A UNIQUENESS THEOREM ON TWO-DIMENSIONAL RIEMANNIAN MANIFOLDS WITH BOUNDARY

Chuan-Chih Hsiung

1. INTRODUCTION

The purpose of this paper is to establish the following

THEOREM. Let M_2 and M_2^* be two oriented two-dimensional Riemannian manifolds of class C^2 imbedded in a Euclidean space E_{N+2} of dimension N+2 (N>0), with boundaries C and C^* , respectively, and with positive Gaussian curvatures in every normal direction. Suppose that there exists an orientation-preserving differentiable homeomorphism H of the manifold M_2 onto the manifold M_2^* such that at corresponding points the manifolds M_2 and M_2^* have parallel tangent planes and equal sums of the principal radii of curvature associated with every common normal direction. If the homeomorphism H restricted to the boundary C is a translation (strictly speaking: is induced by a translation in the space E_{N+2}) carrying the boundary C onto the boundary C^* , then the homeomorphism H is a translation carrying the whole manifold M_2 onto the whole manifold M_2^* .

For the case where N=1 and the boundaries C and C^* of the two manifolds are empty, this theorem was proved by Christoffel [3]; for the general case where N=1, it is due to the author [4]. The method used in this paper is an extension of that used by Chern [2] in proving the uniqueness theorem for Minkowski's problem for closed convex surfaces imbedded in a three-dimensional Euclidean space. (We recall that, by a result of Nash [6] on C^3 isometric imbeddings, every two-dimensional Riemannian manifold with a C^3 positive metric can be imbedded in some Euclidean space.)

2. PRELIMINARIES

Let M_2 be an orientable two-dimensional Riemannian manifold of class C^3 imbedded in a Euclidean space E_{N+2} of dimension N+2 (N>0). To avoid confusion, we shall use the following ranges of indices throughout this paper:

(2.1)
$$\alpha, \beta = 1, 2; \quad 3 < r < N + 2; \quad 1 < i, j, k < N + 2.$$

Associated with a point P in the space E_{N+2} we introduce a right-handed rectangular frame $Pe_1\cdots e_{N+2}$ such that e_1,\cdots,e_{N+2} form an ordered set of mutually perpendicular unit vectors with the determinant (e_1,\cdots,e_{N+2}) equal to +1. Let X denote the position vector of the point P with respect to a fixed point O in the space E_{N+2} ; then we can write

$$dX = \sum_{i} \omega_{i} e_{i},$$

$$de_{i} = \sum_{j} \omega_{ij} e_{j},$$

Received December 7, 1956.

where ω_i and ω_{ij} are Pfaffian forms in the manifold of frames and satisfy

$$\omega_{ij} + \omega_{ji} = 0.$$

Since the exterior derivative of an exact differential is zero, d(dX) = 0 and $d(de_i) = 0$, and therefore we have, from equations (2.2),

$$d\omega_{i} = \sum_{j} \omega_{j} \wedge \omega_{ji},$$

$$d\omega_{ij} = \sum_{k} \omega_{ik} \wedge \omega_{kj},$$

where \wedge denotes the exterior product.

To study the manifold M_2 , we consider the submanifold of the frames $Pe_1 \cdots e_{N+2}$ such that $P \in M_2$ and e_1 , e_2 are two tangent vectors of the manifold M_2 at the point P. Denoting by the same symbols the forms on this submanifold of frames induced by the identity mapping, we have

$$\omega_{\mathbf{r}} = 0,$$

and therefore, from the first of equations (2.4),

(2.6)
$$d\omega_{r} = \sum_{\alpha} \omega_{\alpha} \wedge \omega_{\alpha r} = 0.$$

By a Lemma of E. Cartan (see, for instance, [1], p. 117) on exterior algebra, equation (2.6) implies that for each value of r

(2.7)
$$\omega_{\alpha r} = \sum_{\beta} A_{r \alpha \beta} \omega_{\beta}$$

with the conditions

$$A_{r\alpha\beta} = A_{r\beta\alpha}.$$

Let $Oi_1 \cdots i_{N+2}$ be a frame in the space E_{N+2} such that i_1 , ..., i_{N+2} form an ordered set of mutually perpendicular unit vectors at a point O. With respect to this frame we define the vector product of N+1 vectors A_1 , ..., A_{N+1} through the point O in the space E_{N+2} to be the vector A_{N+2} (denoted by $A_1 \times \cdots \times A_{N+1}$) satisfying the following conditions:

