A SCALAR TRANSPORT EQUATION; II
Z. A. Melzak

1. INTRODUCTION

This is the second paper in a series treating the formulation of a nonlinear
integro-differential equation which occurs in a variety of physical problems, and dis-
cussing the existence and properties of its solutions. The first paper [2] was con-
cerned with the equation '

M 0 %S 1y, D - 3, D o(y, x - y) dy - £(x, aS £y, 9 ¢(x, y) dy
0 0
ey = -
+ j f(y, ) ¥(y, x)dy - E%’—tlg vy y)dy (x>0,
b4 0

where f(x, 0), ¢(x, y) and Y¥(x, y) are given and f(x, t) is to be determined. It was
shown that under certain hypotheses equation (1) possesses a unique solution f(x, t).

The present paper will treat a more general equation in which ¢(x, y, t) and
¥(x, y, t) replace ¢(x, y) and ¥(x, y), respectively. The following is the main result
obtained.

THEOREM 1. Let £(x, y), ¢(x, y, t) and Y(x, y, t) be functions which satisfy the
following hypotheses:

(H,) f(x, 0) is nonnegative, bounded, continuous and integrable, and

o0

j xf(x, 0)dx < ;
0

(H,) ¢(x,y,t) is nonnegative and bounded,
¢(X, Yy, t) = ¢(Yy X, t) ’

(%, y, t) is continuous with respect to x, y, and t, and continuity in t is uni-
Jform with vrespect to x and y;

(Hy) y(x,y,t) is nonnegative and bounded,

X

Y, 7, Ddy <E - 1< o,
-0

Y(x, v, t) is continuous with respect to x, y and t, and continuity in t is uni-
X

Jform with vespect to x and y; also, the function —:IES yY(x, v, t)dy is bounded
0 ‘
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Sfrom above by 1, it is continuous in x and t, and its continuity int is uniform
with respect to x.

Then the equation

afg::, 0 _ %j fiy, Hfx -y, ho(y, x -y, t)dy - f(x, 1) S fy, t) ¢(x, y, t) dy
0
0
(2) w «
+ [ f(y, t) w(y, x, t) dy - —f—(}—cggj yy(x, v, tdy
0 0

possesses a solution f(x, t) which is valid for x, t > 0. This solution is continuous,
nonnegative, continuously diffeventiable in t for each x, and integrable in x for each
t. It is.the only solution of equation (2) which is continuous and integrable in x for
all t and which also assumes the prescribed initial value £(x, 0) for t = 0.

To dispense with needless repetitions, an acquaintance with [2] is assumed
throughout. The proof of Theorem 1 follows closely the idea of the Cauchy-Peano
existence proof in the theory of ordinary differential equations; in this connection,
see [1]. The interval [0, T] (0 < T < ) is subdivided into a number of segments;
over each segment, ¢(x, y, t) and Y(x, y, t) are approximated by functions indepen-
dent of t; and then the resultant system of integro-differential equations is solved by
means of Theorem 1 of [2]. The notion of an approximate solution is introduced next.
The number of subdivisions of [0, T] is allowed to tend to infinity while their meshes
tend to zero. A sequence of approximate solutions is thus obtained, and it is shown to
be a uniformly convergent Cauchy sequence. In this way a limit function is obtained
without the usual recourse to a theorem of the Ascoli-Arzeld type. The limit function,
which possesses all the properties required in Theorem 1, is then shown to be an ac-
tual solution of equation (2).

2. PRELIMINARY ESTIMATES
In the terminology of [ 2], equation (1) is written as

of(x, t)
ot

= [1(x, 1), f(x, t)] + Li(x, t),

where [f, f] and Lf are suitably defined operators. In order to stress the dependence
on ¢ and Y, and for reasons of brevity and convenience, this terminology will be
modified. The part of the right-hand side of (2) consisting of the first two integrals
will be denoted by [ f(x, t), f(x, t), ¢(x, y, t)], and the remainder will be written as

(f(x, t), ¢(x, vy, t)). The relation

[f+g,f+g0]=Iff1¢]+[g g ¢]+ 2[f, g, ¢]

defines a trilinear operator [f, g, ¢], where f and g are any two functions of the
class L(0, ) in x, and where ¢ = ¢(x, y, t) satisfies the hypothesis (H,) but is
otherwise arbitrary. Similarly, (f, ) is a bilinear operator in which f is a member
of L0, ) in x and ¢ is any function satisfying the hypothesis (H;). The basic es-
timates (4) to (9) of [2] remain valid for [ £, g, ¢] and (f, ¢) if one writes
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A= Lub. ¢x,y,t), C= lLub.yxvy,t.

