THE FOURIER COEFFICIENTS OF AUTOMORPHIC FORMS
ON HOROCYCLIC GROUPS, II

Joseph Lehner

1. INTRODUCTION

In a recent paper [ 3], I showed how the circle method can be used to determine
the Fourier coefficients of entire automorphic forms on certain horocyclic groups
(Grenzkrveisgruppen). These groups are characterized by the fact that they are
finitely generated and that they possess a single equivalence class of parabolic ver-
tices, or, to put it in another way, that they have fundamental regions which touch the
real axis in exactly one real point (possibly «). In the present paper, we extend the
method to all finitely generated horocyclic groups.

More precisely, a horocyclic group I' is a group of linear transformations of a
complex variable such that .

(a) T' is discontinuous in the upper half-plane but is not discontinuous at any
point of the real axis,

(b) every transformation of I' preserves the upper half-plane.
I, in addition,
(c) T' contains translations,

(d) T is finitely generated,
we call I' an H-group. (In [3], T was defined to be an H-group if it satisfies con-
ditions (a) to (c).) In [3], we restricted I' by the further condition that all its para-
bolic vertices (fixed points of parabolic transformations of I') should be equivalent
under I'" (and therefore, by (c), equivalent to «). Here we shall lift this restriction.

By an entire automorphic form of real dimension r on I"', we mean an analytic
function F(z) of a complex variable z, which is regular in the upper half-plane,
which satisfies there a transformation equation

(1.1) F(Vz) = e(V)m(V, z) F(z), m(V,z)=(cz+d) T

for every V € I', and which tends to a definite limit (finite or infinite) as z ap-
proaches a parabolic point from within a fundamental region. (Note that equation
(1.1) is written slightly differently in [3].) The last condition is equivalent to the
following: F(z) has at most a pole (not an essential singularity) in the local variable
appropriate to a given parabolic point.

In (1.1), the multiplier €(V) is of absolute value 1 and is independent of z. The
branch of the many-valued function m(V, z) is determined in the following way: If w
is a complex number and s is real, we define

(1.2) wS= |w|% exp(is arg w) (-m <argw <m).

For any two substitutions V,, V, € T, we can evaluate F(V,V, z) in two ways; com-
parison then yields a “consistency condition”:
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(1.3) e(V,V,)m(V,V,, 2) =e(V)e(V,) m(V,, V,z) m(V,, z).

By means of the transformation equation (1.1), we show in Section 3 that at each
finite parabolic point p of I', there is a Fourier series for F(z):

F(z) = (-1/X(z - P)) " e(-<a/A(z - p)fp(t), t=e(-1/Az - p)),
(1.4) 0o
£ = 2 alPem,

m=-~ i

where A, ¢, p are constants associated with the form F and the point p (see (2.2),
(3.2), (3.3)), and where

e(u) = e27iu

In [3], we had only one inequivalent parabolic point in the fundamental region of T’
(namely, ) and thus only one expansion (1.4). We determined the a,, (m> 0) from
the a,, (m < 0) (coefficients of the “principal part” of f(t)), by using the expansion
(1.4) about . In the present case, we shall have to consider a set of inequivalent
vertices p), p2 ‘', Ps of a fundamental region of I', which gives rise to a set of ex-
pansions of the form (1.4). Again, we shall determme the Fourier coefficients a(k)
m > 0, from the a.n-]1 (m<0;j=1, 2, ---, 8), this time by utilizing the set of expan-

sions (1.4) about the vertices p;, **+, pg-.
The circle method starts out by expressing a(k) as a Cauchy integral:

alld - L fi(t)

27 Ctm+1 dt.

The principal problem is then to select a path C which will permit us to take ad-
vantage of the transformation equation (1.1). This problem is solved in Section 4.
Once the path has been chosen, the work proceeds by straightforward methods.

We collect our main results in the theorems which follow. First, we need some
definitions.

Let I' be an H-group. Fix a fundamental region R, of I' which does not contain
o as a vertex. Let pi1, p2, ***, ps be a complete set of inequivalent parabolic ver-
tices of R,. For each j, the subgroup I'j of I' which preserves Pj is generated by

a matrix
1+ A;p; -Aip?
( iPj jPj )
S; =
A 1- 25057

J

(see (2.2)). We select a system of elements V of I" such that

a.
-1 jk
ik djic

satisfies
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(Aj, Ak are defined in (2.1).) This set of V we call Mjk. The set of c¢;jx for which
Ve Mjk is denoted by Cjk’ that is,

Cy ={x| 7 ()« AjI‘Ak'l},
where, as usual, A jI‘Ak“l denotes the set of elements X such that
X=A;VAL, ver.
Also, let
ﬁ('r/cr)(r"Ll)/2 I..;(4n0 1/2 Tl/z/c) (>0, r>0),

(1.5) L, 0,7, 1) = L/ 2L (4ne?/27M /2y (@>0, r<-2),

217/ T+ 2)  (@=0),

so that L(c, 0, 7, r) = lim L(c, 0, 7, r) for r > 0. Here I.(z) is the Bessel function
g—0

(2/2)r+2n
I.(2) =nz=)0 T'(r+n+1)T(n+1)°

Moreover, we set
(1.6) m, = (m+a,)/A, v; = (v - a; Y A (1<j, k <s)

(see (2.2), (3.2)), and for Ve M,

1.7) Alcj, v, m) = 2 g 1W) )
( (©jicr v dji€ Dcj5) e dlem, d R Jk/c -

We are now ready to state our results.

