p-ADIC TRANSFORMATION GROUPS

Chung-Tao Yang
1. INTRODUCTION

The present paper is motivated by considerations of the question whether a p-
adic group can act effectively as a topological transformation group on a manifold.
Our purpose is to study the topological transformation groups (G, X) in which G is
a p-adic group and X is a locally compact Hausdorff space. We prove that if X is
of homology dimension not greater than n (with respect to reals modulo 1), the
homology dimension of the orbit space X/G is not greater than n + 3. If in particu-
lar X is an n-dimensional manifold and G acts effectively on X, then the homology
dimension of X/G is actually equal to n + 2.

From our result it is easy to verify the following known theorem. If G is a p-
adic group (respectively, a p-adic solenoid group) acting f7eely on an n-dimensional
manifold X, then the orbit space X/G is of dimension either n + 2 (respectively,
n+ 1) or «. It remains to be seen whether our results can be used to prove the
well-known conjecture that a p-adic group can not act effectively on a manifold.

In proving our results, we make extensive use of a modified special homology
theory of Smith in which reals modulo 1 are used as coefficients. For any compact
Hausdorif space X on which a prime-power order cyclic group or a p-adic group
acts, special homology groups are defined and several exact sequences are estab-
lished.

2. COVERINGS

Let X be a space, and A a subset of X. An open covering of A in X is a col-
lection A of open subsets of X such that every U € A intersects A and such that the

union U{U| U € A} contains A. A closed covering of A in X is a collection of

closed subsets of X the interiors of which form an open covering of A in X. By a
covering we mean either an open covering or a closed covering.

Let A and p be coverings of A in X. If every member of u is contained in
some member of A, we say that p 7efines A. For every V € u, the star of V in pu,
denoted by (V, p), is defined to be the union of the members of y which meet V. If
for every V € u, (V, p) is contained in some member of A\, we say that p star-
refines A.

(2.1) Let X be a compact Hausdorff space, and A a closed subset of X. Then,
for every open covering A of A in X, there exists an open covering p of A in X
star-refining A.

(2.2) Let X be a normal space, and A a closed subset of X. Let @ be an open
covering of A in X. Then for every finite closed covering A = {Fj, ---, Fmm} of A
in X refining o there exists an open covering p = {U1, e, Ut of A in X refin-
ing a such that every F; is contained in Uj; and such that Fijn--n Fij # P if and

only if Uilﬂ oo nUij + 0.
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Let X be a space, and let T be a homeomorphism of X onto itself. A subset A
of X is T-invariant if T(A) = A. Let A be a T-invariant subset of X. A covering
A of A in X is T-invariant if for every U € A, T(U) € A.

(2.3) In (2.1) and (2.2), if both A and X are invariant under a periodic map T of
X, then we can claim the existence of a T-invariant pu.

Throughout this paper we let p be an arbitrary but fixed prime number, and for
any nonnegative integer i, we let pi be abbreviated by [i].

Let X be a compact Hausdorff space, and let T be a periodic map of X such
that for some integer r > 0, rlr ] is the identity map. Then the fixed point set of
T[i], denoted by F;, is compact and T-invariant. Moreover,

Foc:- CF,.=X.

Notice that we do not exclude the possibility that Tli] is the identity map for some
integer i less than r.

~

Let A be a T-invariant closed subset of X. A covering A of A in X is called
special if the following conditions are satisfied.

1) A is finite and T-invariant.

2) For every U € X there exists an integer t(U) > 0 such that T[t(U)](U) = U and
the T*(U)- (that is, the closures of the T*(U)) for i=0,-.-,[t(U)] - 1 are mu-
tually disjoint.

3) Let U € A and let s be a positive integer. If there exists a V € A such that
VNU=#p, TV)NU# P, and VNT V) = @, then T3(U) = U.

4) For any Tlil-invariant members Ug, +-+, Uq of A with UpN---NU, # P,
UpNn--NUNANF; # 0.

Notice that if r = 1, this definition of special covering is the one used by Smith in his
special homology theory.

(2.4) LEMMA. Let X be a compact Hausdorf{ space: let T be a periodic map of
X such that for some nonnegative integer r, Tl is the identity map; and lel A be a
T-invariant closed subset of X. Then every covering of A in X is refined by a spe-
ctal open covering of A in X and is refined by a special closed covering of A in it-
self.

Proof. Let X be a covering of A in X. We first show that A is refined by a
special closed covering p of A in itself. Since our assertion is the existence of a
special closed covering p of A in itself which refines the covering {UﬂAl Uenr}
of A in itself, we may assume that A = X,

Let F; be the fixed point set of [i] (i=0,--,r),and let ¥_, = . We construct
by induction a finite sequence

By =PCpgC iy

in which every p; is a special closed covering of F; in X refining A.

Suppose that for some integer t (0 <t<r) u_;1=0C po C -~ C pt_1 has been
constructed. Let

Xe=Fe- U{v®|Uep},
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where U © means the interior of U in X. Clearly, X, is compact and T-invariant.

For any x € X4, there is a neighborhood B(x) of x contained in some member of
A such that

@) TltBx) = Bk),
(ii) the T¥B(x))~ for i= 0, ---, [t] - 1 are mutually disjoint, and
(iii) any U € p;_; intersects B(x) if and only if x € U.

Then 8 = {B(x)| X € Xt} is an open covering of X; in X. By (2.1) there exists an
open covering ¥ of X; in X which star-refines a star-refinement of .

