ASYMPTOTIC SOLUTIONS WITH RESPECT TO A PARAMETER
OF ORDINARY DIFFERENTIAL EQUATIONS HAVING
A REGULAR SINGULAR POINT

Nicholas D. Kazarinoff

1. INTRODUCTION

We examine the asymptotic behavior for large |)\| of solutions of the differential
equation

u

(1.1) FrT

+ [A2q,(2) + Aq,(2) + F(z, M)]ju=0,

with z restricted to a closed simply connected region ® containing the origin in its
interior, and under the principal assumption that the functions zq; and z2F(z, A) ave
analytic in D. We also assume that F(z, A) is analytic in X when |x|> N. Thus

—

a) F(z,A):%)fi(z)x-i (] > N);

and near the origin,

(1.2) { b) Zqi(z) = Eqikzk) (1 =0, 1) ’
0
c) 22f(z) = 25 fikzk .
0

by

We lose no generality by assunﬁing that q,, = 1.

The main conclusions of the paper are Theorems 1, 2, and 3 in Sections 6 and 7.
We observe, from these conclusions, that our theory is a special case of a general
theory which also is applicable to equations of the type '

(1.3) % +2Q(z, )u=0,

where Q(z, A) ==7 q;(z)x -1 and q,(2) = zkz%,’ cnz” with k=0 or k=1. These
equations were considered by Langer in [2]. Unfortunately, the general theory does
not extend to values of k other than -1, 0, and 1.

The present work is motivated partly by the fact that the differential equations
for several of the special functions, for example, the Whittaker, L.egendre, and
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Gaussian hypergeometric functions, are specializations of (1.1), and partly by a de-
sire to take another step toward the completion of the theory of asymptotic solutions
of equations of the type (1.3) that involve a turning point of order k (k > -2) at the
origin. The fundamental character of the asymptotic representations of solutions of
(1.1) has, in the case that q,(z) = 0, been obtained by Ziebur [4] and Olver [3]. Zie-
bur’s work is further limited to a finite domain of z; and Olver assumes F(z, A) to
be independent of A, and arg A to be fixed.

The first step in the investigation is the construction of a “related equation” which
resembles (1.1) closely enough so that its solutions are asymptotic representations of
solutions of (1.1). The derivation of this equation is based upon the work of Langer
[2]. The procedure is familiar to the extent that details may be omitted here; the
main line of argument is presented in Section 3. Once the related equation is con-
structed, we have only to establish the asymptotic representation of solutions of (1.1)
by those of the related equation. The procedure followed to accomplish this in Sec-
tions 6 and 7 is again familiar (see for example [1]), and many details are omitted.

2. NOTATION

All hypotheses are in italics. The letters M and N are used as generic symbols
for positive constants. A functionof z and A or of z, t, and A which is uniformly
bounded for |A| > N and z and t confined to ® or a specified subregion of ® is
denoted by O(1). In formulas in which the index j and the symbols + or ¥ appear,
the upper sign is to be used when j = 1, the lower when j = 2, The abbreviation
W(f,, f,, z) is used for the Wronskian f,(z)f;(z) - £,(z)f,(z). The dash indicates dif-
ferentiation with respect to z..

3. THE RELATED EQUATION

Let m be any nonnegative integer. We now derive a differential equation, to be
called the related equation, which is identical with (1.1) to terms of order 1™, and
whose solutions are explicitly known. This derivation involves three main steps: the
construction of equations (8.3), (3.6), and (3.11), which are successively better ap-
pruximations to equation (1.1).

We define ¢(z) by the conditions

a) $2=qp, lim z'/24() =1;
and in terms of ¢|we construct

z
(3.1) { b) & (z) =§ o dt,

0

C) é(Z, A) = A@(Z) »

|4 ¥ = [62) #2112, w0) = 271/2,

Z
The path of integration in S‘ #(t) dt is not to encircle the origin. It is known [1] that if
0
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(3.2) v(z, A) = B(z)t C,(%),

where C, (%) is a cylinder function of order v, then v satisfies a first approximat-
ing equation

dz2 1 - p2) 2 ]
(3.3) EZ%+ (quo + (——ég—)q‘)— —IIITI;)V =0.

