BOUNDED CONTINUOUS FUNCTIONS ON A
LOCALLY COMPACT SPACE
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1. INTRODUCTION

Let X be a compact Hausdorff space, and C[X] the collection of all bounded .‘ ’
real-valued continuous functions on X. In the two decades since the appearance of
Stone’s paper [10], this has been an intensively studied mathematical object. Its in-
terest arises in part from its rich structure; under the uniform norm topology, C[X]
is a Banach space (see Myers [7]); under pointwise multiplication, it is an algebra
(see Hewitt [3]); under the natural partial ordering, it is a lattice (see Kaplansky [4]).
In each case, the underlying compact space X has a faithful representation. within
the structure of C[X], from which it can be recovered, so that C[X] may be regarded
as a tool for the study of X. ‘

When X is no longer compact, the simplicity breaks down. Let C*[X] denote the
collection of bounded functions in C[X]. If X is completely regular, then there is
associated with it a unique compact space X, the ,Stone-(fech compactification of X,
and C*X] and C*8X] are algebraically isomorphic; X is dense in BX, and every
f € C*X] has a bounded continuous extension to 8X. An analogous pattern holds for
C[X] (see [3]). In studying C*[X], we are thus again studying the algebra of all
(bounded) continuous functions on a compact space. However, 8X can have a very
complicated structure, even when X i§ itself relatively nice (for example, when X
is the line). When X is locally compact, something can be achieved by considering
the subalgebra CO[X] of functions on X which vanish at infinity; for this is isomorphic
with a fixed maximal ideal in C[X°], where X° is the one-point compactification of X.

In this paper, I shall deal with the full algebra C*[X] for a locally compact space
X, with a new topology B; this topology was introduced, in an earlier paper [2], for
the special case in which X is a group; it was there called the “strict” topology, be-
cause of its resemblance to a topology used by Beurling [1]. In Section 3, the strict
topology will be defined, and its properties described; in particular, we prove that it
is topologically complete. (This is a considerable improvement on [2], where it was
only shown that g is sequentially complete.) In Section 4, we show that the dual
space of B-continuous linear functionals in C*[X] is precisely M [X], the space of
bounded Radon measures on X. In Section 5, we obtain a Stone-Weierstrass theorem
for B-closed subalgebras of C* X]. For the sake of completeness, we have extended
the preliminary treatment to the space C* X: E] of bounded continuous functions on
the locally compact space X which take values in an arbitrary complete locally con-
vex linear space E. In Section 6, we obtain a type of Stone-Weierstrass theorem for
B-closed subspaces of C* X: E]; this result is of particular interest since the object
of study is no longer an algebra of continuous functions, but only a linear space.

2. PRELIMINARY DEFINITIONS

Before introducing the strict topology, we give certain basic definitions, and
state several more or less well-known results dealing with continuous functions on
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locally compact spaces. In all that follows, X is a fixed locally compact space. Let
E be a real linear space, with a complete locally convex topology described by an in-
dexed family of semi-norms | ly. C[X: E] is the real linear space of all continuous
mappings from X into E. C*[X: E] is the subspace of those mappings f for which
f(X) is a bounded set in E. C,[X: E] is the subspace of C*X: E] consisting of those
mappings f that vanish at infinity; explicitly, if V is any neighborhood of the origin
in E, and f € C,[X: E], then there is a compact set K ¢ X such that f(x) € V for
every x in X, outside of K. Cg[X: E] is the subspace of C[X: E] consisting of
those f which are identically 0 in E, outside of some compact set in X. When E is
taken as the real field, these spaces are simply spaces of real-valued functions de-
fined on X, and are denoted by C[X], C¥X], C[X], and C,,[X].

A set S is said to be o-compact if S = UKn, where each set K, is compact. If
these sets can be chosen so that K;, is always contained in the interior of K., then
S is said to be regularly o-compact. Every o-compact set is a subset of a regularly
o-compact set. Every regularly o-compact set is an open Fy.

LEMMA 1. If ¢ € Cy[X], thern ¢ vanishes, except on a vegularly o - compact set
in X. Conversely, if S is any regulavly o-compact setl in X, theve exists a function
¢ € Co[X] which takes values in [0, 1] and which is zero outside of S, but stvictly
positive on 8, A

LEMMA 2. If {x,} is a discrete sequence of points in X and {cn} is a null
sequence of positive veal numbers, then theve is a function ¢ € Cy[X] such that
¢(xp) = cp.