THEOREM 1. Let F(z) be an automorphic form of dimension r > 0 on T and
having the expansions

o
F(Z) = (-I/Ak(z - pk)) —rtkkfk(tk), tk = e('l/hk(z = pk)) ]
co
0= 2 a&‘) t™ (1<k<s)
m:-le - —
about the parabolic vertices p,, p,, **, p;. Then, for each k (1 < k < s), the Fourier

coefficients a(k) with m > 0 ave given in terms of the set of coeffzczents a(J) with
m<0 (1<j< s) by the formula

(1.8)
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(1.9) al)= (27 927 G % ejilAley, vy mp Licy, my, v, 1).
als (Ak) e(r/ oz 1'a. otcy Cjk AlCj vy my) Licyy, my, vy, 1
Jk>0

Theorem 1 was obtained by Petersson [4], who used his generalized Poincaré
series and the Hilbert space of automorphic forms. Theorems 2 and 3 are new, so
far as I am aware.

THEOREM 2. If ¥(z) is an automovphic form of dimension zevo on T having the
expansions (1.8), then, for m> 1,

s “j
20 - (2 Vew/a) T Tal) o “LA(
av’/ = e(r al C.q, vV, m)L{c.,, m,, r)
m <Ak) j=1 v=1 VCjkéCjk Jk Jk J 1{) Jk K V
(1.10) 0<c;<B vm
+0(1),

wheve B is any positive constant.

THEOREM 3. Let G(z) be an automovphic form of dimension -2 on T with
Fourier coefficients b(k) which is, moveover, the derivative of a form F(z) (of di-
mension zevo). Then, for m > 1,

2 5 'u.] -
b(rl:l) = (%) ie(r/4) (m+ )20 25 a(fl 2 cjk-lA(Cjk’ vy, )
k j:l v=1 CJkGCjk

X L(cjy, my, Vs r) + O(m).

Theorem 3 is obtained from Theorem 2 by merely differentiating (1.4).
The next two theorems are easy corollaries of Theorems 1 and 2.

THEOREM 4. The Fourier coefficients of an automorphic form of nonnegative
dimension on ' satisfy the inequalily

(1.12) agi) = O(m'r/z"?’/4 exp 4nk (m + 1) 1/2) (m — ),

where (see (2.5))
((Nj - aj) Aj Ak)l/z'
K = max — .
1<j<s Cjk

THEOREM 5. An automorphic form of positive dimension on I which is finite
at all parabolic vertices is identically zevo.

Theorem 4 is proved by applying the standard asymptotic formula for the Bessel
function to (1 9) and (1.10). In Theorem 5, we are given that a(J) =0 for m< 0 and
j=1, 2, -, s. Then (1.9) shows that a{) = 0 for m> 0.

These results generalize those of Zuckerman [5], who studied H-groups which
are subgroups of the modular group. They are approximately co-extensive with the
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theorems of Petersson [4] insofar as entire automorphic forms are concerned. I
shall treat meromorphic forms by the circle method in a later publication.

Finally, we can discuss forms of certain negative dimensions as we did in [3].
Let F(z) be an automorphic forsn of dimension r < -2 on I having the expansions
(1.4), where the coefficients a (m <0, 1<k< s) of the principal parts are

given, as well as the o} (see (3 2)). Assume all @, > 0. Construct the functions

G(2) = (-1/M(z - p)) T 2 (k) e(-(m + ay ) /Ax(z - p)) (1 <k< s),
m== e

with the a(mk) of (1.9). When r < -2, the order of magnitude of the a(};) can be estab-

lished as in Section 7. Then, exactly as in [3], we can prove that Gyi(z) is an auto-
morphic form of dimension r on I'. Thus F(z) - Gy(z) is a form on I" which van-
ishes at the cusp py. Hence, we have the following theorem.

THEOREM 6. If F(2z) is an automorphic form of dimension r < -2 having posi-
tive ayx (1< k < s), then the Fourier coefficients of ¥(z) in its expansion (1.4) about
the parabolic vertex py differ from the a(k) of (1.9) by the coefficients of an auto-
movphic form on T (of dimension r) whzch vanishes at p, .

2. THE GROUP T'

Let T' be an H-group. The elements of I" will be represented by unimodular
matrices V = (i 2) with real entries. We assume that -I = (_(1) _(1) € I'; hence,

-V = ( :i‘ :2 € I' whenever Ve I'. We identify +V with the linear transformation

Vz = (az + b)/(cz + d) and use the symbol T to denote either the group of linear
transformations or the group of matrices. As a discontinuous group, I' is discrete,
that is, there is no sequence of different matrices in I' which tends to the identity
matrix.