We assume that ¢(z) and ®(z) are not zevo for z € D, z # 0. The function ¥(z) is
therefore analytic in ® , and the coefficient of v in (3.3) is meromorphic in 9, since
g, and ¢2/®2 have simple and double poles at z = 0, respectively.

Following Langer [2], we define

B z z
q : q -
Lolz) = cosS =i dt w,(z) = (smg —ldt)¢ 1(z)
0 o 2¢ ’ 1 b 2¢ ’
(3.4) '< 0(z,v) = (1 - v2)$d2 + ¥ ¥,
1 _ ' 2
Dy(z, ») = 1+ Hot ,u0p.1+9,t%1.
i A A

The integrations are again to be taken along any convenient rectifiable path not en-
circling the origin. It is important to note that p,(z) and p,(z) are analytic in 9,
and that p,(z) has at least a simple zero at the origin. Thus even though 6(z, v) is
singular at z = 0, D, is analytic in ®. If © is bounded, D, is bounded away from
zevoin ® for || >N;if © is not bounded, we assume this to be true. Now let

(3.5) ¢ = Dgl/z[p.ov+ p,v'/A,

where v is any solution of (3.3). Such a function { may be seen to satisfy the differ-
ential equation

d2
(3.6) L+ [A2q + 2g, + KX(z, 0]E =0,
with
K*(z, ) = K, + Dy D;* - g[DI,DalF,
@) J Ko(z, M) = -Dg[g,(to + 13 A7) + 8, (Aokty - BoA~1 + Oy 272)],
3.7

g,(z, A) = uy - 0pgy - (20u) + O Ir7t,

gg(zy A-) = IJ-;" - 9“1.

At z = 0, the function K, has a pole of order two whose coefficient is
D0, M{6,[1 + py(0) A=1 + (13(0))2 6,1~2]},  where 6, = (1 - v?)/4.

The part of this coefficient which is independent of A is precisely 8,. Thus we may
choose the constant v to be an analytic function of A (|A] > N) with nonnegative
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real part and having the property that EOS fjo is precisely the coefficient of z~2 in
the Laurent expansion of K*(z, A). (The numbers f;y are defined by (1.2).) We do
this and adopt the notation

(3.8) K(z, 2) = KX(z, N) - z-22f; 5 =25 ky@)Ad,
0 0

so that zK(z, A) is analytic for z in '® and |A| > N.

The differential equation (3.6) resembles (1.1) up to terms which have at worst a
simple pole at z = 0 and which are bounded in A if |x| > N. If no better approxi-
mation is desired, that is, if m is zero, the remaining step of this section may be
omitted. To complete our construction of the related equation, we now define

n = Az, A)¢ + B(z, 1)¢'/2z,
(3.9) mel .
Az, 2 = 2 aj(z))t'j, B(z, \) = 2 3j(z)>l-j;
0 0

and we formally determine the functions o; and B; (i=0, ---, m - 1) as in[2]. With
the notation hj= Z¥ fj; zK, this procedure leads to the following values for these co-
efficients:

—

j-2
10 .
aj = ":,:g [35’-2*-20 (hj_g.2 - kj_s_z)ﬁs] ad  (=2,+,m-1),
0 .

dt,

1(hg - ko 1(%-29180 - 9180+ h - k
By = +{ 20" 04 31:35‘ 0 21@0 1 1
(3.10) 4 0

j
1 z
Bj = 55:) {0!; - 29851 - 918;.1 + %3 (hj_s - kj_g) e

ji-2

' ' - dt
= E [ij—s-ZBs + kj-s -ZBs + 2(tBs - Bs)t Sfj-s—Z,O]}2_¢
0

G=2, -, m-1).

The integrations are to be taken over paths which do not encircle the origin. The aj
and Bj are analytic in ®, and each Bj has at least a simple zero at z = 0.

