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Abstract. A fundamental problem in the theory of logical design is that of ex-
pressing behavior realizable by computer circuits. For time-independent circuits,
formulas of the propositional calculus have been helpful in expressing behavior. For
time-dependent circuits, attempts have been made to use, for this purpose, formulas
in which time variables may be gquantified.

By the method of quantifier elimination, we find the expressive power of a certain
class of formulas which has been used in attempts to describe circuit behavior. We
then prove the inadequacy of these formulas for expressing a kind of computer be-
havior,

1. INTRODUCTION

In the theory of logical design it is important to distinguish the behavior of a
computer circuit from its structure. The behavior of a computer circuit is the re-
lationship between every sequence of input signals and the resulting output signals,
while the structure is the particular pattern of connections of the components which
effect this relationship. In order to deal with some of the fundamental problems in
logical design, such as synthesis and analysis, it is necessary to employ some sys-
tematic method of symbolizing belavior. Propositional calculus has long been used,
often indiscriminately, for describing the structure or the behavior of circuits of the
combinational or time-independent type. In the case of sequential circuits, the de-
pendence of the output signals on the complete past history of input signals suggests
the use of formulas with quantified time variables for expressing behavior. The dis-
cussion in this paper concerns certain sets of formulas in the first-order monadic
predicate calculus.

In order to state and prove rigorously resuits about the use of formulas in ex-
pressing circuit behavior, it is first necessary to define precisely what it means for
a formula to express the behavior of a circuit. Circuits are labeled by assigning to
each input a distinct monadic predicate variable. An output p of a circuit vealizes a
formula F(I;, -+, I, t) if, for every assignment of propositional functions ¢, ***, ¢y
to the predicate variables I;, ---, I,, and of a specific time t; to the variable t:

if (a) for all i and x, ¢;(x) if and only if input ¢; is active at time x,

then (b) F(¢q, **, ¢, to) if and only if p is active at time t,.
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The evaluation of the set of formulas from the point of view of its adequacy to ex-
press circuit behavior has two aspects: First, the variety of different circuit behav-
iors expressible by formulas in the set must be taken into account. Second, it should
be possible to distinguish effectively between those formulas which do and those which
do not express the behavior of some computer circuits. Our principal aim is to show
that a familiar set of formulas, the singulary formulas defined below, are incapable
of expressing the behavior of one of the simplest computer circuits, the modulo two
time counter.

2. THE MAIN RESULT

The formulas to be considered are constructed from an alphabet which contains:

individual variables (ranging over nonnegative integers);

individual constant, 0 (zero);

unary operation constant, S (successor);

monadic predicate variables (ranging over properties of the nonnegative
integers);

binary constant relation, < (the binary relation “less than or equal”);

propositional connectives, - (and), V (or), ~ (not);

quantifier, d (there exists);

auxiliary symbols, (,).

Definition of term and well-formed formula:

1. Any individual variable is a term; the symbol 0 is a term.

2. If T is a term, then S(T) is a term.

3. If I is a monadic predicate variable and T is a term, then I(T) is a wff
(well-formed formula).

4. ¥ T, U are any two terms, then T < U is a wif.

5. If F, G are wif’s, then (F-G), (FV G), (~F) are wif’s.

6. If F is a wff and x an individual variable, then (dx) F is a wif.

7. A formula is a term or a wif only as a consequence of the above rules.

It is now possible to state more precisely the principal objective of this investi-
gation. Singulary formulas are not capable of expressing the behavior of all com-
puter circuits; that is, there exists a circuit with an output which realizes no singu-
lary formula. Because an essentially simple circuit, one with no inputs, will suffice
for the argument, the important part of the discussion can be limited to the consid-
eration of predicate-free singulary formulas. We first ascertain the expressive
power of predicate-free singulary formulas (Theorem 1). We next show that the
behavior of the modulo two time counter cannot be expressed by any singulary
formula (Theorem 2).

A wif which contains ekactly one free individual variable is called a singulary
Sformula. We shall call singulary formulas with no monadic predicate variables
predicate-free singulary formulas.

THEOREM 1. For every predicate-free singulary formula F(t), if M is the set
of natural numbers t for which F(t) is true, then M is either a finite set ov the
complement of a finite sel. (See the note at the end of this paper.)

Conversely, if M is a set of naturval numbers which is either a finite sel ov the
complement of a finite set, therve is a predicate-free singulary formula F(t) such
that t belongs to M if and only if F(t).
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Proof. There is a formula F'(t) equivalent to F(t) (in the sense that it is true
when and only when the original wif is true) in prenex normal form. We modify this
form by replacing universal quantifiers by negations of existential quantifiers. The
matrix of F' may be assumed to be in disjunctive normal form. The rightmost sym-
bol of the prefix is an existential quantifier, say (x). The existential quantifier
may be distributed over the disjuncts to yield an equivalent formula F". For con-
venience, we shall write u + 1 instead of S(u), u + 2 instead of S(S(u)), u + 3 in-
stead of S(S(S(u))), and so forth. Now each disjunct D in F" is of the form