A parabolic vertex (or parabolic point) of T’ is, by definition, the fixed point of a
parabolic element.of I'. Let p be a finite parabolic vertex, I'p the subgroup of T’
which preserves p, and A the matrix

(2.1) ap=(970),

where p # ©, A, = 1. Thus, Ap(p) = oo, There exists a parabolic transformation
[ ] =Sz of I‘ which has p as a fixed point. Every such transformation is of the form
(121, p. 22)

1 1
z'-p zZ-p ’

1+2ap -2ap?
S=8\) = .
A 1-2Xxp

or
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That is, S{A) € T'; and obviously so does S(A)™ = S(m2) for every integer m. Since
I'p, as a subgroup of ', is dlscrete, it follows that there is a positive value Ap of A
such that S(Ap) = 8, generates T’y

. 1+2,p -A p2
P P
(2.2) I, = {sp}, sp=( )

We shall denote the parabolic vertices of I' by p,, p,, ***, and correspondingly,
AP by A,, Ap, by A,, and so forth. Let pj, px be two finite parabolic points of T.

In later sections, we shall need.to consider the set AjTAx" 1 1et C jk be the set of
third coefficients in the elements of AjT'Ax-1, that 1s,

(2.3) Cjk={x| T ()¢ AjI‘Ak-l}.

LEMMA 1. The set Cj is discvete (j, k=1, 2, **).

Following Petersson, we introduce the symbolic notation

(B, v o (1%) rea.

Then

- =y -1~k
(2.4) AS;A7 =0T, AS A T =TT

If the lemma is false, there exists a sequence of different ¢, in

an bn
= € AJ- I‘Ak‘l
cn dn

with ¢, — c (c finite) as n— . We may assume c,> 0. Now X = AjVnAk‘1

with V, € T', and therefore Y, = Aj;S; annSk nAk also belongs to Aj TA-!
(Qn, T mtegers) But using (2.4), we calculate

-d_ -
v -y g g (7T G
n n
Cn d, -r A\c, c, d

For each n,lchoose q,, r, so that
1 ]
ISan<1+J\jcn, I_Sdn<1+hkcn.

Since c, — c, it follows that the sequences {a,}, {d,} are bounded, so that on a
certain subsequence we have

— c, a! —a, d;n—»d

c m

m

with 1<a<1+2a5cand 1<d<1+ Age.

Now if ¢ # 0, we have immediately
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ad - 1
o

lim br'n =
m—')w

In the case c = 0, we have, for large m,

0<b

(1+ A em)(1 +Acey) -1
1< - = X+ A+ ijkcm<2(xj+ak).l

Thus {b]'m} is bounded, and on a further subsequence, bi, —b.

In any case, then, Y, — (2’ g), the matrix being unimodular. It follows that

Up=Yp th — I. If only a finite number of the U, were different, we should have

Up =1 (p>N) or Yp = Ypt1 (p > N). This contradicts the assumption that the Cp
are all distinct.

Hence, we have a sequence {Yp} ={A;V, A1} (Vp € T') such that Y, Ygi — L
But Y, Y,,"! = AjV, Vo7 A57L. It follows that Wp = VpVpii — I Now if the
sequence {W } contained only a finite number of distinct elements, we would have
Wp=1I (p > N) or Vp =Vp+l (p> N). But this would imply Yp = Yp+1 (p > N),
which we have just seen is false. Therefore, {WP} contains a sequence of distinct
elements of I" which tends to the identity, and so I" is not discrete. This contradic-
tion completes the proof.

The lemma implies that the set of positive values of ¢ in C jk has a positive min-
imum. We call this minimum

(25) cjk= min{cl (3 Cjk’ c> 0}.

For later use, we shall need the set

(2.6) D(cjk)={djk|( Lo
4 Cjc 4

)€ AJI‘ Ak-l, OS -djk/cjk< Ak}’
jk

where c;, € Cji, cjx > 0.
LEMMA 2. For each positive cj. € Cjy, the set D(c;y) is finite.

Let D*(cjk) be the set of djk such that (cjk djk) € AjI‘Ak’l. The lemma will
follow if we show that D*(cjk) is discrete. If it is not, there is a sequence of differ-
N — - - _1 .
ent d —d # for which X = (cjk dn) € Aj T'A,"". Then we can prove in the

same way as before that I" is not discrete.

3. AUTOMORPHIC FORMS ON I'

Let F(z) be an automorphic form of the type described in Section 1. At each
finite parabolic vertex p;, of T', there is a Fourier expansion of F(z) in the variable

(3.1) t, = e(Az/Ay) = e(-1/0(z - py)),

with the Ax and Ay of (2.1), (2.2). This is obtained as follows.
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Set
z' = § z, Z=A,z, Z' = Ayz',

Sy being the generator of the subgroup I'y of I' which leaves p, fixed (see (2.2)).
Then (see (2.4))

Z'=A,8,z=A S A '2=2%- M-
Let F(z) = g(Z), F(z') = g(2'), and |
(3.2) E(S,) = e(-ay),
where 0 <a, <1, and note that
Az + 1 - X p = Ak(Ak'IZ) +1-App=2P-2Z “hyyg- AP = (Z - 0)/Z.

Apply the transformation formula (1.1) to F(z) with z — S, z, and obtain

o{(Z - N = ¢(2),
with

$(Z) = e(-0, 2/ ) Z7 g(2) .