Let also
o0

L.u.b. f(x, 0) = B, S f(x, 0)dx = N.
0

Let T be a fixed positive number, and let t; = 0<t, <t, <. <t, =T. Consider
the system of equations

3t (x, 1)
) T_‘ = [fk(x; t)) fk(x; t)y ¢(X, Yy, tk)] + (fk(X’ t), lxb(x’ y, tk)) (tks tS tk«{-]_):

where

folx, 0) = f(x, 0),  filx, tis)) = fie1 (%, txt)) (k=0,1,2, -+, n-1).
The hypotheses (H,), (H,) and (H;) are assumed to apply to f(x, 0), ¢(x, y, t) and
Y(x, y, t). By means of Theorem 1 of [2] and an induction on k, one shows that each
equation of (3) possesses a solution which is continuous, nonnegative, analytic in t

and integrable in x. Let

I o]

Nk= S fk(X, tk) dX’ N() = N’
0

Bk = Lu.b. fk(X, tk)’ BO = B,
(4) X A= Lub. ¢(x,y, ti) < A,

Cy = Lub. ¥(x,y, ) <C,

X

E =1+ l.u.b.y Y(x,y, t)dy < E.
0

By the estimates (36) of [2], the N, satisfy the condition

.
>

exp(Ey - 1)(t, ., -¢t) -1 )

Nk+lSNk(1+ Ek—l

therefore

exp (Ej - Dltj41 - ) - )

k
Ny < NII (1+ =T
j=0 J

and consequently
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exp(EJ - 1)(tJ+1 - tj) -1

k
log Niy /N < X o
j=0 j

On account of the last inequality in (4), one obtains

K exp(E - 1)(tj,; - t;) -1
log Ni,1/N < & e
j=0

It is easily verified that, for a, 8 > 0,
e -1+ef-1<e®B g,

and repeated application shows that if a; > 0, then

k o k

-0 <em(T a;)-1.

j=0 j=0
Applying the last inequality, one finds that

k
log Niy1/N < 7 €xp ((E - 1)j§0 (ter - 8) - 1) - -

Let now U, = N exp -1 ; then
(5) NxSUkSUm&SUnSmemmﬁ;¥T'l.

A lower estimate for B will now be obtained. By (39) of [2],

Bk+l Z Bk exp{—-(tk+1 - tk)(l + AkUk)} 2 Bk exp{—(tk+1 - tk)(l‘ + AUk)} .
Therefore

k k
Br+1 > Bexp{- X (tj;1 - §)(1 + AU))} > Bexp{-(1+ AU,) T (tj4; - 1)}
j=0 j=0

= B exp{-(1 + AU,)t, 1},
and consequently
(6) By, > Bexp{-(1+ AU,)T}.

Let my = 3AxNy/2 + max (B, CxN/By); then, as shown in[2}, fi (x, t) is represented
on the interval t, <t < tp+ 1/my by a power series in t, and certain important es-
timates hold there. By the estimates (4), (5) and (6) there exists a constant M = M(T)
such that my < M. It follows that if ty;) - tx < 1/M, then the estimates (17) of [2]
apply to fi(x, t) on its entire domain of definition, with By, N, fi and M replacing

B, N, f and m. One obtains therefore
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By
Bk+1 S 1- M(tk+1 - tk).

If it is assumed that t),; - t;, < 1/2M, then

1

2 -
1 - tk) S 1+ M(tk+1 tk)’

and the following upper bound holds for By ,;:
k

(7) Bk+1 < B Ho [1 + ZM(tJ+1 - t)] < B exp{ZM Z (tJ'I'l - t_])} S B eZMT.
J=

Further, by (17) of [2],

o0

Ny
(8) S £ (x, dx < ToME-t’
0
B,
(9) 1.}1{1.b. fk(X, t) S m .