The functions n determined by (3.9), (3.10), and (3.5) satisfy a differential equa-
tion quite similar to (1.1) but possessing a term that involves n'. If we transform
this equation by removing that term, we obtain the related equation

d2 Q(z, A
(3.11) E%J' (A2q0+ q, + F(z, ’“’*"‘;(;’a—))y =0,
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in which Q(z, )) is a computable function of A, q,, q,, and the f;(z). The specific
form of Q(z, A) is of no interest to us; but it is crucial to note that 2(z, 1) is
bounded in A for |A| > N and is analytic in ®. The relations (3.9) and

A B2
(3.12) y=D;Y2p, D, = ‘ ‘
A'-qB-q,Bx1-K*Bx2 A+ BT

give the connection between solutions of the related equation and the second approxi-
mating equation (3.6). The division by D% is legitimate if |A|> N and ® is
bounded, since D,(z, ) = 1. If ® is unbounded, we assume that D, has no zevos in
D, for |r|>N.

It is clear from the foregoing discussion and from [2], that if q, and F(z, A) are
analytic at z = 0, the introduction of appropriate notation is all that is necessary to
place this discussion in a framework which also includes the cases where q, does
not vanish at the origin or has a simple zero there.

4, HYPOTHESES ON 9

It is important to make a few further hypotheses concerning the mapping of © by
the function £z, A\). The complex parameter X\ is to be chosen once for all with |)\|
sufficiently la. re to satisfy all requirements which have been or will be placed upon
it. Since when |z| is small, &(z, A) ~ 2x 2*/?, we shall consider ® to be a portion of
a two-sheeted Riemann surface for which ¢ < arg z < ¢ + 4n, ¢ being any convenient
real number. The function £ maps 9 upon a portion of a one-sheeted Riemann sur-
face ©¢. We assume that the mapping from ® to D¢ is one-to-one.

It is convenient to subdivide D¢ into a set of overlapping regions = (h),
4.1) =)= {g|te ot and (h-1+e)r<argE<(h+1-¢€)n} (h=0,4+1,:),

where £ is positive and sufficiently small. The admissible values of h of course
depend upon the range of arg & in ® ¢ and will always be finite in number. Our
final hypotheses on 9 are these:

i) For each region E(h) c ® ¢ theve exists a point zyng [z -] in the image of
Z(h) on © such that all points of = (b) U {&]| |£| < N} may be joined to £(z,py)
[£(z_)] By an arc T divected from E(zyyy) [E(z_p\p)] to E(z, N) and having the
following properties: along the part of T' lying outside |§] =N, S¢& is monotone
decreasing [increasing] and £ ¢ = (b); and the vemaining part, if any, consists of
an arc of || = N and a segment of the rqdius of || = N leading to &(z, )).

ii) The ovigin may be joined to any point of D ¢ by an arc T which lies in the

same region = (b) as £(z) and along which S & is monotonic. (The image of a path
I' on ® may without confusion be denoted by the same symbol T.)

iii) The integrals
Q& dt
T t')’zDoDl

(for the definition of y(z), see (6.5)) are uniformly bounded with vespect to all paths
I' contained in the subvegion of ® for which |z|> N. (If ® is bounded, this
hypothesis is automatically fulfilled).
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5. SOLUTIONS OF THE RELATED EQUATION

We now single out for future use certain pairs of linearly independent solutions
of (3.11). These are chosen for the simplicity of their behavior at £ = 0 and at
£ = «, It follows from the several relations (3.12), (3.9), (3.5), and (3.2) that any
solution of the related equation (3.11) has the form

(5.1) y = [Eg¥+ 2! EF'£C,(8) + E¢¥{EC,_ (&) + (1 - »)C, (9],
where

B, = (DD, A, - %%Lf +3 (b - 2o, - 2 ]
(5.2)

D¢B B ,
E = (DoDl)—l/z[(A-—ﬁ%ﬁ:) Ky +5 (FL0+ ’:%1 )].

Both of the functions E; are analytic in ©, and E, has at least a simple zero at
z =0,

A pair y, and y, of linearly independent solutions of (3.11) is determined by (5.1)
when C,=J, and C, = Y,,, respectively. I |&(z, 7L)| <N, then

vi(z, A) = £'770Q1), ya(z, M) = £1YO@) (o >0),
(5.3)
v,(z, 2) = §0(1) ln £+ 0O(1)] (%iv=0).

