HOMOLOGY THEORY FOR LOCALLY COMPACT SPACES

A. Borel and J. C. Moore

In this paper, we develop a homology theory for locally compact spaces. On
compact metric spaces, our theory is equivalent to the Steenrod homology theory [8].
The main purpose of introducing it is to obtain a Poincaré duality theorem for co-
homology manifolds (see Section 7). The subject matter of the present paper is es-
sentially the same as that of [3, Chapter II]. However, more emphasis has been put
on the homology theory, which is treated from a slightly different point of view. Co-
homology manifolds, which were the main concern of [3, Chap. I, II], will here be
discussed more briefly.

The notation will in general be that of [7]. We assume familiarity with sheaf
theory [4], [7]. In particular, the following concepts and notation will be used. A
Sfamily of supports & in the space X is a collection of closed subsets such that

i) if A, Be &, then AU B € &, and
ii) if B€ & and A is a closed subset of B, then A € &.

Given a sheaf & on X, the symbols I'(¥), I's(9), F(A) will denote respectively
the sections of &, the sections of & with support in &, and the sections of & over
the subspace A of X. Note that by section we shall always mean continuous section.

If A is a subspace of X and & is a sheaf on X, we denote by ,?lA the restric-
tion of & to A. Further, if A is locally closed, we denote by & 5 the sheaf on X
which induces & |A on A and zero on X - A. Recall that if A is open in X, the
sequence

0= Fp—> F > Py , —0

is an exact sequence of sheaves on X.

A sheaf & on X isflabby is the restriction map I'(¥) — F(A) is surjective for
every open subspace A of X; it is called soft if I'(¥) — F(A) is surjective for
every closed subspace A of X. If & is a family of supports in X, then & is soft
relative to @ if 9”|A is soft for every A € &. When the family & is paracompacti-
fying [7], this is equivalent to saying that T'g(#) — T'g(#|A) = F(A) is surjective for
every A €.&. Thus the word “flabby” is the translation of flasque, and “soft” the
translation of mou.

Throughout this paper, we shall assume that K is a Dedekind ring given once and
for all. All modules are assumed to be K-modules, and &, Tor, Hom, and Ext are
taken over K. All sheaves in addition to their stated properties will be assumed to
be sheaves of K-modules. Finally, all topological spaces will be assumed to be
Hausdorff and, from Section 2 on, locally compact.
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1. THE CANONICAL RESOLUTION OF A SHEAF

If M is a module, we denote by F(M) the free module generated by the nonzero
elements of M. There is a canonical surjection F(M) — M, and we denote by R(M)
the kernel of this map. Now, since K is an integral domain, there exists a quotient
field K* of K, and R(M) is canonically imbedded in K* ® F(M) Let M be the quo-
tient of K* X F(M) by R(M); then there exists a natural map M — ™M which is in-
jective. Moreover, M is an injective module. Thus we have chosen functorially an
imbedding of every module M in an injective module M.

1.1. DEFINITION. If & is a sheaf on X, let 1(¥) be the sheaf on X such that
I(Z)(A) = Uyep P« for every open subset A of X, wheve ¥« is the stalk of ¥ over
X.

There is a canonical injection of & into I(#), and the sheaf I{(¥) is injective.
This means that if #£" is a subsheaf of & and we are given a homomorphism of £
into I(#), it can be extended to a map of £ into I(#) [7, Chap. II, Section 7.1]. The
condition that a sheaf be injective is stronger than that it be flabby [7, loc. cit. ].
Consequently I(&) is flabby.

1.2. LEMMA. If & is an injective sheaf on X, and ® a family of supports,
T (&) is an injective module.

Since & is injective, it is a direct summand of I(¥). Therefore it suffices to
prove the lemma for I(¥). Now if f e I'g(I(#)) and k is a nonzero element of K,
there exists g€ I'y(I(#)) with exactly the same support as f such that k-g = f.
Thus I'g(I(P)) is d1v1s1b1e hence injective [5, p. 134].

1.3. DEFINITION. If ¥ is a sheaf on X, define
¢'x; 9)=19), X 9 =2¢%x 2/,
¢UX: 9) =HFUX; 9), FVXK 9) = ¥ 9)/FUK F) (a >1).
Note that the sequence of sheaves
0 - ¥ — ¢9X; ) - ¢i{X; #) —

is exact; it will be called the canonical injective resolution of & and will be denoted
by ¢*(X, ). If & is a family of supports on X, we put

cg(x; L) = rq,(%*(X; LK

the elements of CE}(X; &) are the standavd cochains of X, with coefficients in & and
supports in .

1.4. LEMMA. Iff: &' — & is a homomorphism of sheaves on X, there exists a
canonical map £*: €*(X; F') — €*X; &) such that the diagram

0 — & — %X ) — UK F) — -

If ! !
0 - ¥ — 9% ) —» (X 2)

¢s commutative.
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This follows from the fact that the assignment & — I{%) is functorial.

1.5. LEMMA. If the sheaf & is locally concentvated on A, and A is a locally
closed subspace of X, then the natural map

€*(X; .9’)|A — €*A; &),

where €*(A; &) = €*(A; #|A), is bijective.
Proof. For x€ A,

2%4A; #)(x) = lim Il 7.
U—x ye ANU

However, if U is a small enough neighborhood of x, and y € U - UN A, we have
!PY= 0 and E’Y = 0; this gives the desired result.

The preceding proof is an exact duplicate of a proof in [7, p. 187].
1.6. LEMMA. If A is closed in X and S is concentvated on A, then

Tp(@*(X; #)) = Tgna(@*A; 9)).

This lemma is just a translation of a known theorem [7, p. 188], and it is equiva-
lent to the assertion that C?I;(X; F) = qu(A ).

1.7. DEFINITION. Suppose ® is a family of supports on X, and ¥ a family of
supports on Y; then a map £: X — Y is proper velative to & and ¥ if £71(A) € & for
evevy A € ¥, Il is proper if it is proper velative to the families of compact subsels.

1.8. PROPOSITION. If &, ¥ are families of suppovis on X and Y, and £f: X — Y
is a proper map velative to &, ¥, then for any sheaf ¥ on Y, theve is a map
f*: C}(Y; &) — C’d';(X (%)) compatzble with the natuval map T'g(F) — Tg(f¥(F))
given by t — t o f. Moveover, the map t* is unique up to chain homotopy.

Since f*(€*(Y; &)) is a resolution of f*(&), the inverse image of & [7, p. 145],
there exists a map which is unique up to homotopy of the resolution f*(¢*(Y; &))
into the resolution €*(X; f*(#)), and the result follows.

We end this section with a refinement of Theorem 3.6.1 of [7, Chap. II], which
will be needed in Section 2. Recall that given a sheaf & on the space X, together
with a section s of & and an open covering (Uj;)ier of X, a partition of s subordi-
nated to (Uj)ier is a family (sj)jer of sections of & such that the support ]sll of s;
is contained in Uj, the subspaces s; form a locally finite family, and Zjc1s;=s
([ 7], p. 155).