We take for every x € X; a T[tl_invariant closed neighborhood D(x) contained in
some member of ¥ such that D(T(x)) = T(D(x)) for x € X{. Let S be a finite T-
invariant subset of X; such that {D(x)| x € S} is a closed covering of X; in X. For
every X € S, we let

E(x)=DX)u{y|y €8, DF)ND) + 9} .

It is not hard to show that

p =ty jU{E®)| x € S}

is a special closed covering of F; in X. Hence the sequence p_j =0 C ug C *** C U,
can be constructed by induction. The covering p, is clearly as desired.

Now we show that every covering A of A in X is refined by a special open cov-
ering of A in X, where A is an arbitrary T-invariant closed subset of X. From
our result above, the open covering @ = {U°| U € A} is refined by a special closed
covering u = {Fy, --, F;n} of A in itself. By (2.2) and (2.3), there exists a T-
invariant open covering v = {Vl, vee, Voot of A in X refining @ such that every V;
contains F'; and such that Vil n-... ﬂVij # P if and only if Fi; N ﬂFij + 0. Itis

easily seen that v is a special open covering of A in X refining A.

3. HOMOLOGY DIMENSION

Let X be a locally compact Hausdorff space. If there exists a least integer
n > -1 such that the Lebesgue covering dimension of every compact subset of X is
not greater than n, we say that X is of dimension n. Otherwise, we say that X is
of dimension «. The dimension of X is written dim X.

Whenever (M, N) is a compact pair, Hi (M, N) denotes the kth Cech homology
group with reals modulo 1 as coefficients. If there exists a least integer n > -1
such that whenever (M, N) is a compact pair with M c X, Hy(M, N) = 0 for all
k > n, we say that X is of komology dimiension n. Otherwise, we say that X is of
homology dimension «. The homology dimension of X is written hd X.

(3.1) Whenever X is a locally compact Hausdorff space, hd X < dim X, and the
equality holds if dim X is finite [1].

As a consequence of (3.1) we have

(3.2) A locally compact Hausdorff space of homology dimension n is of dimen-
sion either n or «.

The following results can be found in [2].
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(3.3) Let X be a locally compact Hausdorff space, and A a closed subset of X.
Then

hd X = max (hd A, hd(X - A)}.
(3.4) In a locally compact Hausdorff space of homology dimension n, there exists
a point x such that every neighborhood of x is of homology dimension n.
(3.5) If X is a locally compact Hausdorff space of homology dimension n and R
is the real line, then

hd (XX R) =1+ hd X.

As a consequence of (3.3) and (3.4) we have

(3.6) If X is a locally compact Hausdorff space of finite homology dimension,
and G is a finite group acting on X, then the orbit space X /G is of the same homol-
ogy dimension as X.

Proof. Let Gx, for every x € X, be the isotropy subgroup of G at x. For every
subgroup H of G we denote by Xy the subspace of X consisting of all the points x
with Gy conjugate to H. Then Xy is locally compact and G-invariant (that is, T-
invariant for every T € G). Since the projection of X onto X/G defines a local
homeomorphism of Xy onto Xp/G, it follows from (3.4) that hd Xy = hd Xy/G.
Hence we infer from (3.3) that

hd X/G = max hd Xp;/G = max hd Xj; = hd X.

4. SPECIAL HOMOLOGY GROUPS
Unless the contrary is stated, we use the group $ of reals modulo 1 as the co-=
efficient group.

Let K be a finite simplicial complex, and let T be a periodic simplicial map of
K such that, for some nonnegative integer r, TL*! is the identity map. Again we do
not exclude the possibility that Tlil is the identity map for some nonnegative integer
i less than r.

Let C(K) be the group of k-chains of K based on ordered simplexes. Let
[r]-1
= 27

i=0

o T, 7=1-T

be endomorphisms of Cy(K), and let p and p' stand for o and 7, respectively,
or vice versa. Denote by CQ(K) the kernel of p: C(K) — C, (K). Since 9p = pd,
BCI‘()(K) - Cle—l (K), and therefore we may define groups

Zﬁ(K) =Z, (KN cﬁ(K) ,
BP(K) = 9CP, , (K),

HP(K) = ZP(K)/BP(K) .
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With CP(K) = p'C(K) in place of C{(K), we similarly define groups ZR(K), BA(K),
HP(K). Both HO(K) and HR(K) are called special homology groups of K with re-
spect to T.

Since pp'= 0, CR(K) c CA(K). The inclusion homomorphism ¢t: (_ff{’(K) — CR(K)
induces a homomorphism

ty: HY(K) — HP(K).

Remark., If T is of prime order p (that is, r = 1) and the group of integers
modulo p is taken as the coefficient group, then HO(K) is the special homology group

in the sense of Smith. If moreover the fixed point set LL of T is a sub-complex of
K, then ﬁﬁ(K) is the relative special homology group H,(K, L) in the sense of
Smith, and ¢, maps H‘l’((K) isomorphically onto a direct summand of H‘f{(l_{).

Let w: Cﬁ(K) — Ck(K) be the inclusion homomorphism. Then the sequence

0 - cR® 8 cur & K — 0

is exact. Hence a standard argument yields
(4.1) The sequence

p' 0 P Px _p!

is exact, where w, and p, are induced by w and p', respectively, and
=0y _, qP'
(K - B (K
is the appropriate boundary homomorphism.
(4.2) C](K) = C](K), and hence t,: }—I};(K) — H](K) is an isomorphism onto.

