ON THE SEMI-SIMPLICITY OF GROUP ALGEBRAS
S. A. Amitsur

Let F be a field of characteristic zero, and let G be an arbitrary group. For
the real or complex field, the semi-simplicity of the discrete group algebra F[G]
has been established by means of analytical results on Banach algebras (“semi-
simplicity” will always be used in the sense of Jacobson, and “radical” will mean
“Jacobson radical”; for definitions and for references concerning this problem, see
[3, especially Chapter I, p. 22, Problem 1]). The general case of a field F of char-
acteristic zero which is of infinite transcendence degree has been disposed of in [1]
by reduction to the complex case. Commutative groups G and groups of a slightly
more general structure have been treated by Villamayor in [5], with the help of co-
homological methods. In the present note we obtain an algebraic proof for all known
cases, together with a slight extension.

1. First we observe the following simple fact.

LEMMA 1. Let Q be the field of all rvational numbers. Then QG| does not con-
tain nonzevo nil ideals.

Indeed, let 0+ x = Zxgg € Q[G], and let x* = Zxgg~!; then y = xx* = Zygg # 0,
with Yg-1 =Yg and y. = Z}xé # 0. One readily verifies that if z = Z zgg has the
property that z., # 0 and Zg = Z__], then z? has the same property. Now, if x# 0
belongs to a nil ideal, then y = xx* is also nil, but in view of the preceding remark,

yzn is never zero. This is a contradiction.
In view of Theorems I and II of [1], Lemma 1 yields the following proposition.

THEOREM 1. If F is a transcendental extension of Q, then F[G] is semi-
simple.

For let F contain P, a pure transcendental extension of Q such that F over P
is algebraic. Then it follows by [1, Theorem II} that the radical of P[G] is NX) P,
where N is a nil ideal of Q[G], and the previous lemma shows that N = 0. Conse-
quently, P[G] is semi-simple. Now F is a separable algebraic extension of P,
hence, by [1, Theorem I], F[G] is semi-simple.

This extends the result of [1], where F was assumed to be of infinite transcen-
dence degree over Q and where a reduction to the complex case was used.

2. Consider the case where H is a finitely generated group. Here Q[H] is gen-
erated by the generators of H and their inverses; that is, Q[H] is a finitely generated
algebra. In particular, it is well known that the radical of a finitely generated com-
mutative ring is nil. (A generalization of this result is proved in [2, Theorem 5].

The commutative case is equivalent to the Hilbert Nullstellensatz; for reference see
[3, p. 23, Problem 4].) Hence, in view of Lemma 1, there follows

LEMMA 2. If H is a finitely genevated commutative group, then Q{H] is semi-
simple.

The case of an arbitrary group can be reduced to finitely generated groups:
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THEOREM 2. If F[H] is semi-simple, for each finitely generated subgroup of.
G, then F[G] is semi-simple.

This follows from the fact that if an element x = Zxgg € F[G] has an inverse in
F[G], then it has also an inverse in F[H], where H denotes the subgroup of G gen-
erated by the finite number of g’s for which xg # 0.

For if Xy = e and y = Zygg, then
® ngyg-l =1, Exgyg-1k= 0 .
for all k€ G. Let y' = Zyyh, where the sum ranges only over all h € H. Then
xy' =2 (Exgyg_lk) k=e.

Indeed, if k ¢ H, then none of g~k € H for all g with Xg # 0, and therefore the cor-
responding coefficient is zero; and if k € H, then g~*k € H for all of these g’s, and
our result follows by (*). The proof is complete, since y' € F[H].

Now, if G satisfies the requirement of the lemma and x = Z xgg belongs to the
radical of F{G], then the preceding remark clearly shows that the inverse of
e - xz (z € F[H]) also belongs to F[H]; but F[H] is semi-simple, hence x = 0. Thus
F[G] is also semi-simple.

From Lemma 2 and Theorem 2 we obtain the following proposition.
COROLLARY 1. If G is a commutative group, then Q[G] is semi-simple,

Now [1, Theorem V] enables us to settle the problem for arbitrary fields of
characteristic zero:

THEOREM 3. If F is a field of characteristic zevo and G is commutative, then
F[G] is semi-simple.

3. Remarks. 1) There is a conjecture that the Jacobson radical of a finitely gen-
erated ring is always nil. The confirmation of this conjecture would yield, by the
methods of the previous section, that F[G] is semi-simple for an arbitrary field F
of characteristic zero and an arbitrary group G.

2) In [2] it was shown that the Jacobson radical of a finitely generated ring which
satisfies an identity is nil. Now the group ring F[H] satisfies an identity if all
primitive representations of H are of bounded degree. (For a definition and the
discussion of such groups and representations, see I, Kaplansky [4].) Thus, following
the proof in the previous section, one can clearly obtain

COROLLARY 2. If every finitely genevated subgvoup of G has the property that
all its primitive vepresentations are of bounded degree, and if ¥ is a field of char-
acteristic zevo, then F[G] is semi-simple.

If G is a group with a center Z such that G/Z is locally finite, then one readily
verifies that G satisfies Corollary 2.

3 The following remark is due to Villamayor: The semi-simplicity of F[G] for
an arbitrary field of characteristic zero yields the semi-simplicity of K[G] for an
arbitrary semi-simple commutative algebra K over the rational numbers. For such
algebras are subdirect sums of fields F of characteristics zero, and therefore K[G]
is also a subdirect sum of semi-simple rings F[G]. Consequently K{G] is semi-
simple.
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