ON HYPERBOLIC SURFACES IN THREE-DIMENSIONAL
EUCLIDEAN SPACE

James A. Jenkins

1. Let the function f(x, y) be defined for all real (x, y). Then, if f possesses at
least continuous partial derivatives up to second order, the surface defined by
t = f(x, y) in three-dimensional Euclidean space becomes in a natural manner a
simply-connected Riemann surface. The question was raised by Loewner whether
such surfaces can be of hyperbolic type. This question was answered in the affirm-
ative by Osserman [4], [5], who gave two constructions of such a surface. The first
type of surface was pieced together of plane pieces; thus it was not differentiable,
and the proof that it was hyperbolic depended on a global property of the surface.
The second construction provided an infinitely differentiable surface, but depended
on considerations of imbedding Riemann covering surfaces in three-space. Recently,
Huber [1] has given a much simpler and more natural construction of such a surface.
His proof depends essentially on the estimation of the module of certain doubly-
connected domains by a Dirichlet integral and on explicit analytic estimations of
certain integrals involved.

In the present paper we shall give a construction of a hyperbolic surface in
three-dimensional Euclidean space, built up of constituent pieces for which we re-
quire only certain rather general geometric properties. To prove that the surface
obtained is hyperbolic we use only the notions of module of a quadrangle and quasi-
conformal mapping.

2. Our basic building block is a portion of surface in three-space, lying simply
over the Z = X + iY-plane, which we denote by S(L, K, H, g, h), where L, K, H are
positive constants with L > 2(K + H), and where g, h refer to functions to be char-
acterized below. Our portion of surface is given by an equation U = F(X, Y), where
F is defined for 0 < X < L, 0<Y 1. First,

FX,Y)=0 0<X<Kor L-K<X<L,0<Y<1).
Further,

F(X, Y) = g(Y) K+ H<X<L-(K+H), 0<Y<1),
where g(Y) is an infinitely differentiable function satisfying
g(¥)=g1-Y) (0<Y<1) and g(0)=gM0)=0 (m>1).

Moreover, on K< X< K+ H, 0<Y <1, we require that F(X, Y) = h(X, Y), where
the latter function is chosen to satisfy h(X, ¥) = h(X, 1 - ¥) (0 <Y < 1) and to make
F(X, Y) infinitely differentiable on K <X<K+H 0<Y 1. For example, we
may take h(X, Y) = k(X) g(Y), where k(X) is infinitely differentiable for

K<X<K+H
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and satisfies
kK) =kWK) =0, kE+m=1, k@E:+m=0 @>1).
Evidently there are many such functions. Finally, we require that
FX,Y)=h(L -X,Y) L-K+H<X<LL-K, 0<Y1).

The portion of surface thus obtained is evidently infinitely differentiable for
0<X<LL, 0<YL1. To distinguish various functions obtained in this way, we de-
note this function by ¥(X, Y; L, K, H, g, h).

3. We require several lemmas concerning the surface S(L, K, H, g, h). The
choice of the points (0, 0, 0), (L, 0, 0), (0, 1, 0), (L, 1, 0) as vertices determines
a quadrangle [3; p. 16]. We denote the module of this quadrangle for the class of
curves joining the sideson Y=0, Y=1 by m(L, K, H, g, h).

LEMMA 1. With preassigned K, H and given n > 1, we can determine g, h such
that, for L larvge enough, m(L, K, H, g, h) < L /n.

We choose g(Y) so that
51[1 + (g1(Y))2]¥/24dY = 2n

(as may be done in many ways), and h accordingly. By 0|dw| we denote the con-
formal metric induced on S(L, K, H, g, h) by the Euclidean metric. Let

G= max [1+ (g'(Y))?‘]l/‘2 .
0<Y<1

Let the area of S(L, K, H, g, h) lying over the rectangles
0<X<K+H 0<Y<1 and L-(K+H<X<L 0<Y<1

be -A. On the surface we now define the following metric, admissible in the module
problem:

p(P) |dw(P)| = z_ln o(P) |dw(P)| (P over K+ H< X< L - (K + H),

0<Y<1),

p(P)|dw(P) | =% Go(P)|dw(P)| (P over 0<X<K+H, 0<Y<1,
L-K+H<X<L, 0<Y<1).
Evidently every curve in the given class has length at least one in this metric, since

an arc joining the lines Y =Y,, Y=Y, (Y, < Y,) has length at least

Y2
[1+ (Y2 2ay,

1

1
2nY
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while the area of the surface is at most

1L+1

—_ — 2
2n 4n? G* A.

As soon as L is large enough, this is less than L/n.

The surface S(L, K, H, g, h) admits a conformal mapping p as a quadrangle,
with the obvious correspondence of vertices onto a rectangle 0 <u < L', 0<v <1,
(w=u+iv). In 0< X<K, 0<Y<<1 we can use Z as local uniformizing para-
meter, and by the reflection principle the preceding mapping can be extended to a
mapping of - K <X <K, -1 <Y < 2. On this domain we denote the mapping function
by p(Z).