Proof. Every k-chain of K can be uniquely written

m [t(ui)]-l .
i=1 j=0 J

where uj, *--, u,, are ordered k-simplexes of K such that whenever i # i' and j is
any integer, ujr # T?u;, where every t(y) is the smallest nonnegative integer such

that T[t(“i)](ui) = u;, and where a5 € $. If a € C'{((K), then the Q35 for
i=0, -, [tl -1,
are all equal. Let 8; be an element of § such that
[r - t(u)]B; = a;q.-

Let
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Then ob = a, and hence a € C{(K). This proves that CL(K) c CL(K). But CL(K) is
contained in CJ(K). Hence C[(K) = CI(K).

(4.3) If e is an element of Hy(K) which is left fixed by the induced homomorph-
ism Tx: Hk(K) — Hk(K)’ then

Proof. Let c by a cycle in e. Since T,e = e, the cycles ¢, Tc, -, T[r]‘lc are
homologous to one another. Hence wtoc = o¢ is homologous to [r]c.

Now we let the simplicial complex K satisfy the following condition. If u and v
are vertices of K and s is an integer such that TSu # u but (u, v) and (TSu, v) are
ordered l-simplexes of K, then T®v = v. Notice that if X is a compact Hausdorff
space and T is a periodic map of X such that Tlr] is the identity map, then for
every special open covering A the nerve K, of A together with the periodic simpli-
cial map T) of K, defined by T satisfies this condition.

From this condition it is easily seen that the fixed point set of T[i], for
i=0, -, [r], is a subcomplex L; of K. Moreover

IyclLy c---cL_.=K.

Let G be the group generated by T. Under the condition above, the orbit space
K/G is a simplicial complex and the projection 7 of K onto K/G is a simplicial
map. Moreover, every L; is G-invariant, and 7(L;) = L;;/G is a subcomplex of
K/G.

Whenever t is a positive integer we denote by €+ the cyclic subgroup of ¥ of
order t. Let Cy(L;/G; @:[r—i]) be the subgroup of k-chains of L./G with coeffi-
cients in €[, ;] (i=0, ---, r - 1). Then

r-1

Di(K) = & Cylliy/G; C[, ;]
i=0

is a subgroup of C(K/G) with 9D (K) C D, _;(K). Let I, (K) be the quotient group
of the kernel of 9: D (K) — Dy _;(K) by the image of 3: D), (K) — K, (K). The fol-
lowing is immediate.

(4.4) If r = 1, then I(K) = Hi(L; €,), where L = L, is the fixed point set of T
and Hy(L; €) is the kth homology group of I. with coefficients in L.

Since the sequence

-0 L (s
0 — C(K) = CUK) = D,_(K) — 0

is exact, it follows that
(4.5) The sequence

—C T* o bx -
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is exact, where t, and w, are induced by the homomorphisms t and w, respec-
tively, and where I, (K) — ﬁg_ 1 (K) is the appropriate boundary homomorphism.

Whenever u is an ordered k-simplex of K/G, we let i be an ordered k-simplex
of K with 7l = u. Then there exists a homomorphism «: Cy(K/G) — CI(K) defined
by

Ku=ou.
Since the diagram
CL(K) C,(K)
Az
C,(K/G)
is commutative, it follows that
(4.6) The diagram
_ Ox
BT (K) H, (K)
N/
H, (K/G)

is commutative, where o, 7., ¥, are induced by o, 7, K, respectively.

(4.7) Whenever e € H, (K/G), 7, w, t Kk, e =[r]e.

Proof. It follows from the definition of « that if u is an ordered k-simplex of
K/G and 1 is an ordered k-simplex of K with 7ii = u, then

TWLKU = TwLoU = wou = [r]u.

Hence our assertion follows.

Let 6: D{K) — C(K/G) be the inclusion homomorphism. 'Since the sequence

0 — D(K) & cx/a) & CI(K) — 0

is exact, it follows that

(4.8) The sequence

vee — Ik-l(K) — Hﬂ(K) — Hk(K/G) — Ik(K) — ...

is exact, where 6, and k, are induced by 6 and k, respectively, and where
H](K) — I__,(K) is the appropriate boundary homomorphism.-

Now let us establish these results for compact Hausdorfi spaces. Let X be a
compact Hausdorff space, and let T be a periodic map of X such that for some non-
negative integer r, rlr] is the identity. As before we do not exclude the possibility

that Tt'l is the identity map for some nonnegative integer i less than r. Let G be
the group generated by T, and let 7 be the projection of X onto the orbit space X/G.
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Whenever A is a special open covering of X, we denote by K, the nerve of A, by
T) the periodic simplicial map of K defined by T, and by G) the group generated

by Tp). Then T ] is the identity map. Hence for K, and T) we can construct
groups and homomorphisms as appeared in (4.1) to (4.8). We shall let A) be one of
these groups, and hy: A) — B) one of these homomorphisms.

Let ¢ be a special open covering of X refining A, and let Ty be a projection
of K“ into K, suchthat m, Ty = Txmyy. If Ay is the corresponding group of Ay
for p, then m), induces 2 homomorphism 1y 4: A, — A) independent of the choice
of my,. Hence {Aj, ﬂhu*} is an inverse system, and therefore lim A, is defined.

Let -

HY(X) = lim HY(K)),  HR(X) = lim HY(K)),
L(X) = lim I (K)).

Hﬁ’{(X) and ITI"})((X) are called special homology groups of X. Notice that it follows
from (2.4) that

H (X) = lim { (K)), HJ(X/G) lim H(K,/G)).

If h,: A, — By is the corresponding homomorphism of hy: Ay — B) for u,
then hymyyy = Tauxhy. Hence {h)x} gives a homomorphism of lim A, into
lim B). Let —

Psx=1Pxsx}> tx={txs}, 2and so forth.

