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1. INTRODUCTION

The purpose of this paper is to establish the following

THEOREM. Let M, and M¥ be two oviented two-dimensional Riemannian
manifolds of class C? imbedded in a Euclidean space Enip of dimension N + 2
(N> 0), with boundarvies C and C*, vespectively, and with positive Gaussian curva-
tures in every normal divection. Suppose that theve exists an orvientation-preserving
differentiable homeomorphism H of the manifold M, onto the manifold M¥ such that
at corrvesponding points the manifolds M, and M¥ have parallel tangent planes and
equal sums of the principal radii of curvature associated with every common novmal
divection, If the homeomovphism H restricted to the boundary C is a translation
(strictly speaking: is induced by a translation in the space Ey,,) carvying the
boundary C onto the boundary C*, then the homeomovphism H is a translation
carvying the whole manifold M, onto the whole manifold M¥,

For the case where N = 1 and the boundaries C and C* of the two manifolds are
empty, this theorem was proved by Christoffel [3]; for the general case where N = 1,
it is due to the author [4]. The method used in this paper is an extension of that used
by Chern [2] in proving the uniqueness theorem for Minkowski’s problem for closed
convex surfaces imbedded in a three-dimensional Euclidean space. (We recall that,
by a result of Nash [6] on C?® isometric imbeddings, every two-dimensional Rieman-
nian manifold with a C3 positive metric can be imbedded in some Euclidean space.)

2. PRELIMINARIES

Let M, be an orientable two-dimensional Riemannian manifold of class C3 im-
bedded in a Euclidean space Ep,, of dimension N + 2 (N > 0). To avoid confusion,
we shall use the following ranges of indices throughout this paper:

(2.1) @,8=1,2 3<r<N+2 1<i,j,k<N+2.

Associated with a point P in the space Ey,, we introduce a right-handed
rectangular frame Pej ***eny2 such that ej, :-+, eny2 form an ordered set of mu-
tually perpendicular unit vectors with the determinant (e}, -+, eny2) equal to +1.
Let X denote the position vector of the point P with respect to a fixed point O in
the space Eyy,,; then we can write

112

dX = 2. w;e:
i

(2.2)
de; = p> wijej,

Received December 7, 1956,

25



26 CHUAN-CHIH HSIUNG

where w; and w;; are Pfaffian forms in the manifold of frames and satisfy

(2.3) ’ ) wij + le = 0.

Since the exterior derivative of an exact differential is zero, d(dX) = 0 and
d(de;) = 0, and therefore we have, from equations (2.2),

I

dw; 2 w; AW;ji , .
J
(2.4)

dw;j = ‘E Wix AWy

where /A denotes the exterior product.

To study the manifold M,, we consider the submanifold of the frames Pej *--eny2
such that P €M, and e,, e, are two tangent vectors of the manifold M, at the point P.
Denoting by the same symbols the forms on this submanifold of frames induced by the
identity mapping, we have

(2.5) we =0,

and therefore, from the first of equations (2.4),

(2.6) dw, = 3 wgAwgy = 0.
o

By a Lemma of E. Cartan (see, for instance, [1], p. 117) on exterior algebra, equa-
tion (2.6) implies that for each value of r

2.7 Wyr = > Araﬁwﬁ
B

with the conditions

= A

(2.8) Aroap = Argy -

Let Oij *--iNy+2 be a frame in the space Eyn;z such that iy, ..., in;2 form an
ordered set of mutually perpendicular unit vectors at a point O. With respect to this
frame we define the vector product of N+ 1 vectors A, -, Ay, through the point
O in the space Ep;, to be the vector Ay, (denoted by AX---XAny,;) satisfying the
following conditions:

(a) the vector Ay, is perpendicular to the (N + 1)-dimensional subspace of the
space Epny, spanned by the vectors A, -+, Any1y

(b) the magnitude of the vector A, is equal to the volume of the parallelepiped
whose edges are the vectors Ay, -+, AN,

(c) the two frames OA; --+ Ay;) ANz and Oij e-ip,, have the same orientation.

Let o be a permutation on the N + 1 numbers 1, :--, N+ 1; then

Aa.(l)x ".XAG(N‘}'I-) = (Sgn O')Alx"-XAN+1 N
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where sgn o is +1 or -1 according as the permutation ¢ is even or odd. Further-
more, the scalar product of the vector AjX--+XAy,) and a vector I through the
point O in the space Ey,, is given by

(2.9) I-(A1xeexAns1) = (DN, Ay, -, Ang).
From equation (2.9) it follows that
(2.10) epX eXep 1Xep X Xepnyp = (-DNFTe

Let dA be the area element of the manifold M, at a point P, and let K, and H,,
respectively, be the Gaussian curvature and the mean curvature of the manifold M,
associated with the normal vector e, at the point P. Then, by means of the com-
bined operation (X of the vector product X and the exterior product A (for this oper-
ation & see, for instance, [5]), we obtain
(2.11) AX ® dX@ e3® - Re,. 1P e, )@ X e,y = (-1)N+T2e_dA,
(2.12) de, ®de, R esR Qe 1 Per ) @ ®enpz = ((DNFT2K e, dA,
(2.13) dX®@ de, R e3® - Rer 1P ery1 P - RPenyz = (1NNt 2H e dA.

From equations (2.2, (2.5), (2.10), (2.11), (2.12), (2.13) it follows that

(2.14) dA = w,AW,,
(2.15) K, dA = Wel AWr2,
(2.16) 2H,.dA = W, AW - Wy A ).