Also, because y is a linear form in v and V',
Wy, ¥2p 2) = WRET, (8), TEY (E), 2) = 2)%/7.
When large values of ]f;’ | are in question, the solutions obtained from (5.1) by

using Bessel functions of the third kind are advantageous. We let y,, ; and yp, 2
denote the solutions determined by (5.1) when

[}

(’_T )1/28Xp[(u+ 2n + 1/2)"i/2]H(ul) (£e~2nTiy

Cy, 5

and

( T )l/zexp[-(v+ 2n + 1/2)1ri/2]H(55(Ee"2n7’i)

C 3

v
respectively; and we define

Van+1,12) = ¥20,1(2),  Yan-1,2(2) = ¥2n,2(2).

Each integral index k is thus associated with a pair of solutions yx; (j =1, 2). Itis
easily shown that

W(Y k1, Yk2, 2) = -2ix 2,
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The Hankel functions Hg)(e'znﬂig) (j = 1, 2) have the following property, for
lél >N and £ € = (h) (provided h=2n or h=2n+1 if j=1, and h = 2n or
h=2n-1if j=2):

o0 ey - (2)Fen[u (-2 0)] muldendon i)

Consequently, the solutions Yk;j defined above have a simple asymptotic behavior in
Z(X) namely,

(5.5) ! .
+ E1¢\I/i§1/23t1£[1 + 5—10(1)]’ for £ ¢ (E(Zn) U E(Znil)).

These asymptotic forms may be differentiated with respect to z. Using (5.4) in its
full generality, we may make them explicit to terms of order £-™-10(1). When ¢ is
not confined to the regions specified in (5.5), the behavior of the solutions Ykj may
be found from the formula

_a) Y2n,j = c?”f‘yk,l + c}l"é‘yk,z (te® (k)), where [1, p. 404]
b) ci,fs _ (_l)n—s+l -1 sin (2s S—H?er;: j-27v ’
(5.6) . .
¢) egs = (-1ym-stij2-i S0 (2s - ii“;l'} 1- D
d) ch’,z?_sﬂ - c}l’,ZzS’ ci,f.s-l _ ?,,IZS.
Also,
L (5.7) y1 = v+ v, (€ e ®), where

o(2) = (2712 l2sF/DWH/ M (f2s11) ) (=1, 2.

6. THE BOUNDED SOLUTION OF (1.1) WHEN [¢| <N

We are now in a position to demonstrate that solutions of the related equation
(3.11) are asymptotic representations for solutions of (1.1). We compare solutions
of these two equations by means of the integral equation

V.@5,® - v.0y,@ g, »u dt
W(ya, ¥p, O ™ ’

(6.1) u=y -Sz
Zx

which is equivalent to (1.1). In this equation, y, and y{ may be any pair of linearly
independent solutions of (3.11), y may be any solution, and z« may be any point of
D. The kernel in (6.1) is, of course, independent of the choice of the pair y_ and y,.

We first consider that solution of (6.1) which vanishes at the origin to a higher
order than any which is linearly independent of it. This solution, u,(z, 1), has ex-
ponent (1 +v)/2 at the origin and is determined by the choices y =y, and z, = 0 in
(6.1). We treat the cases EI <N and |£| > N separately.
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|§| < N. In (6.1) we choose y, =y; and y, =y, and we choose the path of in-
tegratlon to be the image on ® of the straight line from 0 to £(z). Let &(t) =T, and
assume for the moment that %v > 0. Define Y;= g-1F y G=1,2),and U; = 5' “Yuy
(we use this notation in this paragraph only). The 1ntegral equatlon (6.1) may now be
given the form

Z 2
U1 = ¥1@ - 3 { M@ L0 - 10O Ve @047 20 00,
0 pm+2

which we abbreviate to

U @) = Y, (@) + rm-zg) K(z, ) U, () dt.

With
Y902 = v,z and  Y{z) = a-m-2 OZK(z, Y ) at,

the familiar process of iteration leads formally to the relation

00

(6.2) 0@ =2 ¥{V@).