From (4.1) to (4.8) we can easily prove
(4.9) LEMMA. The sequence

! W

o —p Py * ot
= Hk-l(X) - Hk(X) “ Hk(X) — Hk (X) « ---

is exact.
(4.10) LEMMA. The homomovphism L. ﬁ'{((X) — H"l'((X) is an isomorphism onto.

(4.11) LEMMA. If e is an element of Hy(X) such that T e = e, then
Wy ly,0,e=[rle.

(4.12) LEMMA. The sequence

—_ T ™ —
cee — Hf(_l(x) = L(X) < H_i(x) — H(X) « -

is exact.

(4.13) LEMMA. If r =1, then I1(X) = Hy(F; Gp), wheve F is the fixed point set
of T and H(F; ) is the kth Cech homology group of F with coefficients in G,

(4.14) LEMMA. The diagram
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Ox

H(X) Hy (X)

K,;\ /77*

H(X/G)

is commutative.
(4.15) LEMMA. Whenever e € Hi(X/G), n,w, L K, e =[rle. Hence

[r] H(X/G) c 7, Hi(X),

and consequently the quotient group Hk(X/ G)/m4 Hi(X) is isomovphic to the limit-
group of an inverse system of finite abelian groups with elements of ovder p*S
(s < 1).

(4.16) LEMMA. The sequence

0
c = LX) — H (X) * H (X/G) < I (X) «

is exact.

(4.9), (4.12) and (4.16) follow from the fact that the limit-sequence of an inverse
system of exact sequences of compact abelian groups is exact.

(4.17) LEMMA. If the fixed point set of rlr-1] is of homology dimension < n,
then 1(X) = 0 whenever k > n. Hence

Ly HU(X) — HU(X), «,:H,(X/G) — H (X

are isomovphisms onto, when k > n, and they are isomovphisms into when k = n.

Proof. We shall prove that for any special open covering p of X there exists
a special open covering v of X refining p such that the homomorphism

[J.V*. Ik(K ) - Ik(K )

induced by a projection my; is trivial.

Let F; (i=0, -, r) be the fixed point set of T[i]. Then Fyc - c F, = X, and
every F, 1s a closed subset invariant under T. Since, by hypothe51s F._; isof
homology dimension < n, it follows from (3.3) and (3. 6) that F;/G, for i=0, ---, r - 1,
is of homology d1mens1on <n.

Whenever A is a special open covering of X, we denote by K, the nerve of A, by
T) the periodic simplicial map of K, defined by T, by G) the cyclic group generated
by T,, and by L;, the fixed point set of T£1 . Then L;, is a T)-invariant subcom-
plex of K, and Li) /G, is a subcomplex of the simplicial complex K /Gy

From (2.4) it is easily seen that for each open covering o of F;/G (0 <i<r)
there exists a special open covering A of X such that {(UNF;)/G| U € A} refines
a. We infer that

lim H(L;) /G; Gp) = Hi(Fi/G; Gp),
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where Hy( ;&,) means the kth (Cech) homology group with ¢, as the coefficient
group.

Let p be a given special open covering of X. Since F;/G is of homology dimen-
sion < n, there is a sequence of special open coverings of X,

Ar——- Mu, Ar-ls "ty A’l’ AO =V,

such that every A;,; is refined by Aj;, and such that the homomorphism of
Hk(LiAi/Ghi; @p) into Hk(Li7\1+1/G>ti+1; (s:p) induced by a projection LoV of

K)\i/Ghi onto Kli+1/G7‘i+1 is trivial for k > n, where i =0, .-, r - 1. Whenever
0<i<j<Lr -1, welet mj5= TR A Ay

Let
0) - (0 0
O = ) 4 et o)

be an arbitrary element of Dk(KAO)a with

ac(® = o ,

) € Cllip fGrgs €, ;P  @=0, 7= 1),
Then [r - l]c(()o) =[r - 1]c(©® € Zk(LO)LO/GAO; (Sp), and it follows that

" wyolr - 1]e{%) = o[r - 1]a,

for some ag € Ck+1(L07L1/GA13 ,@[r]). Let

c(ll) =q..cl0) da,+

(0)
100 0€1 7>

1

cgl) = nlocgo) i=2,-,r-1),

1) _ 0
c( = wloc( ) - aao.
Then

Mo ey y e
1 r-1

c(1) ﬁloc(o) € 2D, (KAI) ,
and
cfV e Cullipy /Gy i Cs])  A=1, o, 1= 1).
Repeating this process, we can construct, for every j=1, ---, r,
c(j) = c(jj) 4 eee 4 c:(rjzl € Dk(K?\j)

such that
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C(J) - ﬁjo C(O) € aDk.[_l;(KAJ) ’

cgj) € Ck(Li}‘\j/ G;\j; C[r_i]) i=j, -, r-1).

Since c¢(7) = 0, it follows that

(0)
WJU-VC € aDk+1(Ku) .

Hence the homomorphism of I;(K,) into Ik(Kp.) induced by a projection
Tuyt Ky/Gy, — K, /Gy

is trivial. This completes the proof that I;(X) = 0 for all k > n.

From this result the rest of our lemma is a direct consequence of (4.12) and
(4.16).

(4.18) LEMMA. Assume that X is of homology dimension < n. Then for k > n,
ﬁf{(X) = H.f:(X) = 0 and hence w,: HE(X) — Hn(X) is an isomovphism into.