To prove the first, observe that if ¢ € C,{X], then there is a compact set K such
that |¢(x)| < 1/n for all x ¢ Ky, so that ¢ vanishes except in U Kn. For the con-
verse, let S = U K;, and choose ¢n with range in [0, 1] such that ¢n(x) = 1 for
X € Kp, and ¢n) = 0 for x off Knt1. Setting ¢(x) = Z2 2 ¢,(x) yields the desired
function.

To prove the second, choose a sequence of compact sets Kn with x, € Kn, but
with no two sets overlapping. Take ¢ with range in [0, 1], vanishing off K,, and
with ¢, (xp) = 1. With ¢(x) = Z ¢, ¢, (x), we obtain the desired function.

These lemmas guarantee the existence of certain functions in Cy[X]. In particu-
lar, if X itself is o-compact, then there exists a function on X which vanishes at
infinity, but nowhere else; and this is not true if X is not o-compact. Note: this
shows at once that a o-compact space cannot be pseudo-compact (every continuous
function is bounded) unless it is indeed compact (see [3]).

A o-compact space is certainly paracompact; an easy argument shows the follow-
ing to be true [6].

LEMMA 3. If X is locally compact, paracompact, and connected, then X is o-
compact.

In general, then, a locally compact paracompact space is the union of a collection
of disjoint connected o0-compact spaces, and the algebra C* X] is the full direct sum
of algebras C*X,], where is og-compact. The structure of C[X] is more com-
plicated. Suppose that X = Xy, Wwhere each X, is open and connected. Every
function ¢ € C[X] is then a direct sum of functions ¢4, where ¢y € C[Xy]; more is
true, however; for it is necessary that all but a countable set of the component func-
tions ¢o vanish identically, and that those that are left, ¢y K satisfy the condition

lim sup |¢y X)|=0.
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Although the space C* X: E] is not an algebra, since no product of mappings is
defined, it is naturally a C*[X] module. If f € CH{X: E] and ¢ € CHX], then ¢f is
the mapping defined by (¢f)(x) = ¢(x) f(x). Moreover, if ¢ € C[X], then ¢f € C[X: E].
This property serves to characterize C* X: E] within C[X: EJ.

LEMMA 4. Let F e C[X: E}, and suppose that ¢F € C[X: E] for every ¢ € CX].
Then F € CHX: E].

If F were not bounded on X, then, for some index v, there would exist a sequence
{xn} suchthat | F(x) ], >n for n=1,2, ... Since F is continuous on X, the se-
quence {x,} is discrete. By Lemma 2, we may choose ¢ € C[X] so that
¢(x) F(x) = 1 for x = x,, X,, ---. Then ¢F would not belong to C,[X: E].

3. THE STRICT TOPOLOGY

The method which we use to obtain the topology 8 on C*X: E], or on C*[X], is a
special case of a general procedure. Let V be a vector space, with a locally convex
topology 7, and let % be a collection of 7-continuous linear operators on V. Then,
the weak ¥ -topology on V, denoted by w(),is defined to be the smallest topology B
on V such that each transformation T € ¥ remains continuous as a mapping of
<V, B> into <V, 7>. An illustration: the ordinary weak topology on V defined by
the dual space of <V, 7> is the topology w(9t), where 9 is the set of all transforma-
tions with finite dimension range (of finite rank). Again, Raimi [8] has studied the
topology which is defined in this way on Hilbert space, choosing % as the algebra of
compact transformations.

In the function algebra C*X], a useful topology is the uniform topology o, defined
by the norm "f " = SUPyex If(x)l. Another topology, equally familiar, is the compact

open topology k. This is locally convex, and may be defined by the seminorms

£l = max ¢y |£(x)|, where K ranges over the compact subsets of X. Convergence
(x) means uniform convergence on each compact set in X; convergence (o) means
uniform convergence on all of X, These topologies have their analogues in the spaces
C¥X: E]. The topology ¢ is defined by the semi-norms ||f||v = Sup, ex |f(x) |w and
the compact-open topology k by the semi-norms

Il = max |1,

here K is a general compact set in X, If X is in fact compact, then « =o0.

DEFINITION. The strict topology B on C*[X: E] is the weak topology w(U) ob-
tained by taking C*X: E] as the space V, 0 as the topology 1, and % as the family
of transformations f— ¢f defined by functions ¢ € CX].