- (a) the vector A_{N+2} is perpendicular to the (N+1)-dimensional subspace of the space E_{N+2} spanned by the vectors A_1, \dots, A_{N+1} ,
- (b) the magnitude of the vector A_{N+2} is equal to the volume of the parallelepiped whose edges are the vectors A_1 , ..., A_{N+1} ,
 - (c) the two frames $OA_1 \cdots A_{N+1} A_{N+2}$ and $Oi_1 \cdots i_{N+2}$ have the same orientation. Let σ be a permutation on the N + 1 numbers 1, ..., N + 1; then

$$A_{\sigma(1)} \times \cdots \times A_{\sigma(N+1)} = (sgn \sigma) A_1 \times \cdots \times A_{N+1}$$
,

where $\operatorname{sgn} \sigma$ is +1 or -1 according as the permutation σ is even or odd. Furthermore, the scalar product of the vector $A_1 \times \cdots \times A_{N+1}$ and a vector I through the point O in the space E_{N+2} is given by

(2.9)
$$I \cdot (A_1 \times \cdots \times A_{N+1}) = (-1)^{N+1} (I, A_1, \cdots, A_{N+1}).$$

From equation (2.9) it follows that

$$(2.10) e_1 \times \cdots \times e_{r-1} \times e_{r+1} \times \cdots \times e_{N+2} = (-1)^{N+r} e_r.$$

Let dA be the area element of the manifold M_2 at a point P, and let K_r and H_r , respectively, be the Gaussian curvature and the mean curvature of the manifold M_2 associated with the normal vector e_r at the point P. Then, by means of the combined operation \otimes of the vector product \times and the exterior product \wedge (for this operation \otimes see, for instance, [5]), we obtain

(2.11)
$$dX \otimes dX \otimes e_3 \otimes \cdots \otimes e_{r-1} \otimes e_{r+1} \otimes \cdots \times e_{N+2} = (-1)^{N+r} 2e_r dA,$$

(2.12)
$$\operatorname{de}_{\mathbf{r}} \otimes \operatorname{de}_{\mathbf{r}} \otimes \operatorname{e}_{3} \otimes \cdots \otimes \operatorname{e}_{\mathbf{r}-1} \otimes \operatorname{e}_{\mathbf{r}+1} \otimes \cdots \otimes \operatorname{e}_{\mathbf{N}+2} = (-1)^{\mathbf{N}+\mathbf{r}} 2K_{\mathbf{r}} \operatorname{e}_{\mathbf{r}} dA$$

(2.13)
$$dX \otimes de_r \otimes e_3 \otimes \cdots \otimes e_{r-1} \otimes e_{r+1} \otimes \cdots \otimes e_{N+2} = (-1)^{N+r+1} 2H_r e_r dA$$
.

From equations (2.2, (2.5), (2.10), (2.11), (2.12), (2.13) it follows that

$$dA = \omega_1 \wedge \omega_2,$$

$$(2.15) K_r dA = \omega_{r1} \wedge \omega_{r2},$$

$$(2.16) 2H_r dA = \omega_{r2} \wedge \omega_1 - \omega_{r1} \wedge \omega_2.$$

It is known that the vector $\mathfrak{H} = \sum_{\mathbf{r}} \mathbf{H}_{\mathbf{r}} \mathbf{e}_{\mathbf{r}}$ is independent of the choice of the mutually

perpendicular unit vectors e_3 , \cdots , e_{N+2} in the normal space of the manifold M_2 at the point P; the vector $\mathfrak P$ and its magnitude are respectively called the mean curvature vector and the mean curvature of the manifold M_2 at the point P.

3. AN INTEGRAL FORMULA

Suppose that M_2 and M_2^* are two orientable two-dimensional Riemannian manifolds of class C^3 imbedded in a Euclidean space E_{N+2} of dimension N+2 (N>0) with boundaries C and C^* , respectively, and with positive Gaussian curvatures in every normal direction. Furthermore, suppose that there exists an orientation-preserving differentiable homeomorphism H of the manifold M_2 onto the manifold M_2^* such that at corresponding points the manifolds M_2 and M_2^* have parallel tangent planes. Then the definitions in Section 2 can be applied to the manifold M_2 ; and for the corresponding quantities and equations for the manifold M_2^* we shall use the same symbols and numbers with a star, respectively.