Proof. By (3.6), X/G is of homology dimension < n, and hence H(X G) = 0 for

k > n. Since the fixed point set of T[r‘I] is a closed subset of X and is conse-
quently of homology dimension < n by (3.3), it follows from (4.17) and (4.10) that for

k> n+ 1, HY(X) = H(X) = 0. Making use of (4.9) and the fact that for k > n, H(X)
and ﬁ17;+1(X) are both trivial, we infer that for k > n, H?{(X) = (l Hence, by (4.17),
HJ(X) = 0 for k> n. Similarly H]  (X) = H]_ (X) = 0. Since H. (X) =0, it follows
from (4.9) that w,: Hﬁ(X) — Hn(X) is an isomorphism into.

5. p-ADIC TRANSFORMATION GROUPS

Let X be a compact Hausdorfi space, and let G be a p-adic group acting as a
topological transformation group on X, where p is an arbitrary prime number.
Let G = G, D G, D --+ be the sequence of open subgroups of G such that when-
ever j > i, Gi/Gj is a cyclic group of order [j - i] (= pi1). Let
h; G/G; —» G/G;, hy G — G/G;

be homomorphisms induced by the identity homomorphism of G. Then {G/Gj h;;}
is an inverse system, and {h;} gives an isomorphism of G onto the limit-group
lim G/G,.

Similarly we let
M52 X/Gy; = X/G;, m:X — X/G

be maps induced by the identity map of X. Then {x /Gi; ﬂij} is an inverse system,
and { ﬂi} gives a homeomorphism of X onto the limit-space lim X/G;.

Let T be an element of G not in G,, and for every nonnegative integer i, let T;
be the coset TG; in G/Gi. Then T; is a periodic map of X/G;, with Tl:] peing the
1
identity map. Hence we can apply all results of the last section to X/Gi with
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respect to T;. Notice that the replacement of T by another element of G - G, only
results in a replacement of T; by one of the generators of the group G/G;.

Since X =lim X/G;, Hy(X) = lim H(X/Gj). With HQ(X/G;) and HP(X/G;) in
place of H(X/G,), we define

HP (%) = lim HY(x/G;), BAX =lim B)(x/G;),

and we call them special homology groups of X with respect to the p-adic group G.
Notice that since 7;; does not induce a homomorphism of Ik(X/Gj) into L, (X/G;), we
are not able to define a group I (X) with respect to G.

Let Wiy, Ligs Tixs Tixs Kixs Tig> O34 D€ the analogues of the homomorphisms w,,

Ly Tur Ogs Kys Ty, 0, in Section 4 for X/G; with respect to T;. Since
WinTijn = Tijx Djx >
{w;,} gives a homomorphism
W, HFI)((X) — H (X).
Similarly, we have homomorphisms
_0' —
T HX - B ®, X - .

SINCe 05y Tijy # T340 iy {O'J-*} does not give a homomorphism of H(X) into ITI;(X).

Also, none of {K;, }, {74}, 10;,} gives a homomorphism.
From (4.9) and (4.10) we can easily prove
(5.1) LEMMA. The sequence

- — H (X) < B(X) T_* H, (X) C«O-’f H' (X) — -
k-1 k k k

is exact,wheve HL(X) — H;_I(X) is the appropriate boundavy homomovphism.
(5.2) LEMMA. The homomovphism L: ﬁ; x) — HL(X) is an isomovphism onto.

(5.1) establishes just one case of (4.9) for the p-adic transformation group G.
Since a corresponding homomorphism o, is not defined for the p-adic group G, we
can not have the second case of (4.9) here. However, we are able to prove a weaker
exact sequence in (5.4) below.

(56.3) LEMMA. If for every nonnegative integer i the stationary point set of Gj

is of homology dimension < n, then whenever k> n, 1 {X/G;) = 0 for all i. Hence
ty: BO(X) — BHO(X) and  k;,: H (X/G) — Hr ,(X/G) ({=0,1, )

** Tk k 1k* k1 k+1 i s Ly ’

arve isomovphisms onto when k > n, and isomovphisms into when k = n.

Proof. The projection, 7;: X — X/G; maps the stationary point set of G;_;
homeomorphically onto the fixed point set of Tgr—l . Hence our result follows from
(4.17).

(5.4) COROLLARY. If for every nonnegative integev i the stationary point set
of Gj is of homology dimension < n, then the sequence
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Ty Dely o
Ho 1 (X/G) o By (%) s B (X) —— iy p(R/G) —— -

is exact, wheve Hy(X/G) — ITI%(X) is the appropriate boundary homomorphism.
Proof. By (4.9), there exists, for every nonnegative integer i, an exact sequence
Tix Yix o =T
A, (X/G; )— H_ 1 (X/Gy) — H (X/G;) — H] ,(X/Gy) — -

Since the stationary point set of G;_; is of homology dimension < n, it follows from
(5.3) and (4.14) that the sequence

wW:, L

H n+ I(X/ G)

is exact, where H; +1(X/ G) — }_If((X/ G;) is the composition

H ., (X/Gy Hp 41 (X/Gy) H,,,(X/G)

-1
Kix _ Ly
H_,,(X/G) —> B, (X/G,) — HUX/G;) — HIUX/Gy).

Hence the limit-sequence, namely our desired sequence, is exact.

