DIAGONAL FORMS OF ODD DEGREE OVER A FINITE FIELD

James F. Gray
1. A PROBLEM

Throughout this paper, k is a finite field of qf elements, k* is the multiplicative
group of nonzero elements of k, and kP the set of p-th powers in k*.

The literature shows the existence of nontrivial zeros in k of each of the follow-
ing forms (here p denotes an odd prime):

(1) a; xi’ +a, xg + a, xg (a; € k),
(2) alxll)+a2x1£+---+apx§ (a, €ek; p>3),
(3) a; xJ + a, x5 + ---+ap_1xg_1 (a; € k; p > 5).

In particular, Lewis [2] established the existence of zeros for (1), and the author [1,
Theorems 5, 8] for (2) and (3).

Without change, the proofs for (2) and (3) extend in addition to all odd positive
integers p relatively prime to qf - 1. The question naturally arises whether or not
-a restriction to higher values of p would permit further improvements. More pre-
cisely, for a fixed odd positive integer p, either itself prime or relatively prime to
qf - 1, what is the maximum value of t for which

(4) a; x5 + a, x5 + - + ap_txg_t (a; € k)
has a nontrivial zero in k? Since (4) is solvable with t = 0 by (2), and since t is

obviously bounded above by p - 2, such a maximum value exists.

This paper proposes the following estimate of t (notation: [x] is the greatest
integer not greater than x).

THEOREM A. If k is a finite field of ¢ elements, and p is an odd positive in-
teger, eithev prime or relatively prime to ot - 1, then (4) has a nontvivial zevo in k

for t=1t({p) =[2Vp + 2] - 4.

Note that t(3) = 0 and t(5) = 1, in agreement with results (2) and (3) above. Fur-
ther, for p = 1, although t(p) = -1, the theorem is true as stated, by inspection.
Henceforth, then, we shall consider only p > 3.

2. A REFORMULATION OF THE PROBLEM

A few simple observations will suffice to show that Theorem A is a consequence
of

THEOREM B. If k is a finite field of qf elements, if p is an odd prime such
that p|qf - 1, and if dkP is a generator of k*/KP (k* the multiplicative group of k;
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kP the p-th powers in k*) so chosen that 1+ d £ kP and 1 + d ¢ dkP, then for
t=[2Vp + 2] - 4 the form

0 1 -1
(5) e d xg + ey d x]f + e+ €p da’ Xg-l

has a nontrivial zevo in k, wheve
0 ({eT={i),ip i}, 2<iyj<ip <+ <ig=p-1),
(1 (i€N0=P-T,P={0,1,2,"',p-1}),

and wheve the initial block {eg, €1, .oy eil-l} of nonzevro elements has a maximal
length among the blocks of consecutive nonzevro elements in {eg, e;, -, ep-1 }-

First of all, it may be assumed that none of the coefficients in (4) is zero, for
a; = 0 implies an obvious solution x; = 1, x; = 0 (j # i). Further, it may be assumed
that no two coefficients a; and a; belong to the same coset of k*, modulo kP, for

then a“i1 a;= aP for some nonzero element a in k, and x; = a, X;= -1, x,=0

(i# h# j) provide the obvious solution. Third, it may be assumed that p is an odd
prime and that p]qf - 1; for otherwise (p, qf - 1) = 1 and kP = k*, all coefficients
lie in the same coset modulo kP, and the above solution applies.

The factor group k*/kP is cyclic of order p, and it is generated by any coset
other than kP itself. Thus for any element d € k*, d ¢ kP, the cosets of k*, modulo
kP, are {d kP} (0 <i<p-1), and (4) may be rewritten in the form of (5), with
exactly t zero coefficients.