An equivalent description: B is the locally convex topology defined on CH{X: E]
by the semi-norms

f = =
Il = Netl, = sup ot 0],

where v ranges over the indexed topology on E, and ¢ ranges over C,[X]. Note that
the compact-open topology k can be obtained in the same manner by restricting the

functions ¢ to the class COO[X] having compact support, while the topology ¢ results
if ¢ is allowed to be any function in C*[X]; this shows that k < B.< ¢, Before giving
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the list of properties of the strict topology which makes it so useful, let us mention
some of the characteristics of the topologies ¢ and k. In the topology o, C*[X] is a
complete normed linear space; the subspace C,[X] is not dense, but its closure is
the space Cy[X]. In the compact-open topology k, C*[X] is a locally convex linear
space. If X is not compact, then k is not a normable topology; it is metrizable only
if X is o-compact. The subspace Cy[X] is k-dense in C*[X]; in fact, it is k-dense
in the space C[X]. The topology is not complete; the completion of <C*[X], k> is
the complete space <C[X], £>.

THEOREM 1. Let X be locally compact E locally convex and complete, and let
B be the strict topology on C*[X: E]. Then

(i) k< B < o, with equality only if X is compact;
(i) the space C*[X: E] is topologically complete;
(iii) the topologies B and o have the same bounded sels;

(iv) on any B-bounded set in C*[X: E), the topology B agrees with the compact-
open topology k; .

(v) a sequence {f,} in C*[X: E] is B-convergent if and only if it is o-bounded
and K-convevgent;

(vi) the subspace Cy[X: E] is B-dense in C*[X: EJ; -
(vii) the topology B is metrizable only if X is compact.

Of this list, items (iii), (iv) and (v) were proved in [2] for the function algebra
CHX] in the case when X is a locally compact group, and these proofs may be car-
ried over to the present context with little change. We prove the remaining items
separately.

Proof of (ii). Let {f } be a net which is B-Cauchy. Since k < 8, {f,} is then
k-Cauchy, and therefore converges in the topology Kk to a mapping F € C|{X: E]. For

any ¢ € Co[X], ¢fy K ¢F; since {f,} is B-Cauchy,{¢f,} is o-Cauchy, and thus
converges in the topology o to a mapping H in C*X: E|]. We must therefore have
H(x) = ¢(x) F(x) for all x € X. Since each ¢fy is in C/[X: E], which is ¢ closed, we
have ¢F € Cy[X: E]. Moreover, this is true for each ¢ € C,[X], so that we can apply

Lenéma 4 and conclude that F € C*X: E]. Since ¢f, 9, 6F for each ¢ , we have
fo — F, and B is a complete topology.

Proof of (vi). If K is a compact set in X, let ¥ i be any function with compact
support, taking values in [0, 1], and with IPK(X) =1 for all xe€ K. If f is any map-
ping in C*X: E}, then fx = Yxf belongs to C,[X: E]. Moreover, the collection of
functions {fx} is o-bounded, and if K, is a compact set contamed in K, then
lfx - ]k s, = 0. If we order the subscripts by inclusion in the obvious way, {fx}

1

becomes a o-bounded net which is k-convergent to f. By virtue of (iv), this shows
that a particular net of mappings in C,[X: E] has been found which is S-convergent
to f, and this subspace is B-dense in C*X: E].

Proof of (i). When X is not compact, the topologies «, 8, and ¢ are all distinct;
for, k¥ is not complete, and Cy[X: E] is not o-dense in C*[X: E].

Proof of (yii). If 8 were metrizable, then 8 and o would be two complete
metrizable topologies on the same linear space, with 8 < o.” By a standard deduction
from the open mapping theorem, 8 = o; but, this can happen only when X is compact.
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4. THE DUAL SPACE OF C*X]

If X is a compact space, and if we use the uniform topology o, then the dual
space of C*X] if m[X], the space of bounded Radon measures on X. However,
when X is only locally compact, the uniform dual of C*¥X] is obtained as the space
of Radon measures on BX. I u € m[BX], and f € CHX], then the functional defined
by p is represented by

Mﬂ=§ frdy
BX

where f* is the unique extension of f to the compact space SX. If this is thrown
back on X, then up corresponds to only a finitely additive measure on X, in general.
Thus, the uniform dual of C* X] is somewhat unwieldy. The situation is better for
the subalgebra C,y[X]; as observed earlier, this can be replaced by a closed maximal
ideal in the space C[X°], where X° is the one-point compactification of X. The uni-
form dual of Cy[X] (and thus also for Cy[X]) turns out to be ¢ [X] itself. Returning
to the larger space C* X], but using the compact-open topology k instead, we find

" the dual space to be M [X], the space of measures with compact support [9]. It is
thus of interest that the st7ict dual of C*X] is exactly m[X] itself.