6. MAIN THEOREMS

Making use of (4.15) and the fact that every compact totally disconnected abelian
group may be regarded as the limit-group of an inverse system of finite abelian
groups, one can easily show

(6.1) PROPOSITION. Let G be a compact totally disconnected abelian group
acting on a compact Hausdovff space X, and let 1 be the projection of X onto the
orbit space X/G. Then the induced homomorphism w,: H (X) — H (X/G) maps the
identity component of H1(X) onto that of H (X/G). If moreoveyr G is isomovphic to
the limit-group of an invervse system of finite abelian groups whose ovders are
powers of a fixed prime numbey p, then so is H (X/G)/n, H (X), with the same p.

A compact additive abelian group A is called elementary if its identity com-
ponent A° is a finite-dimensional toral group and the quotient group A/A° is finite.

(6.2) PROPOSITION. Let G be a compact totally disconnected abelian group act-
ing on a compact Hausdorff space X. If Hyr(X) is elementary, then theve exists an
open subgroup H of G such that whenever G' is an open subgroup of G contained in
H, the projection of X onto X/G' induces an isomiovphism of Hy(X) info H(X/G').

(6.3) COROLLARY. Let G be a p-adic group acting on a compact Hausdovff
space X. If Hi(X) = 0, then H (X/Q) is isomorphic to the limit-group of an inverse
system of finite abelian groups whose ovders are powers of p.

(6.4) THEOREM. Let X be a compact Hausdovff space, and let G be a p-adic
group acting as topological transformation group on X. Let n be an integer (n > 0)
such that the stationary point set of every open subgroup of G is of homology dimen-
sion < n - 1 and such that H,(X), H,;1(X), and H,,,(X) are elementary. Let d be
the dimension of H,(X), and let ¥ be the maxzmal subgroup of H,, 1(X)/H,.1(X)°
with its ovder being a power of p, where Hn+1(X) is the identity component of

H . 1(X). LetG' be an open subgroup of G such that the projection n: X — X /G
induces an isomovphism 7w, of Hy(X) into H(X/G") for k=n, n+ 1, n+ 2, and such
that every element of G' induces the identity homomovrphism of Hy (X) into itself
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(k =n, n+ 1). Then there exists an exact sequence
0 — K« H_ ,(X/GYV/7H,,,(X) —F — 0,

wherve K is a group having a subgroup isomorphic to Gd If, moveover, the station-
ary point set of every openr subgvoup of G_is of homology dimension less than
max (0, n - 1), then K is isomorphic to

Proof. Let us first observe the existence of an open subgroup G' of G satisfying
our hypothesis. By (6.2), there exists an open subgroup H of G such that for every
open subgroup G of H the projection of X onto X/G' induces an isomorphism of
Hy (X) into Hy(X/G'), for k=n,n+ 1, n+ 2. Let o be 2 finite open covering of X
such that for k = n, n + 1, the projection of Hy(X) into Hy(Ky), where Ky is the
nerve of @, is an isomorphism into. Then there exists an open subgroup G' of H
such that « is refined by a finite open covering B8 of X which has the property that
every V € 8 is G'-invariant. This open subgroup G' of G satisfies our hypothesis.
Notice that if G satisfies our hypothesis, so does every open subgroup of G'.

For the sake of convenience, we assume that G' = G.
By (5.4), there exists an exact sequence
Ty 5 Ty
Hn+l(X/G) - n+1 (X) - Hn+l(X) - Hn+2(X/G) - n+Z(X)-
Since, by assumption, 7,: H(X) — Hy(X/G) is an isomorphism into for k=n + 1,
n + 2, the sequence
=0 ﬂ*
0 — Hyy (X) — Hpypo(X/G) — Hpio(X) < 0
is exact. Hence there exists an isomorphism of ﬁgﬂ(X) onto H (X/G)/m H, ,X).

The symbols Gj, 7;, and so forth used below are the same as in the preceding
section.

Since the stationary point set of every Gj is of homology dimension <n-1,it
follows from (5.3) that

=T
Kix: Hyy1(X/G) — Hyy  (X/Gy)
is an isomorphism onto. If e is an element of H,,;(X) which for every positive in-

teger i is divisible by [i], then there exists a sequence ey, ej, **- in H,,; (X) such
that e, = e and such that e; = [j - ile;, for every i <j. Let

e = Ky, m,e; € HL (X/G)) (=01, ).

Then

t
Tija €] = TijuKjn Mo €5 = M55 05 T4 €
(4.14)

(5 - 1105 M5 mjpey = 03, m 0 = €.

Hence e'= {e!} is an element of H] (X) with w, t.€e = e. Conversely, it can be
seen that every element of w, t, HI  ,(X) is divisible by [i], for every positive inte-
ger i. Hence H,,;(X)/w, H7;1(X) is isomorphic to the maximal subgroup F of
Hm.l(X)/HnJrl(X)0 with its order being a power of p.
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Let K be the kernel of w,: H; x) — Hn(X). By (5.1), the sequence
0~ K~ Hy (%)~ Hyp(X) — Ho(X)
is exact. Using the result just proved, we obtain an exact sequence
0— K< HJ ;(X) « F < 0.

Hence the theorem is proved if we are able to show that there exists an isomorphism
of GY into K or an isomorphism of G9 onto K, according as every open subgroup of
G has a stationary point set of dimension < n - 1 or < max (n -1, 0).

Let E be the limit-group of the inverse system {Ei; fij} indexed by nonnegative
integers, where E;j = Hy(X) for all i, and where, for all j > i, fij maps every ele-
ment e into [j - i]e.