We demonstrate the uniform convergence of the series on the right of (6.2) for
|£] < N, and thereby establish (6.2). The relations (5.3) and the fact that |7|< ||
imply that the quantities Y; and (7/£)2V are bounded. Since

~4x2t, dt = (\¢p)~rd7T=A"20(1)7dT.

Thus
z £ M 2

S‘ K(z, t)Yl(t)dtI < MS\ lrar| <5 lg]*.

0 0
Therefore,

‘ (l)( )l <—M}EIL+2'
The fact that
Mn|£|2n

(n=1, 2, <)

l ¥ (@)

(n+ 1)! IA | (m+2)n

for |§ | < N may now be easily established by induction. It follows that (6.2) holds if
|£] <N and %y> 0. If %v =0, then
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K(z, t) = O(1) In7 + O(1) In £ + O(1),

and
M|¢[*|1n [¢]]
lYgl)(Z) ‘ < |Al m+2 *
Consequently,
Mn |£|(2-€)n
Y(ln)(Z)‘ <—|;|l—(-nl‘;‘_*_—2)—n——' (n=2, 3,’ ))

for any € (0 < & < 1), so that (6.2) again holds. Thus, when |£(z,1)| <N,

3+v
u; (z, A) =y1(z,)\)+9—(—g—£—-—— if v >0,
Am+2
(6.3) 3
o(1)¢>Ink .
ul(z,h) = yl(Z,A)ﬁ"—A—In‘:_Z— if Qiv=0.

These relations show that u, vanishes to a higher order at z = 0 than any other solu-
tion linearly independent of it.

Differentiating (6.1) with respect to z and substituting the estimates (6.3) for u,
in the derived equation, we come to the conclusion that

0(1) £ 1+p
Am
OMElnt (g, - ).

u'l(z,)\) = y'l(z., A) + (2v>0),

(6.4)
‘u'l(z, A) = y'1 (z, A) +

L lEl > N. When ]!;‘I is large, either the exponential eif or the exponential
eif causes |y1| to be large, according as $z is negative or positive. The deduc-
tions for u, are now to be based upon (5.7), (5.6), and (5.5); and they must be appro-
priately adapted to the location of £. We give a full discussion only for 3§ < 0,
which we momentarily assume to be the case. Let y(z) be any convenient nonzero
analytic function having the property that for each k the functions

- (0D 2y £ e i by,

=
!

(6.5) G=1,2),
Y

j = DD/ 2y(2) £71/2 eFiky,

are bounded in = (k) N {El |£| > N}. If ® is a bounded domain, y(z) may be chosen
to be 1.

The integration in (6.1) is now taken over a path I' extending from 0 to z. For
the consideration of the integral, we divide I' into three parts: I' |, a radius of the
circle |7| = N; T',, a rectifiable arc on which |7| > N; I',, the remaining arc, if any.
If © is finite, no arc I'; need be considered. We may now rewrite (6.1) in the form

'3
(6.6) U (@) = Yl(z)+Z)S K, (z, ) U, (O dt,
1 ri
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/
where

U, (2) = (DyD))/2y(2) £-1/2e-u (2),

. eiT 11/2 g ()
Kl(z,t\) = -3 [Y1(2) y (1) - vy (©) Y ,(2)] (DOD:)l/ztAmﬂ’
Kz, t) = -i§ [¥312) Vi) - Y1 (0) Yy (2)e24(T-4)] t_yzD(;?):Aerz’

K3(z, t) = K,(z, t).

The estimates used in the discussion of Case I, [£| < N, lead to the conclusion
that '

S K;(z, ) Y () dt =1 ™2 0(1).

I.‘1

On T',UT;, 37 > 6. On T, |~r| is bounded; hence, the quantities Yy; and
70 (Ay*tD,D,)"* are bounded. Thus

{ Kz, 0y,@a = r™1 o).
r, .

In virtue of the hypothesis (iii) of Section 4, we may also conclude that

X K4z, Y, dt = »™-1 0(1).
r3

From these facts it follows by induction that the formal iteration of equation (6.6) is
legitimate. Consequently, when |£| > N and $¢ <0,

U,(2 = Y,(2) + x™ o).