<0

By the hypothesis (H1):I xf(x, 0)dx = D < . Since
0

t

Xfo(x: t) = Xfo(x’ O) = § {x[fo(x; t)’ fo(x, t), ¢(X, y, O)] + x(fo(x: t)’ W(X, Y, 0))} dt ’
0

integration of both sides with respect to x from 0 to « shows that the right-hand
side vanishes. Therefore

o0 o0
j xfy(x, t)dx = g xfy(x, 0)dx = D,
0 0

and induction on k shows that

(10) S xfy(x, t)dx = D.
0

Let y,(x, y) and ¥,(x, y) be two functions satisfying the relevant parts of the
hypothesis (H,), and let f(x) be a nonnegative function in L(0, ), such that the inte-

gral S xf(x) dx is finite. Then
"0
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0 o0 ©00

S €, ¥, - w)] dx < 5 S £9) [¥(5, %) - Wy, )| dy dx
0 0 x
+ { Jf;y "lll(x’ y) - IPZ(X, Y)l dy dx,
and
§ S £5) | Wily, ) - Y,ly, x)| dydx = j £(x) g |¥:(x, ¥) - ¥u(x, y)| dy dx;
0 x 0 0
thérefore
o0 3 o0
(11) j &, ¥, - w2 | dx < 5 Lub.| u(x, ¥) - ¥,(x, ¥)| S x1(x) dx.
0

0

3. THE MAIN LEMMA

LEMMA 1. Let T be a fixed number (0 < T < «), and let 0=ty <
be a subdivision of the interval [0, T), such that ti1 - tk < 1/ 2M. Let
and {f,, (x, t)} be two finite sequences of functions (k = 0, 1,

of, (x, 1) :

—r— = [Fdx, 1), f53(x, 1), ¢y (x, vl + (5%, 1), ¥idx, ¥)

t =T
{‘flk(x t)}
, n - 1), such that

(=1, 2 fh <t <tyy; fi0(x, 0) = £(x, Q) £330 (X, teyg) = £53dx, tyeyn))

Let 1(x, 0), ¢51.(X, y) and ¢ 3{x, y) satisfy the hypotheses (H,), (H,) and (H,),respec-
tively. In addition, let

|¢1k(X, y) - ¢ (x, Y)l <7,

l‘plk(x’ y) - W;?_k(x; Y)I <,

X

%S y| ¥iklx, ¥) - Yaxlx, y)| dy < n.
0

Then there exisis a constant K, = K,(T) such that

|15, ) - foux, )] <Kpn (0Kt T).

Proof. K,, K,, -+ will denote constants depending on T and on the constants of
the problem. Let
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ag(0) = 0, ay() = S |t11cx, 1) - £ (%, B)] dx,
0 .
Bo(0) = 0, B = Lub. |f;(x, V) - £, 1 (x, 1)] .

Recursion formulas will now be developed for the ayx. By the hypotheses of the
lemma,
“t
e (x, 1) = f3(x, ) + S {10 f110 o1l + (G ¥100} 4t
b
t )
ka(X, t) = ka(x; tk) + S {[kay ka, ¢2k]+ (fzk, ka)} dt.
tk
Subtracting and taking absolute values, one obtains

|f1k(x, t) - ka(x’ t)l _<_ |f1k(x, tk) - flk(x, tk)|

/

t

+J {150 T30 01x] - (250 f2105 d2x]| + | E 130 ¥10) - (21, ¥21)|} at,
5N

and this may be written in the form

[£13x, ©) - fo3(x, )| < [f15(%, t) - £20d%, ) |

12)

+ J {1 f110 f130 1% - P21]| + [[f1xe + f2is Fuse - f210 P20c]| + [ Erses ¥iae - W21 |
i

+ [ (€5 - To00 ¥pu) | } at.

Integrating with respect to x from zero to infinity and interchanging the order of the
integrations (which is justified by the absolute convergence of the integrals), one ob-
tains

t o

(13) ay (t) = ap () + j S (P+Q+ R+ S)dxadt,
‘ te 0

where P, Q, R and S stand for the four absolute values, in their order of appear-
ance, in the integrand of (12). The following estimates follow from (5), (7), (8) and
(9), and from the assumption that ty; - t; < 1/2M:
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00
(14) S flk(x’ t)dx S K3, l.u.b. fik(x, t) _<_ K4 (1 = 1, 2) .
0

By (14) above and by (6) of [ 2],

(15) j' Pdx < K1,
. ‘

(16 J Qdx < Kgayl(t).
0

Further, by (11) one gets

oo

(17) s Rdx < K.
0
Also,
N T (x, ¥
f..(x,t) -1,.(x, t)
j Sdx < j {S |£1:(75 ¥ = £21(y, ]| ¥orly, x)dy + [fucs - 2% Y
0 0  x
X
j Y ¥or(x, y) dy}dx.
0
Proceeding as in the derivation of (11), one obtains
o] (-]
0 0
If the estimates (15) to (18) are used in (13), one gets
t t
(19) ak(t) S ak(tk) +I (Kg?] + Kloak(t)) dt = ak(tk) + Kg’n(t - tk) + KIOS oG (t) dt.
e te

By the inequality in Problem 1, Ch. 1 of [1], this implies that
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t

@ () < o () + Kgnlt - 1) + K S exp{K t - s)He, (t) + Kyn(s - t)]ds;
b

evaluating the integral, one obtains

o (t) < oe(ty) + Kgn(t - ) + o () [exp Ky qft - ty) - 1]

(20) K
+ _Ii—?_g[eprlo(t - tk) - K].O(t - tlg - 1].