1.9. PROPOSITION. Let ® be a pavacompactifying Sfamily on X, let & be a &-
soft sheaf on X, and let (Uj)ie1 be an open covering of X. Let s € I‘(f,(g’) and let
Q be an element of & not meeling the support Isl of s. Then there exists a parti-
tion (si)ier of s, subordinated to (U;)ie, whose elements belong to T g(9) and ave
zero on Q. Furthefr if B is a neighbovhood of Isl UQ belonging to r1> which is con-
tained in the union of the U; wheve i vuns thvough a subset 1' of 1, it may be as-
sumed that s; =0 for i £ 1'.
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We assume first that X belongs to &, in other words, that & consists of all
closed subsets of X, and prove the first assertion in that case. The proof follows
Godement’s, and we describe it briefly. We may assume (Uj) to be locally finite.
Choose then a closed covering (Fj)ijer of X with F; c U;. Consider the set E of
families (sj) je3 U C I), where s; is a section of & over X, with support in Uj,
equal to zero on Q, and Zj¢y 8j =s on Fy= UjEJ F;. The set E is nonempty, and,

ordered by inclusion, is inductive. By Zorn’s lemma, it is then enough to show that
if J#1, (8)jes is not maximal in E. Let then i ¢ J. There exists a section sj of
& on QUX - U)) UF7UF; which is zero on QU(X - U;) and is equal to s - Zjey S;
on FyUF;. Since & is soft, it can be extended to a section s; over X and then
(sj)jez Us; is an element of E.

We now prove 1.9 in the general case. By the above, there exists on B a parti-
tion (s])jerr of slB, subordinated to the covering (U; N B);er1, whose elements are
zero on Q and on (B - Int B). Being zero on the boundary of B, the element si, ex-
tended by zero outside of B, is a section of &, whose support is in U; NB, hence
also in ®. We put s; =0 if i £ I', and it is clear that all our conditions are fulfilled.

2. THE DUAL OF A DIFFERENTIAL GRADED SHEAF

In the preceding section, the assumption that all spaces are locally compact was
never used. However, in this section, local compactness will play a fundamental
role.

2.1. Notation. The family of compact subsets of any space will be denoted by c.
Let & be a sheaf on X, and let & be the presheaf on X such that

J(U) = Hom (T (7| U), A),

where A is a fixed K-module, and such that the map 7(U) — (V) is induced by the
inclusion map T'c(#|V) — T'o(#|U) for V c U open in X. Denote by 4 the sheaf
determined by the presheaf 7.

2.2. LEMMA. If the sheaf & is c-soft and {U;};c1 is an open covering of X,
then the sequence

g h
2 T (2|U;NT0) - 2T (2|0 » T (#) — 0
i,j€I iel

is exact, where
1) g(x;,;) = ¥; - ¥i, ¥; Deing the image of x; ;€ T (| U;NUy) in T (F|Uy) and
2) h(y;) is the image of y; € T (P|U;) in T (#).
Proof. It follows immediately from 1.9 that h is surjective.

The fact that h o g is zero is immediate. Therefore it remains to show that
Kerhc Img. Let y € Ker h. We may write y =y;i+ z, where y; € I‘C(g’lUi) and
z € Zjer T'e (#|U;), and where in turn J is some finite subset of I. Since h(y) = 0,
the support of h(]z) is covered by the open sets U; N Uj (j € J). Using a partition of
unity subordinated to this covering, we can find elements zj; € I' (¥ |U; NU;) (j € J)
which, viewed as elements of I' .(¥), have a sum equal to h(z). Let us write ng)

(k = i, j) for the image of z; in T' (#|Uy). Then
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g( T zy)=- 2 af JET 2, he) - ngJh(z%)) =J§Jh(zg)).

jeJ jE€J

Since h(y; + z) = 0, it follows immediately that y; + 2 zg) = 0, hence
jeT

Vi+ Z - Eg(zij)=z-z> zg),
€T jET

so that it will be enough to prove that the right-hand side is contained in Im g. Since
z € ZjeJ r.( IUJ-), our assertion follows then by a simple induction on the number of
nonzero components of y.

2.3. PROPOSITION. If & is c-soft, the natural map 7(U) — Z(U) is bijective.
Xf moreover A is injective, the sheaf 4 is flabby.

Proof. Let {Ui} je1 be a family of open subsets of X, and let U be their union.
Suppose that t, t'€ J(U) and that they have the same image in each 7(Uj); then t = t;
for we see by 2.2 that = I‘c(g’lUi) — I‘C(QI U) — 0 is exact, and therefore .
0 — J(U) — I 7(U;) is exact.

Now suppose t; € J(U;) for i €I, and t;, t; have the same image in \7(U; nt).
From the exactness of

0—gw 5 I gu) & Maw;n U))
i€l i,

it follows that there is a unique t € F(U), since that h*(t) = {t;}. This proves the
first assertion [7, p. 109).

If now A is injective, the map 7 (X) — J(U) (U open in X) induced by the injec-
tion T' (¥ |U) - ' (#) is surjective; hence J is flabby.

2.4, PROPOSITION. Let F be a closed subset of X. If & is c-soft and A is in-
jective, the restriction map p: IT'(F) = T (S | F) is surjective and induces a mono-
morphism y: Hom (U (¥ I F), A) — J(X) whose image consists of the elements of
IJ(X) which have their support in ¥. In particular, an element t € F(X) with support
in F has the value zevo on the elements of T (¥) which have their supports in
X -F.

Since & is c-soft, p is surjective (see Note below); therefore we have an exact
sequence

0 - T.(Px.r - T ?) B T (2] > 0,

where I'¢ (#)x _F means the elements of I‘c(g’) with support in X - F. The module
A being injective, this yields an exact sequence

0 — Hom (Tc(¥|F), A) & F(X) > Hom (T'_(#)x_p, A) — 0.

The elements of Im v clearly have their supports in F. Now, if t € Z(X) has its
support in F, each x € X - F has a neighborhood V. such that t is zero on the ele-
ments of I' (&) with supports in V.. With the aid of partitions of unity, it follows
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that t is zero on all elements of I'.(¥) with supports in X - F; therefore t € Ker ¢
and t € Im v.

Note, In the beginning of the above proof, we have used a special case of the fol-
lowing elementary fact: Let F be a closed subset of X, let & be a paracompactifying
family on X, and let & be a ®-soft sheaf. Then the restriction map

is surjective. To see this, given an element t of T'g|p (#| F) with support K, first
extend its restriction to FNV to an element of I‘g,]v(.? |V), where V is a neighbor-
hood of K belonging to ®, which is zero on V-Int V. Then this element, extended by
zero outside V, belongs to u-i(t).

2.5. Notation and conventions. A differential graded module M is a_sequence of
modules MY indexed on the integers, together with maps d: M9— M 9™ such that
@2 = 0. The differential graded module M is bounded below if MY = 0 for q less
than some fixed integer n; it is bounded above if M% = 0 for q > n. We also denote
M9 by M_g, and we let d: My — M, _; stand for d: M~9 — M~ If M, N are dif-
ferential graded modules, Hom (M, %\I)r is the module of maps f: M — N such that
f(M?%) ¢ N9°*. Moreover, Hom (M, N) is the differential graded module such that
Hom (M, N)* = Hom (M, N)_r , and such that if f € Hom (M, N),., then

(df)(x) = d(f(x)) + (-1)*1 f(dx) .

Let K* be the quotient field of K, and let R(K) be the diifferential graded module
such that R(K)? = K*, R(K)! = K*/K, R(K) = 0 for q # 0, 1, and such that
d: R(K)0 — R(K)1 is the natural map K* — K*/K. For any dlfferentlal graded
module M, let D(M) = Hom (M, R(K)). The differential graded module D(M) is called
the dual of M. By definition,

D(M), = Hom (M*, K*) @ Hom (M**1 K*/K).