Hence, ¢$(Z) has a Fourier series in the variable e(Z/A;,). Transforming back to z,
we get the desired expansion of F(z):

(3.3) F(z):(Akz)'rtkakfk(tk), 0= 2 aldm (|t <),
m:—,u,k

the series converging in |t| < 1. In accordance with the definition of Section 1, we
have made the explicit assumption that the Fourier series of F(z) contains only a
finite number of terms with negative exponents. That is, fi (t) is a regular function
of t in |t| < 1, except possibly (if p, > 0) for a pole of order iy at t=0. The
finite sum

(34) a,gl:l') t_u' 4 oeee a(_li)t’l

is the principal part of f, (t) at t = 0.
We shall need the transformation formula (1.1) expressed in terms of f rather
than F. Let V€ I' be such that A; VAy -1 does not have = as a fixed point
(j, k=1, 2, ---). Then, with Pj» Py # =, we have, by (3.3),
F(Vz) = (Aj Vz). " e(aj A; Vz/)tj) fj(e {Aj Vz/)tj .
But F(Vz) is also equal, by the transformation equation (1.1), to
e(V)m(V, z) F(z) = (V) m(V, z) (A, 2)" e(a; A z/N ) f (e {Ak z/Ak}) .

Writing



THE FOURIER COEFFICIENTS OF AUTOMORPHIC FORMS, II 181
(3.5) w=Arz, z=A"lw, AVz=AVAlw=w,
we get
e(oy w/hk)fk(e{ W/)\k}) =gl (V)m-1(v, Ak'lw) wiw! 're(aj w'/Aj) fj(e{w '/)\j}) .
A little algebra shows that
m YV, A lwwiw' T = m’l(AjVA 5w
where, however, careful note must be taken of the convention (1.2). Hence, finally,

5.6 f (e {w/M}) = s'l(V)m'l(AjVAk'l, w)ela; w/x; - ayw/aie{w /A})
3.6
(j’ k= 1, 2: "'))

where w' is defined in (3.5), and V is such that AjVAk‘1 does not preserve <,
This is the desired form of the transformation equation.

We shall also need the form of this equation with A j= I. Introduce the expansion
of F(z) about oo:

o0

(3.7) F(z) = elag z/0 f,1), f,00= 2 alOt™  t=e(@/ny,
m=-[L,

where
e@) - s(S)el-r) (O<ag<D and So= (4%

Carrying through the details of the above discussion, we again get (3.6), but with
w!' = V’Ak‘1 w. By allowing a factor n of absolute value one, we can state the result
for all Ve I':

3.9 fk(e{w/)\k}) =7 e }(V) m’l(VAk'l, w) elag W/ g - aw/r)fgle {w'/Ao})
3.8
k=1,2 5 |n|=1).

4. PATH OF INTEGRATION

Let p, be a finite parabolic point of I'. In the subsequent discussion, we shall
keep k fixed, and we shall often suppress k in the notation. We wish to find con-
vergent series representations of the Fourier coefficients agﬁ) (m > 0) of (3.3). For
this purpose, we apply Cauchy’s theorem to the function fi_(t), which is regular in
|t[ < 1 except for a possible pole at t = 0:

(4.1) o)~ g § B0t ™ at,

where C is a circle of radius exp (-27r/N2 Ak) with center at the origin. N> 0 is
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arbitrary, but later we shall make N — «. With the change of variable t = e(w/x,),
w = X + iy, we get

(4.2) Ay ag) = S‘ fi (e(w/2)) e(-mw/x ) dw,
‘ L

where L is the line segment
(4.3) Li(N)=L: 0<x<x, y=N?2,

We must now prepare a partition of the path L which is suited to the purpose at
hand. Let us remember the correspondence of the w- and t = e(w/X\y)-planes: as
W —ieo, t =0. As N— o, L will approach the real axis or |t| — 1, that is, t will
tend to the boundary of the domain of existence of fi (t). In order to obtain a sharp
asymptotic estimate for fy(t), we apply the transformation equation (3.6) by which the
point w € L is carried into the point w' = A; VA"l w. We want w' to be “near” iw
so that t' = e(w'/}j) will be near 0, and the value of f5(t') will be approximated with
great accuracy by the principal part of f; (see (3.4)). We are, therefore, led to con-
sider the sets :

LWV =LV)={weL| Tpwe It E} (j=1,2 ),

where we have set
c_]k d_}k

and where h > 0 has still to be chosen. Int E denotes the interior of the set E.

We have defined sets Ij(V) corresponding to each parabolic point Pj (and certain
VeT). Butif pj is equivalent to py under T, the expansions at p; and py are not
essentially different. Let R; be a fixed fundamental region of I' which does not con-
tain « as a vertex, and let p;, pz, ***, ps be a complete set of inequivalent parabolic
vertices of R,. Then we define

(4.5) (V) =L(V) ={we L| Ty we IntE}  (j,k=1, 2, -, s),

with the T jx and E of (4.4).