It is known that the vector $ =X H,.e, is independent of the choice of the mutually
r

perpendicular unit vectors es, ***, ey, in the normal space of the manifold M, at
the point P; the vector $ and its magnitude are respectively called the mean curva-
ture vector and the mean curvature of the manifold M, at the point P.

3. AN INTEGRAL FORMULA

Suppose that M, and M¥ are two orientable two-dimensional Riemannian mani-
folds of class C® imbedded in a Euclidean space Ey,, of dimension N+ 2 (N> 0)
with boundaries C and C*, respectively, and with positive Gaussian curvatures in
every normal direction. Furthermore, suppose that there exists an orientation-
preserving differentiable homeomorphism H of the manifold M, onto the manifold
Mg such that at corresponding points the manifolds M, and M} have parallel tangent
planes. Then the definitions in Section 2 can be applied to the manifold M,; and for
the corresponding quantities and equations for the manifold M} we shall use the
same symbols and numbers with a star, respectively.

By using equations (2.2), (2.3), (2.5), (2.9), (2.10), (2.16), (2.5)* and the first of
equations (2.2)*, and applying the ordinary rules for differentiation of determinants,
we can obtain the differential form '
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d(X*7 dX, €3, **°, eN+2) = (—1)N+1 e3 ° (dx*® dX@ e4® b ® eN+2)

N+1
(3.1) + (DN T aX P ey ® - De, Xde,Pe, @ @ epn,a
r
= WiAW, - WEAW, - 2 );p;‘HrdA,

where
(3.2) p¥ = X*-e,.

Integrating both sides of equation (3.1) over the manifold M, and applying Stokes’
Theorem to the left side, we then arrive at the integral formula

(3.3) g(x*, dX, e3, ", eyyp) = [[@EAw, - wfAw)) - 2 ” Y p*H_dA.
M, M, *

4. PROOF OF THE THEOREM

First we should notice that the given differentiable homeomorphism H between
the manifolds M, and M} induces a homeomorphism between the two frames
Pe)---ens+2 and P*ep --- en42 at two corresponding points P and P* of the mani-
folds M, and M¥, whence

(4.1) w* = w

ro ro”

From equations (2.7), (2.14), and (2.15) it follows that
(4.2) Ky = An1Ar- A28 ,005

this and the assumption that K. > 0 for each value of r imply that the matrix
ALy ﬁ) is nonsingular for each value of r. Therefore by equations (2.7) and (2.8)

we can write, for any value of r,

(4.3) Wy = L ArggWprs
B

where ()\raﬁ)l is the inverse matrix of (A rOlB) and where

(4.4) A by

raf - “rBa-

Using equations (2.3), (2.15), (2.16), (4.1), (4.3), (4.4), (4.3)*, (4.4)*, we find immed-
iately that

2H, = (Apq11 + ArZZ)Kr:
(4.5)

%k - * = %k - *
wEAW, - ¥ Aw, (x A 2x by + A

* .
r11 "r22 12 12T MR D @ AR L,
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The first of equations (4.5) implies that the sum of the principal radii of curvature at
the point P of the manifold M,, which are associated with the normal vector e,, is
equal to
(4.6) 2Hr/Kr = Arll + Ar22-
From the assumption and from equations (4.6) and (4.6)* we thus obtain

Substituting equations (2.15), (4.4), (4.5) in equation (3.3), we have

J.(X*, dX, es, -, eN-I-Z)

Ok *
(4.8) ¥ At M AP w AR,

5:

(Arll + ArZZ) Wrey AWpp -

z:

[

The replacement of the manifold M, by the manifold M¥ in equation (4.8), together
with the use of equation (4.1), gives

i

J(X*’ dX*’ e3, eey, eN+2)

4.9

=2 ” (A1) Moz - M99 Awy, - ” > PrA I+ Ai22) @1 A®pp -

M,

Subtracting equation (4.8) from equation (4.9), and using equation (4.7) and the as-
sumption that dX* = dX along the boundary C, we obtain

(4.10) ”[2(7%11%22‘ 24127 - (i 2ap - 2 A + M Mgy Nwp Ay, = 0

Subtracting equation (4.10) from the one obtained by interchanging the roles of the two
manifolds M, and M¥ in equation (4.10), we get

(4.10) jf (W%1120% 02 - M) 9 A @y ” (Ar11 A2z = X129 @A @y,
M2
Thus the substitution of equation (4.11) in equation (4.10) yields

#.12) Jf[(hx’fu = A1) (Wgp - Aga) - (g - A )% e Ay, = 0.
MZ
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But
(11 - A DR, - M)
= %[("’1‘:11 - Ny Oy - A )P - %[(7\§11 “ A+ (g - A%,
which is reduced, by means of equation (4.7), to
(4.13) Oy - A1)z - Ap2p) = - %[(7‘?11 - A% (a2 - 2227

By the assumption and equation (2.15), w,.; Aw,, > 0. Thus the integrand in equa-
tion (4.12) is nonpositive, and therefore equation (4.12) holds when and only when

(4.14) A;';aB = AraB (¢, B=1,2),
Using equations (4.14), (4.3), (4.3)*, we obtain

(4.15) wk =, (=1, 2).

From equations (4.15), (2.2), (2.5), (2.2)*, (2.5)* it follows that dX* = dX over the
whole manifold M,, and hence the proof of the theorem is complete.

*
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