The form of u, when £ lies in an upper half-plane differs from that just derived
(I)nlly in that the roles of eif and e-if are interchanged. Thus, for all £ with
£l > N,

£1/2[eif0(1) + e-if 0(1))

(6.7) uy(z, A) = yiz, M) + 7 (DoDy) /2 a1l

The form of u} may again be found by differentiating (6.1). It is

e 21y, 1 (z, ) O(1) + e2ily, ,(z, 2) O(1)
Am+1 ’ .

(6.8) uj(z, A) = y'l(z, A) +

provided |£| > N and ¢ € = (k),
We summarize the conclusions which we have thus far obtained:

THEOREM 1. Under the hypotheses set forth in Sections 1, 3, and 4, the solution of
the diffevential equation (1.1) with exponent (1_ +v)/2 at z = 0, togethey with its first
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derivative, is described by (6.3) and (6.4) when |£| < N, and by the forms (6.7) and
(6.8) when |£| > N. The functions y; and yyj (j = 1, 2), appearing in these formulas
are defined in Section 5; the functions £, D,, D,, and v and the regions = (k) are de-
fined by the relations (3.1), (3.4), (3.12), (6.5), and (4.1), respectively.

7. SUBDOMINANT SOLUTIONS OF (1.1)

Theorem 1 reveals that while u,(z, )— 0 as z— 0 for fixed A, it becomes in-
finite as [J\I——»w for each z € ® with S(£(z))# 0 and z# O; that is, u, is dominant
almost everywhere in ® . There are, however, solutions of (1.1) which are bounded
in A over certain subregions of ®. The form of these subdominant solutions will
now be described.

Let the integral equation (6.1) be written with the roles of y, u, and z, taken by
V2, Uk2, and zyp or yki, ukl, and z_pg, respectively. The analysis leading to the
description of the solutions uy; when I‘g’[ > N resembles that which precedes Theo-
rem 1, and it will be omitted. The conclusions are:

THEOREM 2. Undev the hypotheses set forth in Sections 1, 3, and 4 and corre-
sponding to each admissible region = (k) defined by (4.1), the differential equation
?1.!1) has a pair of linearly independent solutions uy; (j =1, 2) such that when

£] > N,

gl/z eif o(1)
y (DgD;) 1/2 ym+1’

Upnt1,1(2, X = Uzn (2, ) = yap,1(2, M) +

(7.1a) .
§ V512 MO + yhn 2(2, N e2iEO()

Arn-}-l

’

u'zn’l(z, A = yén’l(z, A+

for ¢ e (5(2n)y z@ntl)y  gng

7"(D0D1) 1/2 Am+l’

uzn-l,z(z’ A) = uZn,Z(Z’A) = an,z(z, N+
(7.1b) .
Y'Zn,z(z’ A 0(1) + yz'n’1 (z, 2) O(1) e~2i

ufzn'z(z, A) = y}_n'z(z, A) + D ,

for £ e ((2n-1)y =(2n), The functions yy; are described in Section 5; the func-
tions &, D,, D,, and y are defined by the relations (3.1), (3.4), (3.12), and (6.5),
respectively.

These results show that each solution uy; is bounded as | x| — =, when £ lies in
an upper or lower half-plane of = (k) according as j=1 or j=2.

We next determine the behavior of uyxj when | €] < N. The results obtained will *
enable us to find the form of the solutions uyj when T§| > N while £ is not re-
stricted to lie in one of the subregions of ® indicated in Theorem 2,

We consider the integral equation (6.1) with the roles of y, u, and z, taken by
Y2n,2, U2n,2, and z M. The path of integration is to be a curve I'. The path may be
divided into two parts: I',, a portion of a radius of I'rl = N; and I',, the remainder
of the curve. On the arc T',, Theorem 2 provides an estimate for u;, ;. Making use
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of this and the hypothesis (iii) of Section 4, we can show that the part of the integral
in (6.1) taken over I', has the form

-m-1 - -
Va1 @0 Ay, @O AT,

or
g-Yoa ™l it v >0, oWa™lemg if sw=o0.