First, restrict h by the condition h > N~2. Then, if I;(V) is not empty, we shall
have cj, #0 in Tj,. For cj = 0 implies that T ;. fixes oo, that is, V(py) = p;- But
this is possible only if j = k, since py, pj are inequivalent under I, and in that case
V = 81" for some integer m. Thus Ty = A; Sijj‘1 = U-mAj by (2.4), or Tjk isa
horizontal translation. Since h > N72, and L = Ly is at height N7%, Tjk cannot send
any point of L into E and Ij(V) is empty.

Consider the set Mi(N) = M: of those V for which I;(V) is not empty. V€ Mj
if and only if Tjk'l(E) intersects L = Lyy in a nonempty interval. As we have jus
seen, cji #0. Hence Tj~1(E) is a disk of diameter 1/cjzkh tangent to the real axis

at -d jk/c jic It follows that Ve M3 if and only if the equation

(x + dye /e % + (N2 - 1/2¢h) = 1/4cjich?
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possesses two solutions x + iN 2 (x real), at least one of which lies in L. This
gives the conditions

as a characterization of M}. Note that
(4.6a) 0<Kk < 1/?3.;211

where _c;}; is defined in (2.5).

Suppose V€ M_'] Then, for every integer m, Sij € MJ'. For, by (2.4),
X = A8, VA = U Ty,
so that the images of a point under X jk and Tjk are at the same height. We clearly

need only one V of the class {SmV} in M (These classes are, in fact, the right
cosets of I‘ in I'; see (2.2).) Now

Xjk - .
€jk Ak

J

Hence, for purposes of normalization, we can select the integer m so that

As a result of these considerations, we shall define a new set M k(N) as follows
= - -1/2
“n M, (M) = M;={VeT|0<c, <N /2, k/N< ~d/C < A+ /N,
OS ajk/cjk< AJ} ’
where, as before,

)
jk

-1 '
: Cik %

and where k is defined by (4.6a).
Let

S
(4.8) 1= .U L(V).
No Ii(V) is vacuous, and Ic L. Moreover, it follows from (4.7) and Lemmas 1 and
2 that

(4.9) ‘ M; = Mjk(N) is a finite set for each N> 0.

The next step is to prove that the sets {I (V)} do not overlap. Suppose
I (V N I,(V,) contains an open interval w and let

AjViAxlw=w)€E, AL,VAc lw=wy€eE.
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Then

-1, -1 1
)

T=AjV1Ak_1(AszAk =AjV1VZ_lAm-

maps w, on w,;. Let T = (')’ ) I y #0, then T maps E on a circle C of di-
ameter y -2p -1 tangent to the real axis. Now by (2.5), |'yl > Cjm; hence,

2 -1 2
Y % h <cjm h™ ",
K we finally choose
(4.10) h= max 1/c_,
1<j5,k<s v

the diameter of C will be not larger than h, and so T maps the interior of E into its
exterior. Thus T cannot map w, on w,, since both sets lie in E. Hence, the assump-
tion that y# 0 is untenable, and T has « as a fixed point. It follows that

V;:l(pm) = Vil(pj) .

But Pj and p,, can be equivalent under I' only if j = m.

We now have Vlvzl(pj) = pj, so that V) = S}an. This means that V, and V,
belong to the same coset of I'; in I' and therefore cannot both be in M. This com-
pletes the proof of the fact that the sets in the partition (4.8) of 1 do not intersect
(except possibly in an endpoint).

In general, the intervals {Ij(V)} of the above partition of I do not exhaust L.
Let

(4.11) I,=L-1I.

Then, for any j, k andany Ve T, AjVAk'l(Io) lies below E.

Consider the disks Dj= Aj"l(E) 1< i< s); Dj has diameter h~! and is tangent
to the real axis at pj. Adjoin to this set the disks Dgst1, Ds2, -+, D¢ of diameter
h-! tangent to the real axis at pg+1, ***, Pt, the remaining parabolic cusps of the
fundamental region R,. Call D, the part of R, exterior to all D; (1 <j<t); D,
may be empty.

Each point w of I, is mapped into R, by some VAk“1 (VeTI). The image of w
is actually in D,, since if it were in Djfor some j' (1 < j'< t), then there would be
an integer j in 1 <j< s and an element V, € I' such that p; is equivalent to pj and
A;V1Ax-lw is in E. Then w would be in Ij(V;). Hence, define

(4.12) I,V) ={we L] VA, "lwe D¢} .

This time, L,(V) is either an interval or the union of a finite set of intervals; for D,
is bounded by a finite number of arcs. From (4.8), (4.11), and (4.12), we obtain the
desired partition of L into nonoverlapping sets:

(4.13) L= U 1™,
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Mo,k(N) = M, being the set of V on which I,(V) is not empty. Since the sets of the
partition do not intersect, we have

S
(4.14) 2 T 1= Ay
j=0 veM,
where |Ij(V)| is the measure of Ij(V).
Recalling that R, does not contain the point «, we note for later reference this

corollary of the preceding discussion:

(4.15) the region D, lies between two hovizontal lines at heights hg, h, (h, > hy)
above the real axis.

