ON THE NUMERICAL RANGE OF A BOUNDED OPERATOR
William F. Donoghue, Jr.

If T is a continuous linear transformation of a Hilbert space & into itself, its
numerical range W(T) is defined as the set of all complex numbers (Tf, f) with
l£ll = 1. The most important facts about W(T) are the following.

(i) W(T) is convex [2, 4, 5, 6].
(i) The closure of W(T) contains the spectrum of T [5].

(iii) If T is normal, the closure of W(T) is the smallest closed convex set con-
taining the spectrum of T [5].

(iv) If T is normal and W(T) is closed, the extreme points of W(T) are eigen-
values [3].

(v) If W(T) reduces to the single point A, then T =AI, where I is the identity.
(vi) ¥ W(T) is a subset of the real axis, T is seli-adjoint.
In this note we obtain a precise description of W(T) for the special case where & is
two-dimensional, and our other results follow very easily from this. Our methods

also provide an easy and natural proof for (i), as well as alternative proofs for (v)
and (vi).

The reduced angle between the two one-dimensional subspaces determined by f
and g in o¢ is that angle @ in the interval 0 < 6 < 7/2 for which

| (1, )| .
Il Il

Our point of departure is the following lemma; most of it is established in [6], but
with a rather complicated proof.

cos 8 =

LEMMA., If T is a linear transformation of a two-dimensional Hilbert space
into itself, its numevical range W(T) is an ellipse, the foci of which ave the eigen-
values of T. If the eigenvalues are distinct, then the eccentricity of the ellipse is
sin 8, where 8 is the veduced angle between the eigenvectors; if there is only one
eigenvalue ), the ellipse is a circle with center X and diameter |T - A||.

Proof, Since (T, f) is a continuous function on the compact surface of the unit
sphere, it follows that W(T) is compact. We show that the boundary of W(T) is an
ellipse of the required type, and that W(T) contains all interior points of that ellipse.

If T has only the eigenvalue A, we let S = T - AI and note that S = 0, If S = 0, then
T = Al, and W(T) contains only the point A and is a circle with center A and diameter
|| T - AI" = 0. If S is not O, there exists an orthonormal pair u and v for which
Su=0 and Sv = pu. It is immediate that ||S]| = |p| and that W(S) is a circle of
diameter |p|, hence that W(T) is a circle of diameter |T - AI|| and center at .
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If T has two eigenvalues X, and X,, we put S = (T - A 0)/(x, - A,); the eigenvalues
of S are 0 and 1, and W(S) is obtained from W(T) by a rigid motion and a homo-
thetic transformation of the plane; thus W(T) will have the asserted properties if
W(S) does. Let u and v be an orthonormal pair in the space for which Su = 0, and
let w be the normalized eigenvector of S corresponding to the eigenvalue 1. Since
w, u and v are only determined up to arbitrary multipliers of absolute value 1, we
may choose them'so that w = (cos 6) u + (sin 0) v, where 6 is the reduced angle be-
tween the two eigenspaces of S (and therefore of T). We note that Sv = (cot #)u + v,
and we put f = {u + ¢,v, where [¢, |2+ ¢, |2 = 1; then

(st, f) = |§2|2 + ¢ cot 9 = |§2|2 + |§1H§2|eiw00t g,
where w depends only on the phase angles of §, and {,. As w varies, it is clear
that we obtain a circle in the complex plane with center at the point t = | §2|2 and
with radius Vt(1 - t) cot 9. It follows that W(S) is the union of the family of circles
Ct, where 0 <t <1 and
Ci: (x-12+y% = (t-t?)cot® 9.

A straightforward computation then leads to the envelope of this family, namely the

ellipse
(=-3)°
x——
2) LooyE
csc 92 (cote)2 =1
(%) 3

with the foci (0, 0) and (1, 0) and the eccentricity sin 6.

Any interior point A, of this ellipse surely lies within the circle C{ which is
tangent to the ellipse at the foot of the perpendicular from A, to the ellipse, and it is
exterior to one of the circles C, and C,; since the circles vary continuously with t,
it follows that there is a circle Cy through A,. Hence W(T) is the closed ellipse,
as desired. ‘

Remark. I S is Hermitian, that is, if T is normal, then 6 = 7/2 and the ellipse
reduces to the line segment connecting the two eigenvalues.

The lemma leads to an immediate proof of the convexity of W(T) in the most
general case; if {, and ¢, are points of W(T), there correspond normalized ele-
ments f, and f, in o# for which (Tfy, fi) = {x. Let E be the projection on the two-
dimensional subspace spanned by f, and {,; it is readily seen that the numerical
range W(ETE) is contained in W(T), and since the former set, an ellipse, contains
the line segment connecting {, and {,, the latter also contains this segment.

THEOREM 1. If W(T) is closed, then every boundary point at which the boundary
is not a diffeventiable arc is an eigenvalue of T.

Proof. From well-known results in the theory of convex functions, it follows
that the boundary of W(T) is differentiable except perhaps at enumerably many
points. At each exceptional point there exists a left and a right tangent, and the
angle between these tangents is smaller than 7. Let A be an exceptional boundary
point, and f a normalized element of s such that (Tf, f) = A. For any g # 0 in o#
we let E be the projection on the two-dimensional subspace spanned by f and g, and
we consider the numerical range of ETE. This set is an ellipse contained in W(T)
and containing the point X, Since no circle contained in W(T) can pass through 2, it
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follows that the ellipse W(ETE) reduces to a line segment or a point. In either case,
XA-is an eigenvalue of ETE, and f is the corresponding eigenvector. Thus Tf = Af;
for if this were not so, we could choose g = Tf and obtain a contradiction.

It should be observed that our theorem does not include Meng’s theorem, that is,
statement (iv) above; for that theorem makes all extreme points of W(T) eigenvalues
when that set is closed and T is normal, whereas our theorem applies only to the
“corners.” The proof of (iv), like that of (iii), makes use of the spectral theorem for
normal operators in an essential way.

THEOREM 2. If a point X\ of the spectrum of T is a boundary point of W(T), the
transformation T has no elementary divisors associated with X\.

Proof. I { is such that (T - AI)f £ 0 and (T - AIPf = 0, we consider the two-
dimensional subspace spanned by f and (T - Al)f, taking E as the projection upon it.
By the lemma, W(ETE) contains a circle with center at A and with nonzero radius,
and this circle is contained in W(T), contrary to the hypothesis that A is a boundary
point.

The assertions (v) and (vi) are usually proved from the correspondance between
quadratic forms and bilinear forms: the bilinear form is symmetric (respectively,
0) if and only if the quadratic form is real (respectively, 0) [1]. Simple alternative
proofs for (v} and (vi) can be easily obtained from the lemma as follows: for every
projection E with two-dimensional range, the transformation ETE is AE (respec-
tively, self-adjoint), whence T = X (respectively, whence T is self-adjoint).
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