Moreover, since R(K) is an injective resolution of K, there exists a split exact se-
quence

0 — Ext(HT (M), K) — H (D(M)) — Hom (HY(M), K) — 0.

£
Further, since R(K) is an injective K-module, we see that if 0 — M' — M £ M —o0
is an exact sequence of differential graded K-modules, then

0 — D(M") — D(M) — D(M') — 0

is an exact sequence of differential graded K-modules. Notice that here we assume
df = fd, dg = gd, and that f, g are of degree zero, in other words, that

f € Z° Hom (M', M)

and g € Z° Hom (M, M").

A d1fferen ial graded sheaf # is a sequence of sheaves .# 9 together with maps
d: 29 — such that d® = 0. For any open set U in X and any-family & of sub-
sets of X, Pq,(.,d IU) is a differential graded module with the component I'g(.#4 lU)
of degree q.
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2.6. DEFINITION. If « is any diffevential graded sheaf, we denote by D(AL)
the diffevential graded sheaf deteymined by the presheaf U — D(T (A | u)).

2.7. PROPOSITION. If « is a differential graded sheaf on X which is soft rela-
tive to the family of compact subsets, then

1) for U open in X, D(A)(U) = D(I‘c(.,dlU)),
2) D()? is flabby for every integer q, and

3) for every integer q, theve exists a split exact sequence
0 — Ext(HY(T (), K) — Hy(T(D(#)) — Hom (HY(T (), K) — 0.

4) If & is injective, D(A)(U) is torsion-free, for U open in X.

Proof. Parts 1 and 2 of the proposition follow at once from 2.3. Part 3 is an im-
mediate corollary of the equality I'(D(#)) = D(I'c(.#/)) and of the corresponding fact
about differential modules. If .« is injective, then I‘c(.,di U) is injective by 1.2, and
(4) follows from (1). (Recall that if A is divisible, then Hom (A, B) is torsion-free
for any module B.)

2.8. Notation. We have already adopted the convention that if A is a module, then
we also denote by A the constant sheaf with stalk A. We shall denote by < the sheaf
such that o (U) = Il ey K for U open in X, where K, is the stalk of K over x € X,

Recall that ¢ (U) is a sheaf of rings, and that it is flabby, hence ®-fine for any
paracompactifying family @ [7, Chap. II, 3.7]. As a consequence, every sheaf which
is a &-Module is ®-fine, and a fortiori ®&-soft. Together with 2.3, this implies the
following

2.9. PROPOSITION. Let A be a module, and let ¥ be a s -module. Then the
presheaf U — Hom (T'(¥ [U), A) is a sheaf which is ®-fine for any paracompactify-
ing family ®.

3. HOMOLOGY THEORY

3.1. For any space X, we define @(X; K) to be the differential graded sheaf
D(%*(X; K)). If & is any sheaf on X, we denote by €u(X; &) the sheaf
¥ @ €u(X; K). The sheaf @ (X; K) is called the standard sheaf for homology on
X, and €¥y(X; &) is called the standard sheaf for homology with coefficients in .
If & is any famlly of supports on X, we let Cﬂ(X $y=T (‘6’ (X; #)) and

u® ZX ¥)=H (CH(X #)). The module ge 2% 9) is called the n-dimensional homol-

ogy group of X with coefficients in & and supports in ®. If & is the family of all
closed subsets of X, we write H (X; ) for H‘II';(X; g).

The stalk at x € X of the derived sheaf o#(¥(X; K)) is the local homology group

at x, and it will be denoted H’;(X; K). The sheaf o (% y(X; K)) is the sheaf of local
homology groups, and it will be denoted % (X; K).

For any space, the sheaf «¢y(X; K), is flabby, and ¥u(X; K)(U) is a torsion-free
differential graded module for U open in X, by 2.7. Clearly, ¢u(X; ¥) isa HA-
module; therefore it is ®#-fine for any paracompactifying family & on X. For U
open in X, the restriction of cross sections induces a natural homomorphism

. ) @ﬂU
Tyt H, (X; K) — (U; K),
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whose restriction to HS'(X; K) will be denoted by inxu-

3.2. THEOREM. Letf: X — Y be a proper map. Then for every integer n there
exists a natuval map f.: H (X; K) — H,(Y; K).

Proof. Observe that f*(K) = K, where K stands for the constant sheaf with stalk
K. Now by 1.8 there exists a map f*: C¥(Y; K) — C*(X; K) which is unique up to
homotopy. This induces a map

Df*: D(C¥(X; K)) — D(CX(Y; K)),

and since D(C*(X; K)) = I'(¢ (X; K)), D(CX(Y; K)) = I'(€¢ (Y; K)), the first assertion
follows.

3.3. THEOREM. (a) For each space X and each integer i, there exists a split
exact sequence

itl
c

0 — Ext(H. (X; K), K) — H;(X; K) — Hom (H.(X; K),K) — 0

which is compatible with vestrictions to open subsets. Hence there exists for each
x € X an exact sequence

0 — dir lim Ext (H{"(U; K), K) — Hf(X; K) — dir lim Hom (H{(U; K), K) — 0,

wheve U vuns through the open neighborhoods of X.

(b) Let A be a c-soft resolution of K. Then H(I'(D())) = H(X; K) and
H(D(A)) = K (X; K) (q € Z).

The assertion (a) follows from 2.7, the definitions of H;(X; K), HI(X; K), and the
fact that a direct limit of exact sequences is exact.

Since  is a resolution of K, there exists a homomorphism f: & — ¢*(X; K)
which extends the identity map on K. Since each 9 is c-soft,

HY () — HYT (¥ *(X; K))

is bijective, as follows from Theorems 4.7.1 and 4.7.2 of [7, Chap. II]. By 2.7,
Hq(l‘(D(?*(X; K))) — Hq(F(D(d))) is bijective for each q, which implies the first
equality of (b). This isomorphism is obviously compatible with the restriction to an
open set, and the second equality of (b) follows.

Rewmark., Let F be a closed subspace of X, and let &/ be a c-soft resolution of
K on X. The homomorphism derived from the natural map D(I'c (s IF)) — D(T (),
transpose of the restriction, can be identified with f,: H_(F; K) — H,(X; K), f being
the inclusion of ¥ in X. This is easily seen from the above and the commutative
diagram

T () . (| F)

L !
I (¢*(X;K) — T_(¢*X; K)|F).

3.4. THEOREM. Let ® be a family of supporits of X. Then

N

H((I;(X; K) = lim (F; K),

Fed Hq
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the limit being taken with vespect to the homomovrphisms defined by inclusion. If £
is a c-soft resolution of K on X, then H%’(X; K) = H (T4 (D(A))) (q € Z).

By 2.4, M(F) = Hom (T'c(#*(X; K)| F), R(K)) may be identified with the set of ele-
ments of Cy(X; K) having their supports in F. Since the restriction of a c-soft
sheaf to a closed subset is c-soft [7, Chap. II, 3.3.1], it follows from 3.3 that
H(M(F)) = H_(F; K). The theorem follows from this, 2.4, and the remark to 3.3.

3.5. THEOREM. (a) Let f: X — Y be a map, and let &, ¥ be families of supports
on X and Y vespectively such that £(®) C Y. Then, if the vestriction of £ to any
F € & is proper, there exists a natural homomorphism H%‘(X; K) — H{,Ii’(Y; K) (q € Z).

In particular, there exists a natuval homomorphism 1: Hf_?l(X: K) — H&(Y; K).

(b) Let F be a closed subset of X, and ¥ a family of supports on F. Then the
natural homomorphism Hg(F' K) — H‘I'(X' K) is an isomorphism (q € Z).