5. INTEGRATION

Going back to (4.2), we now have

S
k
(5.1) )Lkain) =2 X fk(e(w/Ak)) e(-mw/A,) dw + 2 S =T;+T,,
j=1 Ve Mj Ij(v) VeM, I4(V)
the integrands in all integrals being the same. T, is negligible, as we now show.

In the integral over L(V), we apply the transformation equation (3.8) with
w — Vw, obtaining

(5.2) T,= 2 e l(v)g m'l(VAk‘l, w) e(ag w'/Ay - my w) £y (W'/2) dw,

VeM, I5(V)

where my has been introduced from (1.6). When we I(V), w'= VAk'lw € Dy. Call
D, /A, the region obtained from D, by applying the contraction u — u/A,. Since, by
(4.15), Dy/A, is a compact region containing no singularities of f,, we conclude that

[fo(W'/A)] <B  (we (V).
Also, with VA, "1 = (Y 6) , we have, again from (4.15),

2, -1
hy °,

| yw+6]%= Sw/3w' < N~
and Iw' < h,, so that
|m-1(vA, -1, w)] < CN-T.
Here C denotes a general positive constant which is independent of m and N but

may depend on any of the other parameters. Using these results in (5.2), we deduce
that

IT,| < 2 |IO(V)| CN-T exp (Cm/N?2).
V€M0
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The sum of the lengths of the intervals in I,(V) does not exceed Ay, by (4.14); hence,
(5.3) T, = E(m, N),
where we have introduced the error term
E(m, N) = O(N"T exp(Cm/N9).
We now treat T,. Since in Mjk no AjVAy~ ! has » as a fixed point, we can, in

each integral of Tl, apply the transformatlon formula (3.6). In the result, replace f
by its Fourier series (3.3), separating the principal part:

s -1 :
T,=2 V) & =T (J) g 'l(AjVAk'l, w)e{(n+ a;) w'/A; - m, w} dw
j=1 VeMj n=-fl; I, (V)
Gl T el T S m-1(a; VAL, w2 al)) e{l(n+ aw'/a; - mw} dw
=1 VeM; VI;i(V) n=0
=Ty + Ty,

where we have interchanged the order of summation and integration in the finite sum.
(If, for a certain j, F(z) is regular at Z = the corresponding sum in T,, for that
j does not appear, that is, we set al- J (J = 0.) We estimate T,,.

On I;(V), we have, by (4.4), (4.5),

Sw'>h, fepw+dy|®= Sw/3w <N,

and therefore
- -1 =
|m~1(a; VA, w| <oNT
With these estimates, we can bound T,, by

S

T <Z Z |5V CNexp(Cm/N% 2 |]al)| exp (-Cnh).
j=1 veM; n=0

Since h > 0, the infinite series converges (see (3.3)). The finite sum over |I J-(V)| is
not more than A, by (4.14). Hence,

(5.5) T,, = E(m, N).

In T,,, we replace the path I;(V) by the upper arc K§(V) of the circle K;(V)
which is tangent to the real axis and passes through the endpoints of I; (V) he cir-
cle K;(V) is, in fact, the inverse image of the boundary of E under A VA, -l. De-
note by K (V) the lower arc of K (V).

A smgle integral of T,, can be written

(5.6) Slj = —ng + S‘KJ‘,
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where the integration is always in the positive sense. When w € Kj, we have
Sw'=h, |c-kw+ djk|2=yh‘1,

so that Im-l(A VAk‘l, W)I < Cy*/2, These estimates, which hold a fortiori on Kj,
yield

(5.7) | |§ ]
j

We have to sum these integrals over V € M; and then over j.
We break the set M; = Mjk(N) into two parts,

< |K3'|CN'rexp(Ch+ Cm /N%).

My (N) = MP o uMBP v,
where (see (4.7))
M(_;)(N) = {Ve M| 0< ey < 2-1p-1/2N} .

Now Kj is a circle of diameter Cik 2h- 1, and K3 is an arc which subtends the chord
I; at helght N-2, Since, in Mgl)(N) we have N-2 < 4-1 J‘Zh -1 that is, the sub-

tended chord lies below the diameter through the center of the mrcle, it follows that
the ratio of arc length to chord length is bounded by an absolute constant A. Hence

s S
(5.8) 2 2 Ix;|<AaZ 2 I5l<m =c.
j=1 1 j=1
j VGMJ(,k)(N) j
On the other hand, in Mgi')(N) we have
2 'h /2N < ey <nM/2N

Let A be the number of circles Kj in M( )(N) Since each Kj is tangent to the real

axis at a point in the interval (0, hk), and the dlameter of the largest circle is 4/N?,
these circles lie in a region of area less than 43 N-2 + 47N-% = CN-2,

A simple discussion shows that the Kj(V), do not overlap. The condition for non-
overlapping of two circles is that the distance between their centers should be not less
than the sum of their radii; this works out in the present case to

(*) |djic ek - eedy | >h L

N L . .
WA ( € AT ALt
!

it follows from (2.5) that

Since

o
ldjccsic = ejiedjic] > e
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But c., > h-1 by (4.10), so that the condition (*) is satisfied, and the circles

k Z
Kj(V) J(V € Mj) do not overlap.