By using equations (2.2), (2.3), (2.5), (2.9), (2.10), (2.16), (2.5)* and the first of equations (2.2)*, and applying the ordinary rules for differentiation of determinants, we can obtain the differential form

$$\begin{aligned} d(X^*, dX, e_3, & \cdots, e_{N+2}) &= (-1)^{N+1} e_3 \cdot (dX^* \otimes dX \otimes e_4 \otimes \cdots \otimes e_{N+2}) \\ &+ (-1)^{N+1} X^* \cdot \sum_r dX \otimes e_3 \otimes \cdots \otimes e_{r-1} \otimes de_r \otimes e_{r+1} \otimes \cdots \otimes e_{N+2} \\ &= \omega_1^* \wedge \omega_2 - \omega_2^* \wedge \omega_1 - 2 \sum_r p_r^* H_r dA, \end{aligned}$$

where

$$p_r^* = X^* \cdot e_r.$$

Integrating both sides of equation (3.1) over the manifold M_2 and applying Stokes' Theorem to the left side, we then arrive at the integral formula

(3.3)
$$\int_{C} (X^*, dX, e_3, \dots, e_{N+2}) = \iint_{M_2} (\omega_1^* \wedge \omega_2 - \omega_2^* \wedge \omega_1) - 2 \iint_{M_2} \sum_{r} p_r^* H_r dA.$$

4. PROOF OF THE THEOREM

First we should notice that the given differentiable homeomorphism H between the manifolds M_2 and M_2^* induces a homeomorphism between the two frames $Pe_1\cdots e_{N+2}$ and $P^*e_1\cdots e_{N+2}$ at two corresponding points P and P* of the manifolds M_2 and M_2^* , whence

$$\omega_{r\alpha}^* = \omega_{r\alpha}.$$

From equations (2.7), (2.14), and (2.15) it follows that

(4.2)
$$K_r = A_{r11}A_{r22} - A_{r12}A_{r21};$$

this and the assumption that $K_r>0$ for each value of r imply that the matrix $(A_{r\alpha\beta})$ is nonsingular for each value of r. Therefore by equations (2.7) and (2.8) we can write, for any value of r,

$$\omega_{\alpha} = \sum_{\beta} \lambda_{r\alpha\beta} \omega_{\beta r},$$

where $(\lambda_{r\alpha\beta})$ is the inverse matrix of $(A_{r\alpha\beta})$ and where

$$\lambda_{r\alpha\beta} = \lambda_{r\beta\alpha}.$$

Using equations (2.3), (2.15), (2.16), (4.1), (4.3), (4.4), (4.3)*, (4.4)*, we find immediately that

$$2H_{r} = (\lambda_{r11} + \lambda_{r22})K_{r},$$

$$(4.5)$$

$$\omega_{1}^{*} \wedge \omega_{2} - \omega_{2}^{*} \wedge \omega_{1} = (\lambda_{r11}^{*} \lambda_{r22} - 2\lambda_{r12}^{*} \lambda_{r12} + \lambda_{r22}^{*} \lambda_{r11})\omega_{r1} \wedge \omega_{r2}.$$

The first of equations (4.5) implies that the sum of the principal radii of curvature at the point P of the manifold M_2 , which are associated with the normal vector e_r , is equal to

(4.6)
$$2H_{r}/K_{r} = \lambda_{r11} + \lambda_{r22}.$$

From the assumption and from equations (4.6) and (4.6)* we thus obtain

$$\lambda_{r11}^* + \lambda_{r22}^* = \lambda_{r11}^* + \lambda_{r22}^*.$$

Substituting equations (2.15), (4.4), (4.5) in equation (3.3), we have

$$\int_{C} (X^*, dX, e_3, \dots, e_{N+2})$$
(4.8)
$$= \iint_{M_2} (\lambda_{r11}^* \lambda_{r22} - 2\lambda_{r12}^* \lambda_{r12} + \lambda_{r22}^* \lambda_{r11}) \omega_{r1} \wedge \omega_{r2}$$

$$- \iint_{M_2} \sum_{r} p_r^* (\lambda_{r11} + \lambda_{r22}) \omega_{r1} \wedge \omega_{r2}.$$