The first assertion follows from 3.2 and the first part of 3.4. By 2.4, C‘I’(X K)
may be identified with Mg (F) = I'y(D(&*(X; K) | F)); by 3.4, H(Mg(F)) = H‘I'(F K),
and (b) follows. .

Remark. Let f be the inclusion of a closed subspace F in X. Then
£, H‘£|F (F; K) — H2(X; K)

will often be denoted by i, gy, and its restriction to Hg’IF(F; K) by igrx- By the
above, it is induced by the inclusion of

Mg| (F) = T | (D(*(X; K) | F))

into Cy(X; K), and Mg|r (F) may be identified with the module of elements of
Ch(X K) having their supports in F. Applied to the inclusion FNU — U, where U

is open in X, and to the family of all closed subsets, this leads to an injective homo-
morphism

ipx: (D(€*X; K)|F) ™ - ¢, (X: K),
hence also to 2 homomorphism
i pxt Ha(F; KT > o2,(X; K),
where £% denotes the extension by zero of a sheaf ¢ on F [7, II, 2.9].
3.6. THEOREM. If ® is a parvacompactifying family on: X, and

0— 9" =g — gv -0
is an exact sequence of sheaves on X, theve exists an exact homology sequence
- H2(X; 9 — BH2(X; ¥) — HR2(X; 9) — HZ (X: 9" — -,
Proof. Since ?f’H(X; K) is torsion-free, there exists an exact sequence of sheaves
0 - CyuX; I") - CyX; ¥) - CyX; ¥*) - 0.

Since #(X; ) is ®-fine (by 3.1), the sequence
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0 - c2x; 9 — cB(x; 9) - C2(x; ) — 0

is exact ([7], p. 154), and the theorem follows.
3.7. THEOREM. If B is a module, therve exists an exact sequence

0 — H (X; K)®B — H_(X; B) — Tor (H,_;(X; K), B) — 0.
%H(X; K) is c-fine and torsion-free by 3.1 and 2.6; therefore
I ((¢yxX; B)) =T (¥4X; K)®B

[1, Exp. V, lemma 3(e)], and the result follows.

3.8. THEOREM. Let F be a closed subspace of X, and let U= X - F. Then
theve exists an exact sequence

]XU
— H(F; K) — laF H(X K)—»H(U K) — H_,(F: K) —

Let .« be a c-soft resolution of K on X. Then we have the exact sequence
0 —» T (A#|U) » T (A#) - T _(£|F) — 0,

(from which the exact sequence for cohomology with compact supports is derived)
as follows readily from the remark to 2.4. Since R(K) is injective, this yields an
exact sequence

(1) 0 — D(T (| F)) — D(T(A)) — DT (+|1) — 0.

On account of 3.3(b), the desired homology sequence is the homology sequence of (1).

3.9. THEOREM. Let X be the union of two open subspaces, X,, X,, and let
X, = X,NX,. Then there exists an exact sequence

o 0
c o HSX 13K S S K) + BSX,; K) B HO ) S B (X, K) — -,
wheve a is the difference and 8 the sum of the inclusion homomorphisms.

The proof is straightforward; it is the same as that given in [2, Section 8] to show
the existence of an exact sequence of the Mayer-Vietoris type in #-cohomology, and
we leave it to the reader. We content ourselves to recall the definition of d. Let z
be a cycle of I'. (€ (X; K)). Since € y(X; K) is c-fine by 3.1, we may write
Z = 7, + Z,, Where the support of z, (respectively z,) is contained in X, (respective-
ly X,). Then dz, + dz, = 0, hence the support of dz, is equal to the support of dz,
and is contained in X,,. Then the image under 9 of the class of z is by definition
the class of dz,.

3.10. THEOREM. Let X be the union of two closed subspaces X,, X,, and let
X,» = X,NX,. Then theve exists an exact sequence

cK) — e

o
-+ — H_ (X;,; K) = H, (X;; K) + H_(X,; ) H_ (X: K) — 12

(X

S

where a(x) = i*Xm,Xl (%) - i*Xm,X2 (%), B(xy + x;) = i*Xl,X(xl) + i*Xl,X(XZ) .

-1
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Let M,, M,, M,, be the submodules of elements of C(X; K) having supports in
X,, X,, and X,, respectively. Then, (see the remark to 3.4)

(2) HM,) = H,(X; K) (i=1,2), HM,,) =H(X, ;K.

12
Let ¢ € Cy(X; K). Then c can be written in at least one way as a sum c = ¢, + C,
with c; € M; (i =1, 2). Infact, since €y(X; K) is flabby, it has a section ¢, which
is equal to ¢ on X, - X,, and to zeroon X, - X,,. Then ¢c; € M, and ¢, =c¢ - ¢, is

in M,. Let now c be a cycle. Then dec, = -dc, has support in X,,, hence is an ele-
ment of M,,. By definition, the image of the homology class of c is the class of dc,
in H(M,,) = HX,,; K). It is a routine matter to verify that this definition is legitimate
and that the sequence of 3.10 is exact. We leave the details to the reader.

3.11, Remark. In view of 3.3(b), H, (X; K) may also be defined as the Azyper-
homology invariantof Hom (T (), K), where .« is a c-soft resolution of K on X,
in the sense of [5, XVII]. Here we have defined it as the homology of Hom (T (A), L),
where L is an injective resolution of K. It is also the homology of Hom (P, K),
where P is a projective resolution of I'c (). As will be recalled in Section 6, this
second procedure has been used by Steenrod [8] for compact metric spaces. For
closed subsets of euclidean spaces, one can also resolve the first argument by taking
a resolution « of K on X for which I («) is a free grating which is homotopically
c-fine (see [3, II, Section 4]).

4. KUNNETH THEOREMS

4.1. THEOREM. IfX and Y are spaces, then, for each integev n, there exists
a split exact sequence

0— 2 Ext(H(X),H(Y) — H (XXY)—> X Hom (HX(X), H_(Y)) — 0.

r+s=n+1 r+s=n

Proof. Let .« be a torsion-free c-soft resolution of K on X, # a torsion-free
c-soft resolution of K on Y, and € an injective resolution of K on X X Y. Now it is
known that there exists a map f: T'c() Q I’ (#B) — I'.(¥) which induces a homology
isomorphism. Thus, we may use D(I'c() @ I'c(%)) to compute the homology of
X X Y. However, D(T o(«) ® T'c(8)) = Hom (T (&), D(T'.(8)). Since I' (#) is tor-
sion-free, Hom (T .(8), R(K)) = D(I'.(#8)) is injective [5, VII, 1.4], and the theorem
follows.

4.2. COROLLARY. If X is a compact contvactible space, then Hy(X X Y) = H, (Y)
Jfor any space Y. ‘

Proof. Since X is compact, we have HS(X) = HY(X) for all q; and since X is
contractible, HY(X) = 0 for q # 0 and H%X) = K. Now the result follows at once from
the preceding theorem.

4.3. COROLLARY. If 1 is the unit intevval, F:I1XX —>Y isa propér map, and
F;: X — Y is defined by F,(x) = {(t, x), then, for every integer n,
(F() )* = (F]_)*: Hn(X) - Hn(Y) .
4.4. CO%OLLARYE If £, g: X — Y are homotlopic maps, then, for every integer
n, £, = g,: H.n(X) — Hn(Y).
Proof. This corollary follows at once from 4.3 and 3.4.
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5. COMPARISON WITH OTHER HOMOLOGY THEORIES
Using Lemma 1.6, we see that if A is a closed subspace of X, then

I' (€*(X;K,)) = T _(@*(4; K)).