Therefore, we have
4-17AN-4 < CN-2,

for the diameter of Kj must exceed N~2. The total length of the circles Kj(V) is,
however, less than 47AN~2, and this is now less than C. A fortiori,

S
zn o Ixjl<e,

=1
J VEMgi)(N)

and combining this with (5.8), we get

(5.9) 2 L |xym|<c.
j=1 VeMjk(N)

Going back to (5.7), we now obtain from (5.9) the result that

(5.10) )IEEEDD = E(m, N).
j=1 V€M y(N) Kz (V)

6. THE MAIN THEOREMS

If we now compare (5.1), (5.3) to (5.6), and (5.10), we find that

(6.1) Ay alk)

]

s =
- T w0 mlagvactw
j=1 VEM(N) =1 K(V) J

x e{-(v;w' + mw)} dw + E(m, N),

where we have replaced n by -v. The quantity vj is defined in (1.6).
The evaluation in closed form of the integral cver K; is indeed easy. Make the
substitution
W+ djk/cjk =i/p,
-and recall that

W,=ajk_ 1 1 =a'jk_ p

.2
lcjk

Then
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S+ico
S‘K = i(iep )" e{ (my djy -vjaud/ it S p ~F -2 exp {2“(PV3/CJ'12< + my/p)} dp,

i ~ieo

where s = cjﬁh > 0. The integral is obviously an inverse Laplace transform, and
reference to [1, p. 245] yields the value 21ricj’lf"1L(cjk, my, V; r), L being defined
in (1.5). Putting this into (6.1), we get, after an interchange of order in the finite
sums,

s “’j ‘
(6.2) hkag:) =om® X 2o a(fz, 20 g1 (V) e{’(mkdjk - vjajk) /cjk}
j=1lv=1 VGMJk(N)

chk-lL(cjka mk, Vj) I‘) + E(m’ N) .

We now suppose r > 0. Keep m fixed and let' N — . Then E(m, N)— 0. The
finite sum in the right member of (6.2) becomes an infinite series which, in conse-
quence, converges, since the left member is independent of N.

In order to simplify this infinite series, we note from (4.7) that the set Mjk(N)
tends to a limit set M as N — . In view of (4.6a), we see that the restriction on
djy in My is 0< -d jk/c jk < A It can actually happen that

J
Vi = ( : ) and V2 = ( ' ) )

corresponding to -djx = 0 and -djk = Ak, occur in Mjk In this case we make the
following agreement: replace the two sets Ijx(Vy), Ijk(Vz) by the set

TH(V}) = L; (V) U (U R T0v,))

There is no difficulty in verifying that A; V) Af(l maps I}'k(V D into E. This change
does not affect the value of the integral (4.2), since the integrand is periodic with
period A,. Hence, we have, as a characterization of My,

M; ={Ve r| o< il 0 < -dp/eqe < A, 0 <ap/eji < A5}

This gives
(6.3) 2 = X 2
V€ Mjk CjkECjk djkeD(Cjk)
cjk>0

We can now utilize the definition (1.7) as a means of carrying out the summation
over djx, and thus we obtain

s M
Mea B = 2re(r/0) 2 2 agz 2 cjlzl A(cy, v, my) Licj, my, v, 1).
j=1 v=1 cjkecjk '

c jk>0

This is Theorem 1.
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Suppose r = 0. Choose N = B ¥m, where B = constant. Then E(m, N) = O(1), and
we get Theorem 2. :

Remark. In the sum of (6.2), ajx was restricted by the condition 0 < ajk/c jk < Aj
(as per (4.7)), whereas the definition (1.7) of A(cj, vj, my) does not mention any con-
dition on ajx. Actually, the value of A is independent of the particular choice of ajy.
For a given cjk, djk, all possible values of ajx are contained in the set ajx - majcjy,
where m is an integer, corresponding to the choice SV instead of V. If we replace
ajx by ajx - mAjcj, we see that e{ (mkfijk - V; ajk)/.cjk} picks up the factor
e(-a; m). On the other hand, by the consistency condition (1.3),

e (V) - e 1SR V) = £ (V) e7M(8;™) = &7 (V) eley m).

Hence, the summands in A are invariant under the replacement, and therefore so is
A

7. CORRECTION

We take this opportunity to correct some errors which occur in our previous
paper [3]. Reference to formulas in that paper will be indicated by an asterisk, thus:
(2.4)*.

First, the definition of Lc(m, v, r, @) in (1.5)*, (1.6)* holds only for r > 0. For
r < -2, define

r+l)/2
vLc(m, v, T, Q)= (nl:;z (=+1)/ I_r_l(—g(v-a)l/z(m+a)1/2).

This change affects the statement of Theorem 5, which involves the coefficients a,,
of (1.7)*, and this formula, in turn, involves L.

Moreover, the proof of Theorem 5 suffers from a serious omission: the esti-
mate (7.3)* of the coefficients a,, is not actually proved. (In (7.3)*, change the ex-
ponent of (m + @) to read -3/4 - r/2.) This estimate is crucially needed later to
establish the existence of the functions G, ¢ (see (7.5)*), on which the proof of .
Theorem 5 rests. Here we shall present a derivation of (7.3)*.