LEMMA 2. Theve exist positive constants AK), 1(K), depending only on K, not
on the other pavameters, such that

MB) < |[p(2) | <w@®  (X=0,0<Y<1).

The function p(Z) maps the rectangle -K < X< K, -1 < Y < 2 into the strip
-1 <v < 2, with the segment X =0, 0 <Y <1 going into the segment u = 0,
0 < v < 1. In many ways, for example by treating a suitable module problem, we see
that |p'(Z)| is bounded, say |p*Z)| < n(K), for 0 < Y < 1. Similarly, we see that
the image of -K < X < K, -1< Y < 2 must cover a strip -v(K) < u < v(K),
-1 <v <2, where v > 0 depends only on K. Applying the preceding argument to
the mapping p~! inverse to p, we obtain the bound

AK) < [p'(Z)] (X=0,0<Y<1).
LEMMA 3. The surface S(L, K, H, g, h) admils a quasiconformal mapping q

onto a rectangle 0 < u < L', 0 <v < 1, with the obvious corvrvespondence of vertices,
with maximal dilation less than a quantity depending only on K, and such that

(1) a0, ) = 1Y 0<Y<D),
(3) q(L, Y) = iY 0<Y<1).

We start with the mapping p introduced above, and follow it with the self-map-
ping s of the rectangle 0 <u < L', 0 <v <1 defined by

s(u, v) = u + p~(iv).

Then evidently the mapping sp satisfies the condition (1). Conditions (2) and (3) fol-
low from the symmetry of the surface S(L, K, H, g, h). The maximal dilation of the

mapping q is not greater than max (¢ (K), 1/x(K)), where the quantities are those of

Lemma 2. For a similar argument in a slightly different context, see [2].

4. Construction: We preassign the quantities K, H, then determine a sequence

of values Lj and associated functions gj, h; (j =0, 1, 2, ---) such that, by Lemmal,

’ 1
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[~o]
where 2. nj'l <. Then we define the function £(x, y) by
Jj=0

fx,y)=0 (x<0),
_1 -1 3 _ ) ' -  h. . . - i ..
f(x, y) = Ly F(Lyx - j), Ly - [Lyy], Ly, K, H, g, hy) G<x<j+1;§=0,1,2, )

THEOREM. The surface defined by t = f(x, y) is of hyperbolic type.

To prove this result, it is enough to show that the surface admits a quasicon-
formal mapping onto a plane domain of hyperbolic type. Such a mapping is con-
structed so as to be the identity on the points for which x < 0. By Lemma 3, the
portion of the surface over j < x < j+ 1 admits a quasiconformal mapping onto a
vertical strip, of width less than nj!, such that the boundary points of the surface
correspond to boundary points of the strip with the same value of y. When these
mappings are combined to give a continuous mapping of the surface, its image will
be a domain in the half-plane x < ZJ‘.";O nj-l. Since we have used a fixed value of K,
and since the mapping is quasiconformal, apart from isolated vertical lines, the en-
tire mapping will be quasiconformal.

It is clear that the construction can be modified in numerous ways.

Further the existence of a hyperbolic surface with f(x, y) real analytic in x, y
can be shown. This remark must be regarded as well known, since at the Bombay
Conference on Function Theory (January, 1960), four or five people remarked that it
could be proved by the Whitney approximation theorem [6], no further details being
given. Actually the full force of this result is not required for the proof. Indeed, if
two parametric surfaces, sufficiently differentiable, with metrics

Edx2 + 2F dxdy + Gdy?, E'dx? + 2F' dxdy + G' dy?
are put into correspondence by relating points with the same parameter values
(%, y), the mapping will be quasiconformal if (E'G - 2F'F + EG')/JJ' is bounded,
where J, J' are the Jacobians (EG - F?)!2, (E'G' - F'?)'2, Now let f(x, y) be in-

finitely differentiable, with the corresponding surface hyperbolic, and let f~(x, y) be
real analytie, with

'fX(X, Y) - fx(X, Y)[ < %’9 |fy(x7 Y) - fy(xa Y)I <_;'

for all points. The natural metrics on the corresponding surfaces are given as
above with

E=1+f% F=ff, G=1+f°,
E'=1+1, F=Lf, G&=1+f1;,
- 2, f2y1/2 - T2 F2\1/2
I=@+2+DV2, 3=+ 2+ Y2
The above criterion for quasiconformality then requires the boundedness of
2, ¢2  F2, T2, (F s 2
2+ £+ fy+ 2+ fY+ (fxfY - fyfx) ,

2 2\1/2 72  F2\1/2
e t2e D2+ T2+ 7D
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which is not larger than
2 2 w2, 72 2% 2 27 2
2+ £+ fY+ £+ fy+ ny(fx -f)%+ 2fx(fY - fy) .

2 2\1/2 T2 T2\1/2
(1+ 12+ 2)1/2(1 4 F2+ T2V

If we write fi + flzf = M?, this last quantity is not larger than

1 1 1_2
2E+§'M+ 2‘2‘M

1+ M?)L/2 (max(l, M? ——;-M+ 1))1/2’

a quantity which clearly has a bound independent of M. Thus the surface correspond-

ing to f(x, y) is also hyperbolic.
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