Since I', (¥*(X; K)) — T' . (€*(X; K,)) is surjective, C;(A; K) — Cy(X; K) is injec-
tive. Th1s means that we may define Hy(X, A) to be Hq(l"(%H(X K))/I‘(%H(A K));
and we then obtain a homology theory defined on pairs, in the sense of Eilenberg and
Steenrod. Moreover, the homology groups of a point are just the usual homology
groups of a point with coefficients in K. Therefore, for a finite complex X and a
K-module B, Hq(X; B) is the ordinary simplicial homology of X with coefficients
in B. More generally, if X is a finite complex, and A is a subcomplex, then

Hq(X, A; B) is the simplicial homology of X modulo A with coefficients in B.

Now Eilenberg and Steenrod [6, p. 258] have formulated a notion of a continuous
homology theory, and they have proved that the Cech homology theory is continuous
on the category of compact pairs, and that further any homglogy theory which is con-
tinuous on compact pairs is naturally isomorphic with the Cech theory. For our
homology theory, we see that if L. = K/M, where M is a maximal ideal in K, then
H, (X; L) = Hom (H¥*(X; L), L); with the help of this fact, it is easy to see that our
homology theory with coefficients in L is continuous on compact pairs. Therefore
it coincides with the Cech theory with coefficients in L for compact spaces. This is
however not in general true for compact spaces and arbitrary coefficients.

For compact spaces, the sheaf-theoretic cohomgology is the same as the éech
cohomology. Further, it is pgssible to define the Cech cohomology by using Cech co -
chains [7, p. 223]. If we let C*(X; K) be the Cech cochains of X with coefficients in
K, then the homology we have defined has the property that if X is compact, then
H (X;K)=H (D(C*(X K))). However, if P is a projective resolution of C*(X; K),
then standard homological algebra shows that H, (Hom (P, K)) = H, (D(C*(X; K))). For
compact separable metric spaces, Steenrod [8] defined a homology theory by first
constructing Cech cochains, then choosing a particular projective resolution P of
his Cech cochains and calling H, (Hom (P, K)) the (n + 1)st homology of the space
based on regular cycles. Thus for a compact separable metric space, the group
H_(X; K) is simply Steenrod’s (n + 1)st homology group.

6. LOCAL CONNECTEDNESS

6.1. DEFINITION. For any space X, the augmented g-dimensional cohomology
group of X is HYX; K) if q > 0, and is the cokernel of the natural map K — H(X)
induced by the map of X into a point, for q = 0.

The augmented g-dimensional homology group with compact supports is HS(X; K)
for g > 0, and it is the kernel of the natural map HG(X) — K induced by the map of X
into a point, for q = 0.

6.2. DEFINITION. If f: X — Y is a map, then f is cohomologically trivial in
dimension q if the image of the augmented cohomology in dimension q of Y in the
augmented cohomology of X is zero.

The map f is homologically trivial in dimension q if the image of the augmented
g-dimensional compact homology of X in the augmented q-dimensional compact
homology of Y is trivial.
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6.3. DEFINITION. The space X is cohomologically locally connected (respec-
tively, in dimension q), relative to K, if for every point x € X and every neighbor-
hood U of x there is a neighborhood V of x in U such that the natural map V — U
is cohomologically trivial (respectively, in dimension q), relative to K. We say then
that X is clek (respectively, g-clcgk), and that X is clcf{ if it is q-clck for all
q S r.

The space X is homologically locally connected (respectively, in dimension q)
relative to K, if for every x € X and every neighborhood U of x there exists a
neighborhood V of x in U such that V — U is homologically trivial (respectively,
in dimension q), relative to K. We say then that X is hlcy (respectively g-hlck),
and that X is hlcy if it is g-hlck for all q <r.

We recall that X is locally connected if and only it is clc?{.

6.4. PROPOSITION. Let B be a K-module, and let N be an injective vesolution
of B of finite degrvee. Let A be the differential graded sheaf defined on X by the
presheaf U — Hom (T (€%(X; K) |U), N). Then

(a) +#(U) = Hom (T _(¢%(X; K)|U), N);

(b) the sheaf £ is bounded below; 9 is flabby for each q;

(c) if X is hlck, then #%UA) =0 (@<r; q+0) and #°(x) = B.

Proof. Parts (a) and (b) follow from 2.7. Further, by 2.7 (3), there exists, for
each Y open in X, an exact sequence

(1) 0 — Ext (Hccl_‘l(Y); B) — HY(Y)) — Hom (H(Y); B) — 0

which is natural with respect to inclusion maps. Let now X be hlcf{, let x € X, and

let W C V C U be open neighborhoods of x such that W — V and V — U are homo-
logically trivial in dimensions q - 1, q (q < r). We then consider the commutative
diagram whose rows are the exact sequences (1) for Y = U, V, W and whose vertical
maps are defined by inclusions; simple diagram-chasing shows that

HY2(U)) — HY 2 (W)

is trivial. This proves (c).

6.5. THEOREM. If X is hlcf{, and B is a K-module, theve exists for q<r an
exacl sequence

0 — Ext (H;_I(X), B) — HYX; B) — Hom (H;(X), B) — 0.

Proof. This follows at once from the preceding proposition and the standard
spectral sequence of a differential graded sheaf [7, p. 176]. In particular, this last
implies that HY(X; B) = HYT'(#)), where 7 is the sheaf of the preceding proposi-
tion (q < r).

6.6. THEOREM. The space X is cleg if and only if it is hlek. If X is clek
(respectively hlck), then it is hlcf{l (respectively clci). If K is a field, the prop-
erties clcg and hlcy are equivalent.

Assume X to be clck (respectively clcfi). Let x € X, and let U be a compact

neighborhood of x. Choose compact neighborhoods W € V ¢ U of x such that
V — U and W — V are cohomologically trivial in all dimensions (respectively, in
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dimensions q + 1, q, with q <r - 1). Then, by the argument used in proving 6.4(c),
it follows from 3.3(a) that W — U is homologically trivial in all dimensions (respec-
tively, in dimension q). The converse statement is proved similarly, with the use of
open neighborhoods, and with reference 6.5 taking the place of 3.3(a).

6.7. LEMMA. Let X be a connected and locally connected space, and let F be a
compact subsel of X. Then there exists a compact connected subset A of X such
that F C A.

This lemma is elementary and well known. It is a special case of Theorem 3.3
on p. 105 of [9].

6.8. PROPOSITION. Let q be an integev. Assume that for each integer m < q
the space X has the following property.

(Fy K) For each x € X and each neighbovhood V of x, theve exists a neighbov-
koo(;l lU ‘of x such that Tm i, uve H? (U; K) — HS (V; K) is a finitely genervated
module.

Let Q C P be subspaces of X such that Q is compact and contained in the in-
tevior of P. Then Im i, op is a finitely genevated module for m < q.

The proof is essentially the same as the proof of Proposition 6.2 in [2], and we
sketch it briefly. First, by use of suitable coverings of Q and of induction on the
number of elements of such coverings, the proof is easily reduced to that of the fol-
lowing statement let U,, U, c P be open and relatively compact in X, and such that
the image of Ho(Uj; K) — Hm(P K) is finitely generated for m < q,i=1, 2. Let
V; C U; be open with V; c U; (i=1,2), andlet V=V,UV,, U=TU,UU,. Then
Im im,v,pis finitely generated for m <q.