Let u = 47(v - a)¥/2(m + a)¥/?/x, andlet C'= {c € C, ¢ > 0}. Consider the
series

(7.1) Pym)= 2 clA ,(m)L.(m,v,r,a)= 2; + 2, =8;+8,.
c€eC! c<lu. c>u

Now by (1.4)*

(7.2) A, ,(m)] < 2 1=¢(c), say.

deDc ¢

Also, |I_r1w)| <K|w I"r'l (|w| < 1), where K denotes a general constant which
does not depend on m. Hence,

1S,| <K 2 eloe)ertl (m+ a)T-1 <Km-T-1 2 cT¢(c).
- c<u CGC'
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According to Poincaré (Acta Math. 1 (1882), pp. 201-206), the series

22 ez + d| B s

c,d
where (c, d) runs over the lower row of the matrices V € I', converges if g8 < -2.
Poincaré proved this result for the case where I' has the unit circle as principal

circle, but his proof can be modified to cover the present case where the principal
circle is the real axis. Since r < -2, this gives

0> lei+df > X Fli+de|T>A+0T D T L 1=K 2 c¥4(c).

c,d ceC' deED_ c€C' deD. ceC!
Applying this result in (7.3), we get
(7.4) . |sz] < Km-*-1.
In the sum S;, let the values of ¢ be 1 <¢, <c¢,<-. Then
S, = Al,v(m) L,(m, v, r, @) + S,

where in S] the summation is extended over c, < ¢ < u. Employing the asymptotic
formula

(7.5) I @)~ e?/J212 (2>1),

we obtain

|Sl| ISKm—r/2-3/4 Z} ¢(C)C-1/z exp{41r(u _ a)l/z(m+ a)l/Z/clA.}.
c1§c<u

From (6.3)* we have, with N = 2u/h,

Y cel=Fel ¥ =X c"1¢(c)<2u7\h'1/2=Ku.

(c,d)eM; c<u déD, c<u
Hence,
Y se2< n <¢>(c)c'1/Z = 2 cl/qu(C)C'1
c;<c<u c<u c<u
<ul/2 3 #e)e-1 < ul/2gy = Km3/4,
clu

so that

(7.6) IS'll < Km-T/2-3/4 exp {4n(v - )/2 (m + a)l/z/clh} .

i Al',)(m)a& 0, then the first term of S, is of higher order in m than S} or S,.
Hence, using (7.5) again, we have
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(1.7) P, (m) ~ (/2m)/ 2 @ - @)/ 2 /234 exp Lm0 - )2 (m + )/ 2N},
and in any event

(7.8) P,(m) < Km~*/2-3/% exp (87 ym/)) .

Since, by (1.7)*, a = (271/)\)2 =1 2.y Py(m), this gives (7.3)*.

We note a number of minor errors and misprints in [3]. The notation “f.3*”
means line 3 from the bottom of the page.

p. 266, (.2: For 0 <a <1l,read 0 < a < 1.
p. 267, {.5: Insert the factor (m + @) in the sum of the right member.
p. 268, £.13: For V, read U,.

p. 273, f.6*: This formula requires further explanation. What is involved here is a
characterization of the set M,. Now, by definition (see (4.5)*) and by the remark fol-
lowing (5.1)*, we know that (c de M, if 0<c<Nh/2, 0< -d/c <A. (The latter
condition is the same as d € D..) What we have to show is that these are necessary
conditions. However, the followmg situation can arise: there may be two pairs

(c, @), (c, d + cA) belonging to M,. If we define

I::’d={z| 3z=y, VzeR},

then I' =8~ 1I‘ ,d+ar and both I's lie partly in Ly, partly not in Ly. In such cases
we make the followmg agreement: replace the two sets I; 4, I¢,d+c ;\ in the partition
(3.5)* by I% 5, where

-1
Ity =L QUSTI G

Because of the periodicity of the integrand, we have

SI* de( (m + a)z/A)F(z)dz = g ) e SI e,
C, c c,d+cA

so that the value of the integral (4.1)* is not affected. The similar situation involving
(c, d) and (c, d - cA) is handled in an analogous fashion. With this convention, M,
can be characterized as the set of (c, d) with 0 < ¢ < Nh/2, d €D, as stated in the
formula in question.

p- 274, £.6*: For (m + rx)3/4"r/2, read (m + a)‘3/4‘r/2.

£.1*,2%: Delete these lines.
p. 275, {.2: After r =0, insert a = 0.

{.3: Note that A, ;(m) cons1sts of just one term, since the only element of
I'(M) withec=1,0<-d<Ais T= ) Hence, All(m)—l

p. 276, {.7: For ¢ >0, d< 0, read ¢ > 0.
£.10: For ¢ >0, d <0, read c > 0.
£.11: Delete this line.

{.12: For Ve S', V#1, read Ve S'.
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. 276, £.15: For e(-(v - a)zr), read e(-(v - a)z/r),
For Ve S, V£ 1, read Ve S'.

£.17: Delete this line.

£.3*%: For (7.11), read (7.10).

. 277, f.1: For c> 0, read c > 0.

{.12*: For (7.14), read (7.13).

. 278, {.8: For -27t, read -27mt.
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