LEMMA 5. Each measure . in M{X]| has a o-compact support.

Let p be a positive measure on X, and let L be the corresponding linear func-
tional defined on Cy[X] by

(1) L) =§ fdu.
X

Since p is bounded, L. is o-continuous, and there exists a number M = || L" such

| L(f)| < M||f]| for all fe Co[X]. Choose f,, € Co[X] with |f,]| = 1 and lim L(f,) = M.
Let K, be the compact support of f;, and let Sy = U Kn. We show that S;; contains
the support of u. Let g€ Cy[X] be any function which is zero on Sy. We can as-
sume that " g“ < 1/2. Then, “ f, + g" = ﬂfn - g“ = 1 for each n, so that

Lty + @] = LY + L@ < M.

Letting n increase, we see that L(g).= 0. As a consequence of this argument, we see
that (1) can be replaced by

(2) 0= ta (e cx).
) S p
Note also that M = p(X) = p (SIJ-)

THEOREM 2. Ewvery strictly continuous linear functional on CH*X] has the
representation (2), so that the strict dual of C*X] is m[X].

Let L be any positive B-continuous linear functional on C*[X] Since 8§ < g, L
is o-continuous on the subspace C,[X]. By the foregoing remarks, L has there the
representation (2). Since C,[X] is B-dense in C*[X], it is only necessary to show
that (2) defines a B-contiruous functional on C,[X]. By Lemma 5, we can write

Su = U K,. Put a, = u(Kn- Kn_1), so that a, > 0 and Z ap = M. Choose a sequence
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{bn} with b, |0, and with = an/b,, < 2M. Set ¢, = by - bpy1, so that
b,=Ch+ Cpyl + oo

Then, construct functions Y, € Cy[X] taking values in [0, 1], and such that yn(x) = 1
for xe K, while ¥,(x) =0 for x¢ K, ;. Construct a function ¥ by setting

Y&) = Zcea(x). Then, it is easily seen that Y € CO[X], that { is zero except on
Sy, and that Y () > b, for x€ K, - K,_1. The function 1/¢ is then continuous on

Sy, and integrable (1), with 5(1/1;/)01“ < 2M. Let f € Col[X] with [ffly, < &/2M. Then

€ 1
fd <-—S‘ —d
gx “t—zm s,V s
which proves that ,(2) is B-continuous.

Several remarks are in order. The strict topology on C*X] is not the 6n1y one
which yields M [X] for the dual space, for this is also true for any topology 7 which
lies between the weak paired topology w(C*, M) and the Mackey topology m(C*, m).
However, this remark is not too enlightening, since these special topologies are dif-
ficult to describe directly in terms of C* X]. In particular, the following question
can be raised: is it in facl trvue that the stvict topology B coincides wilth the Mackey
topology m?

Other problems remain. It is easily seen that the space m[X] can also be re-
garded as the space of linear functionals on C*X] that are 8-continuous on g-
bounded sets [2]. It would therefore be of interest to have a similar representation
theorem for the space of linear transformations from C*X: E] into E that are B-
continuous on B-bounded sets, or even for the strict dual of C*X: E] itself.

5. A STONE-WEIERSTRASS THEOREM FOR C*X]

When X is compact, a uniformly closed subalgebra of C[X] which separates
points must be C[X] itself. This fails for C*[X] when X is not compact, since
there are proper (closed) maximal ideals in C*[X] arising from points in 8X - X

[10], [3].

THEOREM 3. Let X be locally compact, and let % be a B-closed subalgebra of
C*[X]). If % separates points of X, and contains a function vanishing nowhere, then
A = CHX].