Proceeding by induction on dimension, we may assume Proposition 6.8 to be true
for q - 1. Inparticular, Imi, yvp (m<q - 1) and the image of

Hg (V1N V5 K) = Hy (U 0 Uy; K)

are finitely generated. That Im iy, vp is finitely generated follows then by inspec-
tion of the commutative diagram

Hy(V1; K) + Hy(V; K) — Hg(Up; K) + He(Up; K)

1) Hy(V; K) —  Hy(U;K)
! !

H, ;(V;NV,;K) = H (U NU,; K)
where the vertical maps are parts of the exact sequences introduced in 3.9 and where
the other maps are defined by inclusions.

6.9. THEOREM. Let X be compact and hch Then, for each integer q <r, the
modules Hy(X; K) and HYX; K) are finitely genevated,

Ext (Hq+1(X, K), K) is the torsion submodule of HX; K), and
Ext (Hq-1(X; K), K) is the tovsion submodule of HY(X; K).

By 6.8, H (X K) is finitely generated. The other assertions follow then from
3.3(a) and 6 5
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Remark. Since the property cch implies hch by 6.6, we could also have de-
rived 6.9 from 3.3(a), 6.5, and from the known fact that if X is compact and cch,
then Hq(X K) is finitely generated for q <r. This last statement, or rather the
more general analogue of 6.8 for cohomology with closed supports (see [2, Prop. 6.3]
for references), can also be given a proof similar to that of 6.8, the exact sequences
of the diagram (1) being replaced by standard Mayer-Vietoris sequences, and property
(F K) by

(Fx K) For each x € X and each neighborhood V of x, there exists a neighbor-
hood U 'of x in V such that H™(V; K) — H™(U; K) has a finitely generated image.

It is well known that (F%, k) is equivalent to m-clek. If K is a field, then
Hin(X; K) = Hom (H™(X; K), K) for X compact; therefore F,,, x and F¥, x are
equlvalent in view of 6.6, the condition F K for m<r then implies the property
hlck, hence is equlvalent to it. We do not know whether F,, Jk forall m<r is
equivalent to hlcy g when K is not a field, or whether Fm K is equivalent to m- -hlcyk.
(According to the referee, F, g is 1ndeed equivalent to m- hlcgk.)

6.10. PROPOSITION. (1) If X is locally connected, then
H ;X K) =HS(X;K)=0

(2) If X is hlcll{, then HS(X; K) is the free module generated by the components
of X.

If X is locally connected, then HOC(X; K) is a free module (generated by the com-
pact components of X); the equality H_,(X; K) = 0 follows then from 3.4. If a space
Y is compact and connected, then Hg(Y; K) = K, and therefore HS (X; K) = 0 follows
from 3.4 and 6.7.

It is known that HY/(X; K) is torsion-free for any compact space X. Let now X
be hlck, hence also clck (6.6). By a theorem recalled in the previous remark, if
Qc Pc X and Q is compact and lies in the interior of P, then the image of the re-
striction map HY(P; K)— HYQ; K) is finitely generated; being also torsion-free, it
is then a projective module [5, VII, 4.1]. From this it follows immediately that

dir lim Ext (HY(P; K), K) = 0

where P runs through the compact subsets of X. The assertion (2) is then a conse-
quence of 3.3, 3.4, and 6.7.

Remark. If K is a field, it is clearly enough to assume in (2) that X is locally
connected. We do not know whether this is true in the general case.

7. FINITE-DIMENSIONAL SPACES AND GENERALIZED MANIFOLDS

7.1. A topological space X is finite-dimensional over K if there exists an inte-
ger n such that for each sheaf & on X and each paracompactifying family &, we

have H(%(X; &) =0 for q> n. The least such integer is called the dimension of X
over K and is denoted by dimy X.

The dimension of X over K is also the least integer n such that Hrc”'l(U; K)=0

for each open subset of X. (See [3, Chap. I, Section 5]; the proof is given there for a
principal ideal domain of coefficients, but it is also valid for a Dedekind ring.)
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7.2. THEOREM. Lef dimgX < n, and let ® be a family of supports on X. Then
(@) Hg(x; K)= HiX;K) =0 (@q>n+ 1; x € X).

(b) If i/ is a c-soft resolution of K, & is a torsion-free sheaf on X, and ® is
parvacompactifying, then

HE(X; &) = H,(T5(0(2) @ #)).

The assertion (a) follows from 3.3(a), applied to the elements of &, and from 3.4.

As was noticed in the proof of 3.3(b), there is a homomorphism
f: €{X; K) — D()

which induces an isomorphism of the derived sheaves. Since & is torsion-free, it
follows from the Kiinneth rule that the homomorphism

fI®1¢yEKK® I — DANR S
also induces an isomorphism of the derived sheaves. Replacing in both sheaves the
degrees by the opposite ones, we deduce from Theorem 4.6.2 and Section 4.13 of [7,

Chap. II] that fX) 1 yields an isomorphism of H(CH(X &)) onto H(I'g(D(+) & £)),
which proves (b).

7.3. THEOREM. Let dimg X< n. Let ¥ be a sheaf on X, and let ® be a family
of supports on X. Then, if either & =K or & is pmfacompactzfymg, there exists a

canonical isomorphism
A H2(X; ) - HY (X # (K K)® 9) = Tg(#, (X K@ 9).
Let us denote by # the sheaf € (X; &) with the modified grading
B9 = € 5 (X; .?)n_q
Then
(1) HYU(T () = HY (X; &)
by definition. Since % (X; K) is torsion-free (3.1), we have
HURB) = o, (X KN® &,
hence in particular, by 7.2(a),
(2) #0(B)=H (5K R #3¢L(B)=0 (q<0).

The sheaf 9 is flabby if & = K, and it is ‘®-fine if & is paracompactifying (3.1).
By [7, I, 4.4.3], we have therefore in both cases

(3) Hy(X; /) =0 (p>1).
This last fact and [7, II, 4.6.1] imply the existence of a spectral sequence in which

£ = B (X; #%())
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and where Ec is the graded module associated with H*(I'g(98)) suitably filtered.
Since dimg X is finite, the filtration of the underlying double complex may be as-
sumed to be defined by a finite number of submodules [7, p. 195], hence we have
regular convergence. By (2), we have

(4) ED9=0 (p,q>0), E°=HLX #,(5KQ 9;
therefore
EY0=EX0=HYT;(8)),

and the theorem follows from (1).

7.4. Remark. If U is an open subspace of X, the restriction of cross sections
to U defines a homomorphism of the above spectral sequences for X and U, and
this implies the commutativity of the diagram

A
H2(X; #) 5 Tg(#,(5 K@ 9)

! !
B2OU(U; ) & Ty (2, (U @ 7| V)

when either & =K or & and ®# N U are paracompactifying in X and U respectively.

7.5. DEFINITION. A fopological space X is a homology n-manifold over K
(briefly, an n-hmy) if

(1) X is finite-dimensional over K;
(2) the sheaf H4(ZHX; K)) is zevo for q #n;
(3) the sheaf #,(€y(X; K)) is locally isomovphic with the constant sheaf K.

If X is an n-hmg, the sheaf o, (%y(X; K)) will be denoted by ¥ or 7y, and it
will be called the orientation sheaf. X is ovientable if 7 x is isomorphic to the con-
stant sheaf. Such an isomorphism is called an ovientation of X.