Since 0 <ty - t, < 1/2M, it follows that
0 < expKjglt - t) - 1 < Kot - t) exp K;o/2M,
0 < exp Kjplt - ti) - Kjglt - t) - 1 < Kyt - t) exp K;o/2M.
Therefore, by (20),
ay(t) < oty + Konlt - ) + Kolt - ) ay(ty) exp K;9/2M + Kgn(t - t,) exp K;4/2M,
that is,
(21) o (1) < oy (()[1+ Ky (t- )]+ Kp,nt - t).
Let now t= ty,; in (21); then
o1 (s ) < eetid[1 + Kyp (xeen - 6] + Ky mltien - £ -

Introduce constants y, , given by

Vel = Yk[1 + Kii(tier = t]+ Kipnlteyr - &), 7o = ag(0) = 0.

Then clearly

(22) oy () <7y -
Put hk(X) = a4 X+ bk’ ayx = 1+ Kll(tk+1 - tk)’ bk = K].Z n(tk+1 - tk); then
(23) Y+l = hk(hk-l (e ho(o) +e)n

The right-hand side of (23), being an iterate of linear functions, is explicitly evalu-
able:

k k
hi(hy 10 ho0) =) = 2 (b; II :
K\ -1 0 j=0( J(=j+1a()

Therefore

k k
Virl = Z;O Klzn(tj+1‘tj)(n [1+K11(t(+1—tf)]}.
J:

7j+1
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The following elementary estimate holds:

K K
/ II [1+Ky, (g - tp)] < efoZKu(t(ﬂ -tp) = expKp by < exp Ky T,
=j+1 =0 g

and therefore

K
Yie1 < eXPKllT‘.ZOKlz"(th -4 = Kypnt exp K T = K37,
J:

Now (22) implies that o (t}) <K;37, and since 0 <t ;- t, < 1/2M, one gets from
(21) N N -

(24) ak(t) S K14T) .

Similar results will be obtained for the Bx(t). The foliowing preliminary inequal-
ity is necessary: if F(x, t) is a continuous, nonnegative function, then

u, Uy
(25) 1.3.10.5 F(x, t)dt < S Lub. Fix, O dt.
v, v,

This is proved by approximating the integrals by finite sums and then passing to the
limit.

Consider again the inequality (12). Taking the least upper bound over x and inter-
changing the order of this operation and the integration (which is allowed, by (25)),
one obtains

t
(26) Bi(t) < By (ty) + g (1.131{.b. P+ l.g.b. Q+ l.g.b. R+ l.g.b. S) dt,

t
where P, Q, R and S have the same meaning as before. The four terms in the inte-
grand of (26) are estimated as follows. By (5) of [2] and by (14) above,

o0

(27) l.u.b. P _<_ (31]/2) l.g.b. flk(x, t)S f].k(y’ t) dy S K1517,
0

and also

o0

(28) lu.b.Q < (3A/2) [S {£1:0, 1) + £, (y, O} dy l-g-b.lflk(y, B - £,1(, V)]
0
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0

+ j |£,,. 0, ) - £, (v, ©)] dy Lauwb. {f,, (v, ) + 1,, (3, t)}]
0

Similarly, by (8) of [2] and by (14) above,

oo
(29) 1lub.R <17 l.u.b.g f1x(y, t)dy + l.u.b.
p. 4 X X
x 0

xX
f..(x,t)
1M
-—————S VW1 ¥) - Yo (x, )| dy
» < Kygm,
and

0

(3)  Lyb.S<C l.g.b.g £, D) - £y, D] dy

X

X

S Y, Y dy < Kyiga® + Bilt) .
0

b, Iflk(x’ t) - f?_k(x, t)|
x X

+ 1.

