theo-
rem 108' of [7, p. 800], no M; can be contained entirely in a set n jD8. Hence two
M;, call them M' and M", must be such that for one of the nng, say it is

1D& = W, it is true that E(M')N E(W) = 8§ # E(M")N E(W). Let q € E(M')n E(W).
Then q is contained in some chain region, for each D8 (g=1, 2, ---). Since M' is
connected and M' # W, M' cannot be contained in any finite number of the chain re-
gions of 1 D& for any fixed g. Since part of E(M') is contained in W, it follows, by
the proof of Lemma 2, that M' must be dense in W. But then E(M')N E(M") # 0,
which is a contradiction. Therefore an is an n-indecomposable connected set,
and the theorem is true.

THEOREM 13. Let Z be a closed subset of D. Then there exists a tower {D8}
of connected Wada domains such that each D8 is of (C.4) construction and satisfies
the condition D8 = D; each F(D8) is a continuum with the set 7 NF(DE) of indecom-
posability; and n D& is a connected set with the set Z of indecomposability.

The proof uses ideas from the proofs of Theorem 1 and 10, and it is not difficult.

In various branches of topology, the more complex examples obtainable by Wada
constructions have attracted little attention, either because of too primitive a state
of development or for other reasons. In[11], Wilder considered examples which he
showed to be treatable by established methods of a unified topology; his introduction
there is of some interest concerning the more complex Wada sets above. In part,
methods seem lacking for the study, in desired detail, of the more complicated con-
nected sets of Wada; and still more complex types of these sets may yet be dis-
covered.
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