Now consider the coefficients e; d of (5), written counterclockwise in cyclic
order; there is a maximal block of consecutive nonzero coefficients, of length i,,
say, and beginning with d¥, say. Multiplication by dP-* preserves the cyclic order
of the coset representatives, preserves the relative location of the zeros, and after
renumbering of the e’s, yields

0 1 i.-
egd ,e;d, -, eil_ld1

1

as a maximal block of consecutive nonzero coeifficients, while ep.-1 dP-! = 0. Hence
multiplication of (4) by dP-* (which does not affect the existence or value of its
zeros) enables us to rewrite it in the desired form.

Since t=[2Vp + 2] - 4 < (p - 1)/2 for p > 1, it follows that p - t > (p + 1)/2 + 1,
and there must be at least two consecutive nonzero coefficients remaining in (5);
hence ¢, =e; =1 and 2 <i,.

Further, it is readily shown [1] that d may be chosen so that 1 + d £ kP and
1+ dg dkP.

Let W be the set of nonzero elements of k* which are of the form zP - 1
(z € k*). Then the number of elements of W is (qf - 1)/p - 1. Let W-! be the set
of inverses of elements of W, and let V = kPUWUW -1, Then, if p > 3, V has at
most

- - f_ -
.g_f_ﬁ__l_*_z(gf_p_l_l) =_3_g__%).__3.<qf_1

elements. Now choose d to be one of the elements of k* not in V. Clearly d and
1+ d are not in kP and, since V is closed under the operation of taking inverses,
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d™! is not in V. Further 1 + d is not in dkP; for if it were, (1 + d)/d =1 + d?
would be in kP, and d~! would be in W and consequently in V, contrary to fact.

Hence 1+ d=d°aP for some i; (2 <i, <p - 1) and for some a in k which must
be nonzero, for otherwise d = -1 € kP,

Now let T = {ije;=0}. Then T = {ij, ip, -5, it} @<i <iz<-<ig=p-1).
Hence (4) either has an evident solution, or it can be rewritten to satisfy the hypo-
theses of Theorem B. Hence, to establish Theorem A, we need only complete the
proof of Theorem B.

3. A USEFUL NOTATION

The roles of the lengths and placements of blocks of zero and nonzero coefficients
suggests the following terminology which, in addition to supplying the mechanism for
proving Theorem B, may be useful in further extensions.

Our concern is now with naturally ordered subsequences of the ordered sequence
P=1{0,1,2, -, p - 1} —in particular, with the index set of nonzero coefficients in

5,
T={iy, iy i @<i;<i< <ig=p-1),

and with N, =P - T.

By the length of a sequence is meant the number of elements in the sequence. If
A is an ordered subsequence of P, a distinguished sequence in A is an ordered sub-
sequence 1ji, j2, j3, ***5 iny Of A such that i) jy41 -jr =1 (1 <r <n - 1), and
ii) jn+ 1 £ A. o

Distinguished sequences in A will be called A-sequences. It has been noted that
the initial N,-sequence {0, 1, 2, ---, i; - 1} has maximal length among the Ng-
sequences.

Let
N;= {i € TI i initiates a T-sequence of length j} ,

and let us, by convention, say that if i € N, (that is, i ¢ T), then i initiates a T-
sequence of length zero.

Since p is finite, there exists a unique integer c¢ such that N.# @, N 41 =0. If
T itself is void, our convention yields ¢ = 0. The sets Ny, N,, ---, N, partition P.

A terminal T-sequence is one which contains i;=p - 1.

[Example. If p=19 and T = {4, 5, 6, 7, 13, 17, 18}, the family of T-sequences
consists of {7}, {13}, {18} (of length one), {6, 7}, {17, 18} (of length two),
{5, 6, 7} (of length three), {4, 5, 6, 7} (of length four); {18} and {17, 18} are
terminal T-sequences; N, = {0, 1, 2, 3, 8, 9, 10, 11, 12, 14, 15, 16}, N, = {7, 13, 18},
N, =16, 17}, N;= {5}, N,={ 4}, Ny =0 and c = 4. The initial N,-sequence is
{0, 1, 2, 3} and has length four.

We say that b can appear effectively at location i in (5) if b = d* aP for some
a € k* and some i € N,,.