Since
Wij*o-j*ﬂj*e = [] - i]O’i*‘)Tij*'JTj*e = O'i*ﬂ'i_*fij e,

it follows that ¢ = {0;, 7, } is a homomorphism of E into HZ(X). By hypothesis,
the stationary point set of G;_; is of homology dimension < n - 1. We infer from
(5.3) that k;,: H(X/G) — HI(X/Gj) is an isomorphism into. Since

Ty Hp(X) — Hn(X/G)

is assumed to be an isomorphism into, it follows from (4.14) that o 7, = k;, 7, is
an isomorphism into. Hence ¢ is one-to-one.

It is easily seen that the homomorphism w,t, ¢: E — H,(X) maps every element
{ei} into e,, and that the kernel of w, L ¢ is isomorphic to GY. Hence the kernel-
K of w, has a subgroup isomorphic to Gd, because ¢ is an isomorphism into and
L4 is an isomorphism onto by (5.3).

Suppose that the stationary point set of every open subgroup of G is of homology
dimension < max(0, n - 1). Then for every i, k;, is an isomorphism onto. There-
fore we can show that ¢ is an isomorphism onto. Hence K is isomorphic to G<.

Let X be a locally compact Hausdorif Spacé, and let A and B be closed subsets
of X with AD B. Let X U = be the one-point-compactification of X. Then Hp(A, B)
denotes the kP Gech homology group of the compact pair (A Uwo, B Uw).

(6.5) THEOREM. Let X be a locally compact Hausdovff space of homology di-
mension < n, and let G be a p-adic group acting as a topological transformation
grvoup on X. Then the homology dimension of the ovbit space X /G is at most n + 3.
If, moveover, the stationary point set of every open subgroup of G is of homology
dimension< n - 1, then X/G is of homology dimension < n + 2. If, furthermore,
H, (M, N) is an elementary group of dimension> 0 for some closed subsets M and
N of X, with M = G(M) D N = G(N), then the homology dimension of X/G is exactly
equal to n + 2.

Proof. The first part means that for each compact pair (M*, N*) with M* con-
tained in X/G, H,, 4(M*, N*) = 0. Let 7 be the projection of X onto X/G. Let Y
be the one-point-compactification of 7-(M*) - 7—}(N*). Then the action of G on
7~1(M*) defines an action of G on Y, and Y/G may be regarded as the one-point-
compactification of M* - N*. Hence Hy(Y/G) is isomorphic to Hy (M*, N*) for
k> 0.
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Using (3.3), we can easily see that Y is of homology dimension < n. It follows
from the last part of (6.4) that Hn+4(Y/G) = 0. Hence the first part of (6.5) is
proved.

The second part of (6.5) can be proved by the same argument. In order to prove
the last part, we let Y be the one-point-compactification of M - N. Then the action
of G on M defines an action of G on Y, and H, (Y) is isomorphic to H, (M, N),
which by hypothesis is an elementary group of dimension d > 0. By the first part of
(6.4), H,,>(Y/G") contains a subgroup isomorphic to G9, for some open subgroup G'
of G. Hence hd X/G>hdY/G=hd Y/G' > n+ 2.

(6.6) COROLLARY. If G is a p-adic group acting freely on an n-dimensional
manifold X, then the orbit space X/G is of dimension either n+ 2 or .

Proof. Let y be a point of X, and let U be a neighborhood of y homeomorphic
to euclidean n-space. Then there exists an open subgroup G" of G such that

G"y C U. It is easily seen that V = n {gUl g€ G“} is open in X. Therefore the

component X' of V containing y is an orientable n-dimensional manifold. Let G’
be an open subgroup of G' with G'y € X'. Then G' is a p-adic group acting freely
on X'. By (6.5), X'/G' is of homology dimension n + 2. Hence our assertion follows
if we apply results of Section 3.

As a consequence of (3.5) and (6.6), we have

(6.7) COROLLARY. If G is a p-adic solenoid group acting freely on an n- di-
mensional manifold X, then the ovbit space X/G is of dimension either n+ 1 oy .

7. p-ADIC TRANSFORMATION GROUPS ON A HOMOLOGY MANIFOLD

The purpose of this section is to improve results (6.6) and (6.7).

A locally compact Hausdorff space X is said to have the properiy P2($) at a
point x if there exists a neighborhood U of x satisfying the following conditions:

(1) U™ is compact and H (X, X - U) =~ $.

(2) Whenever y € U and V is a neighborhood of y, there exists a neighborhood
W of y, contained in UNV, such that the homomorphism of Hi(X, X - U)
into H (X, X - W) induced by the inclusion map is an isomorphism onto for
k =n and is trivial for k # n.

A locally compact Hausdorff space is said to have the property P*($) if it has the
property PT($) at each of its points. By a khomology n-manifold we mean a con-
nected locally compact Hausdorff space of finite homology dimension having the
property PT($).

In [3] homology manifolds are defined by using dimension instead of homology
dimension. However all results proved in [3] hold for homology manifolds in the
present sense. Hence we have

(7.1) Let M, N be closed subsets of a homology n-manifold with M D N. Then
H,(M, N) # 0 if and only if M - N contains a non-null open set.

(7.2) Let X be a homology n-manifold, and let A be a closed subset of X. A is
of homology dimension n if and only if the interior of A is not null. A is of homol-
ogy dimension n - 1 if and only if A is nowhere dense and there exists a neighbor-
hood U of a point x of A such that, whenever V is a neighborhood of x contained
in U, V - A is not connected.
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(7.3) If X is a homology n-manifold, H_(X) is isomorphic to § or to ¢,.

A homology n-manifold X is called ovientable if Hy(X) is isomorphic to $. A
homeomorphism of a homology n-manifold X onto itself is said to preserve the
ovientation of X if it induces the identity homomorphism of H,(X).