Thus, if %v > 0,

1-v Q(t) n, (t)
Uy, 2@ = Yop 2(2) +E—A—m(—)+-§~1—) S 1@ y2() - y1 (0 y2( z)]——-‘-’;";:z—”‘—— dt;

and an alternative expression holds if %wv = 0.

We assume, for the moment, that %iv is positive, and we define

-1+v -1+v
Uzn,2 = § Wzn,2, Yop,2 = & yzn,2, Yj=§ ¥j-

Using these abbreviations, we may write the last equation in the form

(1)

(7.2) Urn,2(8) = Yz,20) + g K(z, ) Uy, ,(B) dt,

where

2
K(z, t) = - g[Yl(Z) Y, (b (/)% - Y (D) Y,(2)] :hgitz) .

On I',, the functions Y; and Q@ are bounded; and since |T| > |£| (£/r)% ‘is bounded.
Also,

S‘ 2dt 01

r, thamt2 - A mt2 '
Therefore,

(k@ 0¥, ,0 + oA ™ dt = o@WA™2.

1

We may now proceed to solve (7.2) by iteration and to show that
Uzp, 2(z) = Yon, 2(z) + O(1) A1~ 1 R for |§| <N and tv > 0.

An analogous result holds when %iv = 0, Moreover, a similar discussion applies to
the solution uy, (2, ). Consequently, when. | €] <N,
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1-v
o1 .
ugl N = vl )+ 2O s 0 5=, 2),
(7.3)
1 .
Ukj(Z, A) = ykj(z, K)+9%)—n%f£l—§- Rv=0; j=1, 2).

The insertion of these expressions in the differentiated form of (6.1) yields the
formulas

-1-
ul'{j(z, A = yl'q.(z, )+ 5-7;(_)—1(1—) (v >0,
(7.4) !
gl 2) = vigle, )+ SERE - w = 0),

It remains to give a description of the behavior of the solutions uy; when
|§| > N and £ is not confined to a specific subregion of ® ¢ as indicated in (7.1).
Now, for z+# 0, the solutions upj(z,1) may be related to any other pair uzy j(z, A)
by the formulas

(7.5) ’ UZk,j(Z, A = le()\) U1 (Z, A) + uhz(Z, N G= 1, 2).

The relations (5.6) give the analogous formulas for Y2k,j in terms of ynh3 and ypa.
Let us replace the u’s in (7.5) by their asymptotic forms as given by (7.3). If we
then replace the term Ykj in the resulting expression by its equivalent in (5.6), we
find that

O(1) gtl-v y-m-1 (g > ()

(k,h) (k,h) ’
C:-7 - C: y + C. - C: y =

( 317751 ) hl ( b2 el ) h,2 oMaxm-1 £1né  (9ip=0).

Since, near z = 0, ypj = £t1-Y0(1) or Yhj = O(1) £ In & according as %V is positive
or zero, it follows from this equation that

C:

51 = cfloh) + oam-1,

These values for the coefficients ¢j,; may now be used in (7.5), with the result that

£1/2[e16 0(1) + e if0(1)]

(G=1,2)
y (D0D1)1/2 Am+l

(7.6) quj:l,j(z’ A) = qu,j(Z, A) = ka’j (Z, A) +

when |§| > N. These formulas are valid without restriction on arg &. It should be
noted that the formulas (7.1) are more precise, when they apply. Forms for u{{j when
arg ¢ is not restricted may be obtained by differentiating (7.5). The summary of the
conclusions reached relative to the solutions Ugej is:

THEOREM 3. Under the hypotheses set forth in Sections 1, 3, and 4, the differential
equation (1.1) has pairs of linearly independent solutions ukj(z, AN (G=1,2;
k =0, +1, ) (the admissible values of k depending upon the vange of arg & in D)
which are descvibed by (1.3) and (71.4) if |&| < N; and which are generally described
by (1.6) if | E] > N, but more precisely by (7.1) when the latter formulas ave ap-
plicable,
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