The replacement of the manifold M_2 by the manifold M_2^* in equation (4.8), together with the use of equation (4.1), gives

$$\int_{C} (X^*, dX^*, e_3, \dots, e_{N+2})$$
(4.9)
$$= 2 \iint_{M_2} (\lambda_{r11}^* \lambda_{r22}^* - \lambda_{r12}^*) \omega_{r1} \wedge \omega_{r2} - \iint_{M_2} \sum_{r} p_r^* (\lambda_{r11}^* + \lambda_{r22}^*) \omega_{r1} \wedge \omega_{r2}.$$

Subtracting equation (4.8) from equation (4.9), and using equation (4.7) and the assumption that $dX^* = dX$ along the boundary C, we obtain

$$(4.10) \qquad \iint_{M_2} [2(\lambda_{r11}^* \lambda_{r22}^* - \lambda_{r12}^*) - (\lambda_{r11}^* \lambda_{r22}^* - 2\lambda_{r12}^* \lambda_{r12}^* + \lambda_{r22}^* \lambda_{r11}^*)] \omega_{r1} \wedge \omega_{r2} = 0.$$

Subtracting equation (4.10) from the one obtained by interchanging the roles of the two manifolds M_2 and M_2^* in equation (4.10), we get

$$(4.11) \int \int_{M_2} (\lambda_{r11}^* \lambda_{r22}^* - \lambda_{r12}^{*2}) \omega_{r1} \wedge \omega_{r2} = \int \int_{M_2} (\lambda_{r11} \lambda_{r22} - \lambda_{r12}^{2}) \omega_{r1} \wedge \omega_{r2}.$$

Thus the substitution of equation (4.11) in equation (4.10) yields

(4.12)
$$\iint_{M_2} [(\lambda_{r11}^* - \lambda_{r11})(\lambda_{r22}^* - \lambda_{r22}) - (\lambda_{r12}^* - \lambda_{r12})^2] \omega_{r1} \wedge \omega_{r2} = 0.$$

But

$$\begin{split} &(\lambda_{\mathtt{r}11}^{*} - \lambda_{\mathtt{r}11})(\lambda_{\mathtt{r}22}^{*} - \lambda_{\mathtt{r}22}) \\ &= \frac{1}{2} [(\lambda_{\mathtt{r}11}^{*} - \lambda_{\mathtt{r}11}) + (\lambda_{\mathtt{r}22}^{*} - \lambda_{\mathtt{r}22})]^{2} - \frac{1}{2} [(\lambda_{\mathtt{r}11}^{*} - \lambda_{\mathtt{r}11})^{2} + (\lambda_{\mathtt{r}22}^{*} - \lambda_{\mathtt{r}22})^{2}], \end{split}$$

which is reduced, by means of equation (4.7), to

$$(4.13) \qquad (\lambda_{r11}^* - \lambda_{r11})(\lambda_{r22}^* - \lambda_{r22}) = -\frac{1}{2}[(\lambda_{r11}^* - \lambda_{r11})^2 + (\lambda_{r22}^* - \lambda_{r22})^2].$$

By the assumption and equation (2.15), $\omega_{r1} \wedge \omega_{r2} > 0$. Thus the integrand in equation (4.12) is nonpositive, and therefore equation (4.12) holds when and only when

$$\lambda_{r\alpha\beta}^* = \lambda_{r\alpha\beta} \quad (\alpha, \beta = 1, 2).$$

Using equations (4.14), (4.3), (4.3)*, we obtain

$$\omega_{\alpha}^* = \omega_{\alpha} \qquad (\alpha = 1, 2).$$

From equations (4.15), (2.2), (2.5), (2.2)*, (2.5)* it follows that $dX^* = dX$ over the whole manifold M_2 , and hence the proof of the theorem is complete.

REFERENCES

- 1. E. Cartan, Leçons sur la théorie des espaces à connexion projective, Paris, 1937.
- 2. S. S. Chern, A proof of the uniqueness of Minkowski's problem for convex surfaces, to appear in Amer. J. Math.
- 3. E. B. Christoffel, Ueber die Bestimmung der Gestalt einer krummen Oberfläche durch lokale Messungen auf derselben, J. Reine Angew. Math. 64 (1865), 193-209.
- 4. C. C. Hsiung, A theorem on surfaces with a closed boundary, Math. Z. 64 (1956), 41-46.
- 5. ——, Some global theorems on hypersurfaces, Canadian J. Math. 9 (1957), 5-14.
- 6. J. Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. (2) 63 (1956), 20-63.

Lehigh University