Note that in 7.5(3) it was assumed that J x is locally isomorphic to K. Thus
homology manifolds have been defined in a manner which makes them automatically
locally orientable. If condition (3) is replaced by

(3)' for any point x € X, the stalk of the sheaf Jy is isomorphic to K, we get the
condition K - n of [3, II].

7.6. THEOREM. Let X be a homology n-manifold over XK (or a space satisfying
condition K - n of 1.5); let T be its ovientation sheaf, ® a family of supports, and
& asheaf on X. If either & =K ov & is paracompactifying, then, for all integers
q, there exists a canonical isomorphism

ArH (X ) — H(X; 7 @ ).

The proof is quite similar to that of 7.2. We have now, in the notation of that
proof,

(6) B =T R Y, HUB)=0 (q+0).

Therefore, in the spectral sequence considered there, we have
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) EDi-0 (q#0), E}F'-EHPX;7Q@9),
whence

Hy(;9 ® 9) = EY' = ER - BP(Cy (@) = BZ_(x; 9.

7.7. PROPOSITION. Let X be an n-hmg, and J its ovientation sheaf. Then
theve exists a sheaf £, locally isomovphic to K, and an isomorphism

a(L): 2R T

If &' is another such sheaf and o(Z£'): ' Q ¥ — K an isomorphism, there exists
a unique isomovphism B: & — L' such that the diagram

2R I =5 A1 PRXT

a@)N\, ez
K

is commutative.

A sheaf locally isomorphic to K may be thought of as a fibre bundle whose
structural group is the group of units in K, so that our proposition is a standard
fact about line bundles. We sketch the proof. Let {ui} iel be an open covering such
that glUl is isomorphic with K on U. Let fj: g’|U1 —K X Ui be such an isomorph-
ism. The trans1t10n function 6;;: U;NU; — G (where G is the group of units of K) is
then defined by f;f] (k x) = (6;; (%) - k, xﬂ The bundle £ is then defined by means of

the transition funct1ons flJ , and a(Z) is the obvious map. Details are left to the
reader.

7.8. DEFINITION. Let X be an n-hmy, and 9 its ovientation sheaf. The in-
vevse of J is a sheaf ¥ on X, locally isomovphic to K, together with an isomovph-

ism a(l): QI — K.
Note that if X is orientable, then both & and & are isomorphic to K.

7.9. THEOREM. Let X be an n-hmy; let & be a sheaf on X, & a paracom-
pactifying family of supports, I the ovientation sheaf, and £ the inverse of 7.
Then, for each integer q, theve exists an isomovphism

a: HE(X; #) — Ha (X 2@ 9).
Using 1.6, and the associativity and commutativity of tensor products, we have
HiX; ) =HIX 2@ TR I =H2 (K2R 7).

7.10. DEFINITION. A topolog’zcal space X is a cohomology n-manifold over K
(an n-cmyg) if

(1) 2t is finite-dimensional over K;

(2) for each open set U in X and each integer q + n, each point x € U has an
open neighborvhood V in U such that image HL(V; K) — HI(U; K) is zevo;

(3) for each x € X and each neighborhood U of x, theve exists an open neighbor-
hood V of x and a free submodule A of He(V; K) with a single genevator, such that
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every point 'y € V has a fundamental system of open neighbovhoods W for which
image HO(W; K) — HY(U; K) is equal to A.

7.11. We recall that an n-cmg is clek [ 2], [9] and has dimension n over K [3,
I, 3.1]. It is said to be orientable if each connected component has the property as-
signed to V in (3). If X is connected and orientable, then HZ(X; K) = K and for each
open connected subset U, the map H2(U; K) — He(X; K) is an isomorphism (2, I, 4.3].
With the above definition, cohomology manifolds are automatically locally orientable.
If in (3) the requirement is made only for y = x, then one gets a condition paralleling
(3') of 7.2. If K is a field, then the spaces satisfying (1), (2), and this weaker ver-
sion of (3) are the generalized manifolds of Wilder [9] (see also [2], [3]). It is not
known whether these generalized manifolds are always locally orientable.

7.12. THEOREM. Let X be a topological space. Then the following two condi-
tions are equivalent

(1) X is an (orientable) n-cmy;
(2) X is an (ovientable) n-hmgk and is hlck.

Let X be an n-cmyk. Then it is clek (7.11), hence locally connected, and hlck
(6.6). That it is an n-hmyg (and orientable if it is an orientable n-cmg) follows then
easily from 3.3 and 7.10.

Let now X satisfy (2). It is then clck by 6.6. For U open and orientable,
Hg(U; K) = Hg_q(U; K) by 7.6, hence, if we take into account part (2) of 6.10, the con-
dition that X be hlck becomes exactly the condition that X be an n-emgk. Let now
X be an orientable n-hmyg. Using 6.10, we see that for each component Y of X,
Hrcl(]Y; K) = K. This implies that X is also orientable as a cohomology manifold [2, I,
4.3].

Remark. As was recalled in 7.5, an n-cmyk is always clck. This is in fact a
special case of a theorem relating cohomological local connectedness and local Betti
numbers (see [2], [3] for more details). We do not know whether a similar theorem
holds in homology, and in particular, whether a homology manifold is always hlc k.
Also, it follows from 7.1 and 7.6 that if X is an n-hmg, then dimg X <n+ 1. We
do not know whether this bound can be brought down to n, as in the case of cohomol-
ogy manifolds.

7.13. Remarks orn [2]. The discussion centering around Theorem 7.2 of [2],
where the author tries to put into relations the duality theorems of [2] and [9] is
marred by a mistake, pointed out by the referee of this paper, and by a2 misprint.
Further, as was mentioned by the referee, a result of the present paper answers a
question raised in [2]. We take this opportunity to rectify and complete that part of
[2]. As in[2]let h}*(X, K) be the projective limit of the groups H'(F; K), where F
runs through the compact subsets of X, with respect to the usual restriction maps.
If K is a field, and X is clc”, then

(1) h* = H'(X; K).

In fact, we can take a cofinal set of compact subsets Fy which are the closures of
their interiors Int F,. Then

h* = lim_ Hgy (Fg; K) = lim_ H'(Int Fy; K).

Our assertion follows then from 3.4, 6.5, 6.6 and from the elementary fact that if a
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vector space V is the inductive limit of vector spaces Vg, then its dual V* is the
projective limit of the spaces V}.

On line 4 of [2, p. 236], one should read “inductive” instead of “projective.”
Thus h*(X; K) is the inductive limit of the Cech homology groups H,(F; K) of the
compact subsets of X. Now, K being again a field, H (F; K) is the dual space of
Hx(F; K), hence, by the previous remark,

(2) h* = Hom (h* (X; K), K).

Assume now that X is a connected, paracompact, orientable n-cmgk, where K is a
field. Then, using property (P, Q), we see as in [2], that h*(X; K) and

hx(X; K) = H(X; K)

have at most countable dimension. By (1), (2), 6.5, and [2, 3.2], h,.(X; K) and h™ %(X; K)
have the same dual space, namely H2-T(X; K), hence they are isomorphic. Converse-
ly, if h(X; K) = h™~*(X; K), then by (1), (2), H*-*(X; K) = Hom (HX(X; K), K). Conse-

quently, for connected orientable paracompact n-cmg over a field K [2, 3.2] and

[2, 7.2], which is the author’s interpretation of a result of Wilder, are equivalent.

8. APPENDIX

In this appendix, we introduce and discuss some properties of a certain connected
sequence of bifunctors on the category of sheaves, which yields the homology groups
when the first variable is put equal to K. To start with, we assume only that our
ground-ring K is an integral domain. Its field of fractions is denoted by K*.