@x)[x+a3<v] - X+22<V2 * s * X+ap<Vp
" UL <X+ Byl Uz <X+ Bmgp ¢ eee * Ua<X+Qmin - P1<A] * e - Pr< A,

where the a; and bj are numerals (that is, 0, 1, 2, -**) and the uj, vj, pi, qi are
terms in which x does not occur, provided each atomic formula of the form

~(u < v) is replaced by its equivalent, v + 1 <u. Then D is equivalent to a formula
D' obtained as follows: add (max;j(ap) - a; (i=1, «»», m + n) to both sides of the
ith inequality in D. Then, with the notation a = max; (a;), formula D' is equivalent
to

(1) Hx) I (u;'<x+a- x+a<vj‘) . IT Pk < dy,
IKj<m T - 1<k<r
1<i<n B

where uj' = u; + (a - ap,43) and vi' = vj+ (a - ay).

The truth of (1) implies the truth of the formula

() H (uj'SVj' . aSVj') : H P < qy
I<i<m Kk<r
1<i<n -

(since x varies over monnegative integers). Conversely, the truth of (2) implies the
truth of (1), for, if x is chosen such that x + a = minjvj', then for all j, x+ a <vj';
and since for all i, u;' < minjvjy', it is also true that for all i, u;' < x+ a. Thus the
truth of (2) implies the truth of %1).

The process of eliminating the quantifier (dx) is applied to each of the disjuncts
of F", Call the resultant formula F". The formula F" is equivalent to F", but has
one less quantifier. If a negation symbol occurs as the rightmost symbol in the pre-
fix of F™, then the negation of a disjunction of conjunctions may be replaced by an
equivalent conjunction of disjunctions, and each disjunct of the form ~(u < v) may be
replaced by v + 1 < u. By repeated applications of the distributive law, the conjunc-
tion of disjunctions may be replaced by an equivalent disjunction of conjunctions.
Call the resulting formula G. Formula G is in prenex normal form. Now the entire
process beginning with F' is repeated for G, and this results in the elimination of
another quantifier. By iterating this entire process a number of times (equal to the
number of quantifiers in G) we obtain a formula equivalent to F but with no quanti-
fiers.

By assumption, F had exactly one free variable t. The free variable in F was
not eliminated by the transformations above, nor were new free variables introduced.
Thus the final formula, say H, is of the form of a disjunction of conjunctions, each
conjunct being of the form t+ a<b or a< t+ b, where a and b are numerals.



68 CALVIN C. ELGOT and JESSE B. WRIGHT

Either the set of natural numbers for which such a conjunct is true is finite, or its
complement is finite. The set of natural numbers for which a conjunction of such
conjuncts is true is the intersection of a finite number of sets with this property,
and therefore it also has the property of being a finite set or the complement of a
finite set. Thus H is true for a finite union of sets with this property, and therefore
H also has this property.

We now establish the converse. If M is a finite (the complement of a finite) set,
then a disjunction (negation of a disjunction) of formulas of the form t<a-a<t,
where a is a numeral denoting an element of M (of the complément of M), is true
when and only when t € M (complement of M). Q.E.D.

Note that if the symbol “=” is defined in the language, then every predicate-free
singulary formula is equivalent to a disjunction, or negation of disjunctions, of for-
mulas of the form t = a.

THEOREM 2. Singulary formulas ave not capable of expressing the behavioy of
all computer civcuits; that is, theve exists a civcuit whose output does not rvealize
any singulary formula.

Proof. The modulo two time counter has an output which is active at time t
when and only when t is even. If there were a singulary formula realized by such an
output, then some predicate-free singulary formula could also be realized by that
output.

With every F(t) is associated a set M which is finite or is the complement of a
finite set. In the former case, there are even numbers which are not in M, so that
“F(t) if and only if t is even” does not hold. In the latter case, there are odd num-
bers in M, so that “F(t) if and only if t is even” does not hold.

3. REMARKS

It is not the case that every singulary formula expresses the behavior of some
circuit. For example, a circuit which realized A(t + 1), where A is a monadic
predicate variable, would have to respond to input signals before they occur. Singu-
lary formulas with bounded quantifiers have been used in attempts to describe com-
puter circuit behavior. Since, by Theorem 2, the singulary formulas are inadequate
for this purpose, any subclass is a fortiori also inadequate.

The method of quantifier elimination, which played an important role in the proof |
of Theorem 1 above, has been used frequently in the solution of decision problems of |
formal logic (see [2, 3, 4]). For predicate-free singulary formulas, the method gives!
a decision procedure for validity over the natural numbers; but we have not found it
necessary to make explicit use of this result.

It is anticipated that some of the procedures current in logic, as for example
elimination of quantifiers, will be useful in various problems in the theory of logical
design. Consider, for example, the arithmetic of the natural numbers in terms of +,
= and first-order quantification. It can be shown, by means of [2, p. 369] and [1,

p. 1363, Theorem 13], that the singulary formulas of this arithmetic express the be-
havior of input-free computer circuits, and of no other behavior.

Note. It has been called to our attention by J. R. Biichi that essentially the first
part of Theorem 1 appears on p. 354 of [2].
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