If the estimates (27) to (30) are used in (26), one obtains

t
(31) B() < B (t) +§ (Ko + Kp1 as(D) + Ko (0] dt;
tx

this reduces to

t

(32) Bk(t) S Bk(tk) + K2317(t - tk) + K24j\ 5k(t) dt.
te
This inequality is formally identical with the inequality (19); proceeding exactly

as before, one obtains the same results for the g, as for the oy, that is, a formula
analogous to (24):

(33) Bit) < Kom.

In view of the definition of Bk(t), this completes the proof of the lemma.
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4. THE SEQUENCE OF APPROXIMATE SOLUTIONS
Let T be a fixed number (0 < T < ), and let {n,} (n=1, 2, :-:) be a monotone
decreasing sequence of positive numbers tending to zero as n tends to infinity. For

each n, let 0= ty; <typ <+ <tpy(n)= T be a subdivision of the interval [0, t]
which satisfies the following conditions:

——l—‘f’(xx Y, ) - 9%, 5, m)| < my tj<72<n < tn,j+1) ’
IV/(X; Yy, T1) - I,L(X, y, Tz)l S M (] = 0: 1: "t k(n) - 1)’

(54) { x
?I:S Y'l[/(x, ¥, T - ¥(x, Y, Tz)ldy < ",
0

__t_{lpj+1 - th S 1/2M.
xX

Since the functions ¢(x, y, t), ¥(x, y, t) and %j yy¥(x, y, t)dy are continuous in t and

0
their continuity is uniform with respect to the other variables, it follows that for each
positive 7, an appropriate finite partition can be found for which the conditions (34)
are satisfied. For each n, construct a function f,(x, t) as follows. Consider a sys-
tem of equations of the form (3), with f,;,(x, t} and t, replacing fi(x, t) and t,,
respectively. Let k=0, 1, -+, k(n) - 1; and put

(35) fn(x: t) = fnk(x’ t) (tnks t S tn,k+1) y

The sequence {fn(x, t)} will be called the sequence of approximate solutions.
Let fi(x, t) and f q(x, t) be two approximate solutions (p < q), and let

O=tg<t)<++<ty=T

be the partition of [0, T] obtained by superimposing the two subdivisions correspond-
ing to f;, and f,. If one lets n =17, + N then all the hypotheses of Lemma 1 are
satisfied, and therefore there exists a constant K, depending on T and on other con-
stants of the problem, such that

(36) |tp(x, ) - £4(x, O] < K, + 1) -

This implies that the sequence {f,(x, t)} is a uniformly convergent Cauchy sequence.
Therefore there exists a function f(x, t) such that f(x, t) —{(x, t) uniformly for
x>0 and 0 <t < T. This limit function shares with the functions of the sequence

of approximate solutions the properties of continuity, nonnegativity, uniform bounded-
ness from above, the constancy of the first moment and integrability in x. Once it

is shown that f(x, t) satisfies the equation (2), it will follow that f(x, t) is also con-
tinuously differentiable in t.

It remains to be shown that f(x, t) is an actual solution of (2). Let

¢n(x! Y’ t) = ¢(X, Y’ tnl)s ‘pn(x’ y, t) = W(x, y’ tnk) (tnks ts tn,k+1) .
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Then

t

(37 f.(x, t) = f(x, 0) + j {[£05 £y Pl + G, W) tdt.
0

(= ]
Since also s xf (x, t)dx=D for n=0, 1, *-, and f,(x, t) > 0, it follows that
0

o0 [+ ]

S fo(x, ) dx < xig xfy(x, )dx < D/x, (x,>1),
1
Xy Xy

which implies

(38) y f (x, t)dx— S f(x,t)dx as n—w.
0 0

Proceeding now in the same way as in obtaining (12), one gets first

[fns ins ¢n] - [f, £, ¢] = [In + £, £, - £, én]+ L £, 64 - 0],

and then, by means of (4) in [2],

Lub. | [fn, £n, ¢n] - [f, £, 61|
(39)

00
< Kzsj |f, - f]dx+ K¢ Lub. | £ - f] + K, Lub. | o - ¢].
0

It follows that [f,, f,, ¢,] — [f, f, | as n—w. In the same way it is proved that
f,, ¥n) — (, ¥) as n—w. Therefore, by (37),

t
(40) f(x, ) = £(x, 0) + j {[£, 1, 6]+ (£, )} at.
0

Differentiating both sides of (40) with respect to t, one shows that f(x, t) satisfies
the equation (2). Since the number T is arbitrary, a solution of (2) can be found
which is valid on the whole interval 0 < t <. The conditions for uniqueness, men-
tioned in Theorem 1, are demonstrated exactly as in [2].
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