Let g e A and let it be everywhere positive. We show first that % contains the
function 1. By _the usual series argument (see [10]), g¥€ o for each r > 0. In par-
ticular, h,= g!/® isin % for n=1, 2, ---. Since g(x) > 0 for every x € X, and
Ihall < llgl, the sequence {h,} is uniformly bounded in X, and converges to 1, uni-
formly on each compact set. Since % is B-closed, 1 € %A. By the usual argument,

% contains |f| whenever it contains f, so that % is a sublattice of C*[X] (see [10]).
Let F be any function in CHX], and set M = || F||. Givenany ¢ ¢ C[X] with [|¢] <1,
and any € > 0, choose a compact set K such that |¢(x)| < € for any x not in K. Let
A gk be the set of functions on K obtained by restricting each f € 9 to the set K. %k
is a separating subalgebra of C[K]. By the standard Stone-Weierstrass theorem, %k
is o-dense in C[K], so that there exists a function f € % such that [f(x) - F(x)|<e

for all x € K. Let f, be the function {fN 2M} U -2M. This is in %, since 9 isa
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lattice. It is easily seen that |fy(x) - F(x)| < e for x € K, and that for each x € X,

| £,(x) - F(x)¢x)]| < sup |£,(x) - FR)||px)] + sup |f,(x) - F(x)||s & |
x€K x¢K

<& + 3M¢e.

Thus, any B-neighborhood of F contains a function in %; since % is B-closed,
Fe %,and % = CHX].

If X is slightly specialized, the extra condition on % can be removed:

THEOREM 4. Let X be locally compact and o-compact, and let U be a subset
of CH¥X] which separates points of X. Then the algebraic closure of A in C*X] is
B~dense.

Replace % by the B-closed subalgebra of C* X] which it generates. By Theo-
rem 3, it is only necessary to show that 9 contains a function that is everywhere
positive. Let X = U K, with K,, compact in X. By the standard Stone-Weierstrass
theorem, ¥k _ is uniformly dense in clk, ] Choose fe % with f,(x) > 1 for all

x€ K. Let |£,]| =c, and set g, = (n ¢y) "% (fn) 2 Then g, € %, and is nonnegative
on X, strictly positive on Kn, and | gn]| < 1/ n®, Set g = Zg. This is uniformly
(and hence strictly) convergent, so that g € A. Clearly, g is strictly positive on X.

A slightly weaker form of Theorem 3 was obtained independently by Karel de
Leeuw. We have not succeeded in removing the extra hypothesis on A, in the general
case; it is certainly not necessary, as is shown by the S-dense subalgebra C,,[X]
which contains 70 nonvanishing function. One additional remark may be made: all
proper maximal ideals in C*[X] are uniformly closed, including those that arise as
annihilators of points in BX - X. However, these ‘free’ ideals contain Cy[X], so that
they are in fact dense in the strict topology. This proves the following interesting
fact.

COROLLARY 1. If X is a locally compact space, then theve is a natural one-to-
one covrespondence belween the points of X and the strictly closed proper maximal
ideals in C* X]. ,

COROLLARY 2. If X and Y are locally compact spaces, and C¥X] and C* Y]
are algebraically and topologically isomorphic, in the sivict topologies, then X and
Y arve homeomovrphic.

6. A STONE-WEIERSTRASS THEOREM FOR C*X: E]

If the linear space E is also an algebra, then the space C* X: E] acquires a na-
tural algebraic structure, and it is then possible to seek an analogue of the approxi-
mation theorem. The strongest results in this direction are those of Kaplansky [5]
and Yood [12]; in these, X is a compact space, and E is either an-algebra of opera-
tors on Hilbert space, or a commutative Banach algebra. A special case of the latter
occurs if E itself is the-function algebra C[Y] for a compact space Y; in this case,
C* X: E] is exactly C[XxY].

However, when E is only a linear space, the only natural algebraic structure
which C*X: E] possesses is that of a C*[X] module. It is therefore reasonable to
conjecture a theorem of the following sort: if % is a closed submodule of C*X: E]
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which in addition . ..., then % = C*X: E]. The blank is to be filled in with the ap-
propriate replacement for “separates points of X”, It is clear that “separates points
of X” would not be enough; for if V is a proper closed subspace of E, then

‘ilxo ={all f e CHX: E] with f(x) € V} is a proper closed submodule of C*X: E].

The theorem which follows is a step in the direction of such a general theorem.