Recall that 1 + d=d®aP (2<ip<p-1, a € k¥).
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If iy € Nj, then i, + j is in N, and i, + j < p with equality holding only if i, be-
longs to a terminal sequence. Then

@+ a* = ¥ + @) = d’daP = a* 'a®

and dJ + @1 appears effectively at location iy + j when iy + j < p and at location 0
when i, + j = p, since then d®™aP = 1 (da)P.

One additional assumption will now provide a solution. Let it be assumed that
the initial Nj-sequence has length at least ¢ + 2, in other words, that it is
{0, 1,2, .-, c+ 1, -.-} . Then, since j < c, we see that j and j + 1, as well as
iy + j, belong to N, and hence xj, xj+1, and Xj +j appear effectively in (5). There-

fore - Ej - Ej+1 + aEj +j is a solution of (5), where Er = (xo, X1, ***, Xp-1) With
Xx,=1 and x5 =0 for s #r.
Thus we have established

LEMMA 1. If p is an odd prime, and if ¢ is the maximum number of consecu-
tive zevo coefficients in (5), then (5) has a solution in K, nontrivial in the p - t
effectively appearing vaviables, provided that c + 1 < i, (in other words, provided
the first c + 2 coefficients are nonzevro).

The next lemma is readily obtained.

LEMMA 2. If t is chosen so that t + 4 < 2Vp + 3, and if c is the maximum
numbey of consecutive zevo coefficients in (5), then at least the fivst c + 2 coeffi-
cients in (5) arve nonzevo (that is,c + 1 < i,).

We note that e, - 1 = eit = 0, so that the presence of t zeros among the coeffi-

cients of (5), with ¢ of these zeros consecutive, leaves at most t - ¢ + 1 separated
blocks of consecutive nonzero coefficients. Suppose that the maximal length of these
is less than c¢ + 2. Then we have, as the maximum possible number of nonzero coef-
ficients, (t - ¢ + 1)(c + 1) > p - t. But simplification of this inequality yields

(7 c2-tc-1-2t+p<0.
In (7) the quadratic form in ¢ has discriminant
(8) t2+ 4+ 8t - 4p

and has a real zero if and only if t? + 4 + 8t - 4p > 0, that is, (t + 4)2 > 4(p + 3).
Since this inequality contradicts the hypothesis on t, we conclude that for

t+ 4 < 2vVp + 3 the initial (maximal) block of consecutive nonzero coefficients has
length at least ¢ + 2 (thatis, ¢+ 1 <i,).

Theorem B now follows, since, for t = [2Vp + 2] - 4, we have t+ 4 < 2Vp + 3, and
Lemma 2 applies, guaranteeing the hypotheses of Lemma 1, which in turn guarantees
the desired solution of (5).

There is no weakening of Lemma 2 in replacing the condition t+ 4 < 2vp + 3 by
t+ 4 = [2Vp + 2], since it is an elementary fact that the maximum integral value of t
less than 2Vp + 3 is precisely [2Vp + 2] - 4.
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4, A MORE GENERAL FORM OF THEOREM A FOR PRIMES
THEOREM A*. If k is a finite field and p and p, are odd primes (p > p,), then
(4) has a nontrivial zevo in k for t = t(py) = [2Vp, + 23 - 4.

This follows immediately from Theorem A, since t(p) is a nondecreasing func-
tion and p - t(p) < p - t(py) for p > p,. But Theorem A establishes the desired solu-
tion for (4) in p - t(p) variables and so, a fortiori, for p - t(p,) variables.

5. COUNTEREXAMPLES

Since there are no nontrivial zeros for x}+ 2x} in k = GF(7) and for x5 + 2x3 + 4x3
in k = GF(11), the values t(3) = 0 and t(5) = 1 are best possible. However, it seems
improbable that the given value of t is best possible for forms of prime degree greater
than 7.

In fact, it still remains an open question whether t(7) = 2 is best possible; for the
simple type of counterexample given above fails to apply to four seventh powers.
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