8.1. For any K-module B, consider B as an abelian group, imbed B in B as
described in Section 1. Let B = Homz (K, B), where Z is the ring of integers. We
now have an exact sequence

0 — Homgz (K, B) —» Homgy (K, B),

and B = Homg (K, B) C Homg (K, B). So we have functorially imbedded any K-
module B in an injective K-module B.

For any sheaf ., let I(«Z) be the sheaf U — Il ¢y /4. The sheaf I() is in-
jective, and as in Section 1, we may define €¥*(X; /) to be the canonical injective
resolution of .«.

8.2. Let R(K) be an injective resolution of K, considered as a K-module, chosen
once and for all. If & is a sheaf, then D(¥) denotes the sheaf defined by the
presheaf U — Hom (I'c(£|U), R(K)). If o/ and & are sheaves, let @u(X; #, B) be
the differential graded sheaf given by the presheaf

U — Hom (T (¢*(X; «)|U), RKK)) ® 28(U).
Thus Cu(X; 7, B) = €u(X; A4, K) @ B, and #u(X; K, K) is essentially the sheaf
defined in 3.1 and denoted by %y(X; K).

If & is c-soft, then D(%) is flabby, D(#)(U) is Hom (I‘C(QI U), R(K)); if & is
injective, D(%) is torsion-free. The sheaf ¢u(X; , K) is a s -module, flabby,
torsion-free, and ®-fine for any paracompactifying family &; and
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G 4(X; A4, K) = Hom (T' (€*(X; «#)|U), R(K)).
This follows from 2.3, 2.7, and 2.9 if we take into account the fact that these proposi-

tions and their proofs are valid without any change if K is an arbitrary integral
domain.

8.3. Define
T, (A, B) = H,(T(@y(X; o£; B), Te(, B) = H (Ta(Cy(X; o; B)),
where & is a paracompactifying family on X. Then,
T (K; #) = H (X %8), T2K; #)=HE(X;®).
Note also that if & is any injective resolution of 7, we have
T, (#, B) = H,T(D(2) ®K)), T2(4, %)= H,([5(DL)QA)).
In fact, there then exist homomorphisms
o: €X¥X; ) - 2, B: & — &¥X; )

such that @ o 8 and B o @ are homotopic to the identity. They induce homomorph-
isms

a': D(2) @ B — CHX; A, B), P CulX; o2, B) — DZ)Q B

such that o' o 8' and B' o a' are homotopic to the identity, and our assertion fol-
lows.

Let 0 - &B' —» B — B" — 0 be an exact sequence of sheaves on X. Since
€ (X5 ) is torsion-free (8.2), the sequence

0 = CyX; &, B') = CYX; A, B) > Gu(X; o2, B") — 0

is exact. Since @ u(X; /) is &-fine (8.2), the sheaf &y(X; «, B') is ®-soft;
therefore [7, Théoréme 3.5.2, p. 153] the sequence

0 — 1"(1) C (X oL, B') — I‘@%H(X; A, RB) — I‘@%H(X; L, B") — 0
is exact and yields an exact sequence

(1) e = T2, B) - T, B) > T, B") > TS (t,8) — -

Let now 0 —» &' — & — " — 0 be an exact sequence of sheaves. It can be ex-
tended to an exact sequence 0 — &' —» £ — €*(X; A") — 0 of injective resolutions
[7, p. 261]. Then, since R(K) is injective, the sequence

0 — @L(X; ") - D(Z) - D(£') - 0

is also exact. Its elements are torsion-free (8.2), and therefore

0> €K A"NVR®B - DL)QRAB - DEZ)Q B — 0
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is exact. The sheaf €(X; ") is also ®-fine (8.2); therefore its tensor product
with # is &-soft, and [7, 3.5.2, p. 153] the sequence

0 — Tg(@ (X A", B)) — T'gD(Z)RRB)) — T'y(DE@)RB) — 0

is exact. In view of the remark made after the definition of T (., &), this yields an
exact sequence

(2) e —» T;{:(an’%) — Tg’(.ﬂ, RB) — T%’(Jgn,g) — TS’_I(VJ:.’ B) — -

We have therefore shown that the sequence of bifunctors TE(:}Z{, ) on the cate-
gory of sheaves on X, contravariant in the first variable, covariant in the second
variable, is connected.

8.4. If the sheaf .« is injective, we may consider £ to be its own injective
resolution. Then Tg) (oA, B) =0 for n> 0, if . is injective. If the global dimen-
sion of the ring K is N, we may assume that R(K)2 = 0 for q > N; thus
T2(A, B) = 0 for n < - N, and the functor T, (4, #B) is right-exact.

If K is a field, we then have Tg(ﬂ, #B) =0 for q < 0, and T%’(.,d, RB) =0 for
q# 0 and «« injective. This means that in this case, for n > 0, we may consider
Tg’ (£, B) as the n-th left-derived functor of the functor Tg’ (2, $B), which is right-
exact.

If K is of global dimension 1, that is, if K is a Dedekind ring which is not a field,
then T®(., 8) = 0 for q < -1; and if in addition « is injective, then TR (A, B) =0
for q > 0. Then, if we show that Tg=' (A, B) =0 for A« injective, we may consider
T%(J, A) as the n-th left-derived functor of the right-exact functor T?I (A, RB).
Then it remains to show that in this case Tg’(.,d, AB) = 0 for .« injective, which we
do next.

8.5. LEMMA. Let K be a Dedekind ving which is not a field; let & be a para-
compactifying family, and & an injective sheaf on X. Then Tg’(d ,B)= 0.

We have an exact sequence of presheaves which, for each open U in X is the
exact sequence

0 — Hom (T (#|U), K) — Hom (T' (| U), K*) — Hom (I' (#|U), K*/K)
— Ext (T («]|U), K) — 0.

However since I' (| U) is injective, Hom (T' (| U), K) = 0, and thus we have an
exact sequence

0 — Hom (T' (4| U), K*) — Hom (T (#|U), K*/K) — Ext (T («|U), K) — 0.

Since K* and K*/K are injective, the two left-hand presheaves are sheaves, and
they are flabby (2.3). Thus (by [7, Théoréme 3.1.2, p. 148]) the right-hand presheaf
U — Ext (T (o | U), K) is also a sheaf, and is flabby. Let this exact sequence of
sheaves be denoted by

0> €y, — 6., > & — 0.
Now we may consider € = %, + ¥-, as a differential graded sheaf whose differential

is the natural map ¥, — %_,; and we may use ¥ instead of €¥y(X; A, K). For any
sheaf £, we have Hq(l"(I,(% R RB)) = Tgl’(d, AB), for each q. Now the stalks of the
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sheaf @, are modules over K¥*, and they are injective. Therefore, for each point
x € X,

0 — (%O)X - ((g-l)x - gx — 0

is split exact, and since (¥ —l)x is torsion-iree, so is &,. This means that for each
sheaf £, the sequence

0 -G RB— ¢, QB—-ERQAB—0

is exact, and since €, is flabby, that is, €, & & is &-soft for any paracompactify-
ing family &, the sequence

0 - T'g(zy@8B) — Tp(€_ 1 ®0B) 2Ty @B) >0
is exact. Consequently, if .« is injective, the kernel Tg)(d, B) of
P (€, ®B) - T'y(¥_QAB)

is zero, and Tﬁ (A, B) =Tg(& D B).
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