THEOREM 5. Let X be locally compact and metrizable, and E finite-dimen-
sional, and let % be a B-closed submodule of C*X: E]. Then, if % (x) = E for each
x € X, U is identical with C*X: E]. '

The assumptions on ¥ are these: (i) % is a closed subspace-of C¥X: E]; (i) if
fe % and ¢ € C*[X], then ¢f € % ; (iii) given any x € X and p € E, there is an f € %
with f(x) = p.. Let F be any mapping in C¥X: E]. We shall prove that F lies in %
by showing first that F can be locally matched within 9. Let x, be any point in X,
and let 61, 62, **+, 6n be a basis for E. Choose gj, -*-, g, in % with gj(xo) = 6;.
Then, there exists a closed neighborhood G about x, in which gj(x), -+, gn(X) are
independent. In fact, if Lj, +--, L, are functionals on E orthogonal to the #; then

g;(%) = Z TLy(g;(®) 6y setting

Li(g(x) - Ly(g; ()
D(X) = LI e o 0 e o @
Loy = Lo,
we have a matrix-valﬁed function vﬁth continuous entries, with D(x,) the identity ma-
trix. There exists then a ¢losed neighborhood G about x, in which D(x) is non-

singular and has a nonsingular inverse C(x) = [ij(x)] whose entries are also con-
tinuous.in G. Accordingly, for each x € G,

A 0 .
6y = JL::’l ckJ(x) gJ(X) ' k=1,2,:-,n ' ’
and the statements

Fi = 2 L(F®) 0, =2 T L(FR) e 08 = D 6 (A g0
k=1 ‘ 1

k=1 j=1

hold for each x € G. The functions ¢; are continuous on G. Extend each to all of X
in such a way that it is bounded and continuous. Then, we have found a function
g = ergbj g; in % such that g(x) = F(x) on a neighborhood of x,.

The remainder of the proof is more or less standard. The interiors of the sets
G cover .X. From them, we can extract a locally finite subcovering {G} .and con-
struct the associated partition of unity, ¥j, with ¥j(x) > 0 for all x, while ¥;(x) =0
if x is outside of G;, and ij(x) = 1 for all x. By the previous construction, we can
find a mapping g€ which agrees with F on G;. Coastruct a mapping: )y € % by

. |
@) = 2 (D g9

/

Then, it is easily seen that { fiy} is uniformly boundéd on X, and éonvérgés to F,
uniformly on compact sets in X; since this implies B-convergence, and since %’ is
closed, F € ¥« .
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If the space X is in fact compact, a result analogous to Theorem 5 can be ob-
tained with E quite general. For completeness, we insert a sketch of this and its
proof. Let E be any locally convex linear space, let X be compact, and suppose that
% is a g-closed submodule of C[X: E]. Then, % again equals C[X: E] if it is true
that %A(x) = E for each x € X. Let W be a preassigned convex neighborhood of the
origin in E, and let F € C[X: E]. For any x, € X, we can choose fe € ¥ so that

fxo(x,,) = F(x,), and then choose a neighborhood Uy about x, such that

£ () - F) e W

for all x e U, o The open sets Ux‘J cover X; since X is compact, a finite number of

these will sufflce. Denoting these by U, Uz, *--, U,, and the corresponding functions
f., by £y, f5, =+, f,,, we choose functions ¥; € C[X] such that 1 = Zy;(x) for all xe€ X

and with ¥;(x) = 0 for x outside U; and ¢ j(x) > 0 for x € U;. Itis then easily veri-
fied that the function given by f = Zl Vi 1s in 9, and that f(x) - F(x) € W for all
X € X. Since this holds for each W, and smce U is closed, F e 9.

The ‘separating’ condition that we have used in these two theorems is a natural
one. It is equivalent to the assertion that if x,€ X and V is a proper closed sub-
space of E, then there exists a mapping f in 9% with f(x,) ¢ V. Note that this condi-
tion is violated by the closed submodule % X, introduced above; these maximal sub-

modules might be expected to play the role of maximal ideals in the study of the
structure of a general closed submodule. Another point of view is also suggestive.
Assume that E is a normed space, and let S be the unit ball in the dual space E'.
If f € C*X: E], let £* be the real-valued function defined on SxX by

*(L, x) = L(f(x)).

The mapping f— f* is an embedding of C*[X‘ E] into C*SxX], and a submodule %
of C* X: E] obeys the separating condition of Theorem 5 if and only if its image in
C*[Sx X] separates points in the usual sense.
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