(7.4) Let T be a periodic transformation on a homology n-manifold X, and let
F be the fixed point set of T. Then F is of homology dimension <n - 1. If X is
orientable and T preserves the orientation of X, then F is of homology dimension
<n - 2.

Let X be a homology n-manifold, and let G be a p-adic group acting effectively
on X. Let Gj; be the open subgroup of G with G/G; of order [i], let F; be the sta-
tionary point set of Gj, and let Q; be the interior of F;. Notice that every F; isa
proper closed subset of X.

(7.5) LEMMA. Q; - Q;_1 is open.

Proof. If our assertion is false, then there exists a point y € Q; N(Qi-1 - Qi-1)-
Let Y be the component of Q; containing y, and let T be an element of G;_; - G;.
Then Y is a homology n-manifold, and T is a periodic transformation on Y leaving
every point of YN Q;_; fixed. By (7.4), T must be the identity transformation on Y,
so that Y € Q;_1, contrary to our assumption that y € Q;_1 - Q;_1.

Now suppose that X is orientable and that every element of G preserves the
orientation of X. Let M be a G-invariant closed subset of X, let E; = F;NM, and
let U; be the interior of E;. It follows from (7.5) that V; = U; - U;_; is open.

(7.6) LEMMA. Viy1 N Fy is of homology dimension < n - 2, and for every com-
ponent C of Vi1, C - C is not contained in Fj.

Proof. The first part is a direct consequence of (7.4).

Suppose that C is a component of V;+1 with C - C contained in F;. Since
CNF; is of homology dimension < n - 2, it follows from (7.3) that G;(C - F3j)/G; is
connected. Let I be the natural image of H,(X) in H,(G;C, G;(C - C)). Since X is
orientable and every element of Gj preserves the orientation of X, we infer that I
is isomorphic to $ and that the homomorphism induced by the projection of G;C
onto G; C/G; maps I onto H,(G; C/Gy, Gi(C - C)/Gi), with its kernel intersecting I
at a cyclic group of order p. By assumption, C - C is contained in Fj, so that the
projection of G;(C - C) onto G;(C - _C)/ Gi_is a homeomorphism onto. It follows that
the boundary homomorphism H {G; C, G4C - C)) — H,_;(G;(C - C)) is not one-one.
Hence H,(G;C) # 0, contrary to (7.1).

(7.7) LEMMA. I,(M/G;) = 0 for all integer i > 0.

Proof. From definition we can easily see that the inclusion map of E;j;; into M
induces an isomorphism of L,(E;,;/G;) onto I,(M/G;). Hence we have only to show
that In(Ei+1/G) = 0.

By (3.6), E;11/G; is-of homology dimension < n. It follows from (4.18) that
Hn+1(E;i4+1/G3) = 0 so that, by (4.16), 6;,: I (E;11/G) — H,(E;;1/G) is an isomorph-
ism into. Hence it is sufficient to show that H, (E;,;/G) = 0.

Suppose that H, (E;;;/G) # 0. Then for some integer j (0 <i<i),
H,(E;;1/G, E;/G) # 0.

Since VJ-+1 is the interior of Ej+1 - Ej, it follows that
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Hn(vj+1/G9 (vj+1 N FJ)/G # 0.

Since G/Gjy1 acts freely on V ji) - Fj, it follows that H,(Vjiy, Vi1 O Fy # 0.
Hence, by (7 1), there exists a component C of Vj;1 such that C-Cis contamed
in Fj, contrary to (7.6).

Because of (7.7), we can strengthen (5.3), (5.4) and (6.4). In fact, we have
(7.8) LEMMA. Whenever k > n, Ix(M/G;) = 0 for all i. Hence

Ly HUM) — HIM)  and &3, H 1 (M/G) — Hy (M/G)  (i=0,1, )

ave isomovphisms onto when k >n, and isomorvphisms into when k=n - 1.
(7.9) LEMMA. There exists an exacl sequence

Ty W ly
H,(M/G) ——— Hp(M) —— Hy(M) —— H,4 1 (M/G) —— -+

(7.10) LEMMA. (i) H,,3(M/G) = 0.

(ii) If the projection of X into X/G induces an isomovphism of Hn(X) into
H, (X /G), then Hp4+2(X/G) contains a subgroup isomovphic to G.

(7.11) THEOREM. If G is a p-adic group acting effectively on a homology n-
manifold X, then the orbit space X /G is of homology dimension n + 2.

Proof. If F; is null for all i > 0, we let y be any point of X. Then G acts
freely on G(y). If there exists an F + ¢, we take a point x € F; QJ It follows
from (7.4) that no F; contains x as an interior point. Hence there is a point y not
contained in any F;. Again, G acts freely on G(y).

As in the proof of (6.6), there exists an orientable connected neighborhood X' of
y which is invariant under an open subgroup G' of G. It is clear that X' is an
orientable homology n-manifold and that G' acts effectively on X'. If we take G' so
small that every element of G' preserves the orientation of X' and that the projec-
tion of X' onto X'/G' induces an isomorphism of H,(X') into Hx(X'/G"), it follows
from (7.10), (ii) that X'/G' is of homology dimension > n + 2. Hence, by results of
Section 3, X/G is of homology dimension > n + 2. Using (7.10), (i), we can easily see
that X/ G is of homology dimension < n + 2. Hence our theorem is proved.

(7.11) COROLLARY. If G is a p-adic solenoid group acting effectively on a
homology n-manifold X, then the ovbit space X/G is of homology dimension n + 1.
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