NOTE ON CYLINDRIC ALGEBRAS AND POLYADIC ALGEBRAS
A. H. Copeland, Sr.

Both the cylindric algebras of Tarski and Thompson [2] and the polyadic alge-
bras of Halmos [1] are algebraic counterparts of the first-order functional calculi.
Polyadic algebras are defined in terms of an infinite set of operators. In this note,
we define a class of algebras closely related to polyadic algebras but somewhat
simpler in that the operators are produced by six generators and the algebras are
defined in terms of these generators. The introduction of these generators requires
us to specialize our system so that it is based on a denumerable rather than an
arbitrary index set; but the specialization does not restrict the functional calculi
which are represented by the algebras of our system. We axiomatize the substitu-
tion and quantification operators of Halmos in terms of the six generators and by
means of postulates expressed in equational form. Our algebras are also related
to cylindric algebras in that they contain diagonal elements. These elements are
generated by the operators.

We are concerned with an abstract boolean algebra A with operators and their
defining relations. We denote and, ov, not, respectively, by A, Vv, ~, and the zero
and unit elements by 0, 1. We interpret.appropriate combinations of the generators
as producing the substitutions and quantifications of the functional calculi. In order
to create an intuitive picture of the manner in which the substitutions and quantifi-
cations are produced, we imagine that the elements of A are functions of variables
ey E oy £y, &0y E1y &5, 0+, and that the values of the functions are propositions. We
introduce the operator d such that Hdx is interpreted as the existential quantifica-
tion of the function x with respect to the variable £, The symbol Q represents an
operator such that Qx is interpreted as x A (£, = £,). In particular Ql, interpreted
as &, = &, is a diagonal element. One can now see that #Qx is interpreted as the
function which results when £, is substituted in place of £; in the function x.

The remaining substitutions and quantifications and the remaining diagonal ele-
ments are produced by combining the operations above with permutations of the
variables. Thus P is such that Px is interpreted as the function resulting from
the interchange of £, with £, in the function x, and T is such that Tx is inter-
preted as the function resulting when each £, in x is replaced by &, ;. The in-
verse of T and the identity operator are denoted respectively by T-1, I. Then
P, T, T}, I generate a group which contains a subgroup isomorphic to the group of
finite permutations of the integers. The semigroup of operators of A is generated
by d, Q, P, T, T-%, 1.

The operators which produce the substitutions and quantifications are combina-
tions of the generators. We shall introduce symbols for these combinations and
symbols for the diagonal elements. Interpretations follow the definitions of the
symbols.

Dl. P, = PT !pT™!- P ifnz0 P_=1I
mPn = oPm oP1 oPm if m#n and m,n#0.

D2. @ = P_H _P,.

D3. Q=5 Q.= PP PnQP,P P, if m#n
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D4. e, =..Q,1.
D5. .S =15 51 = 3 Q@ If m#n,

We interpret P, x as the function resulting irom the interchange of £, with
&n in x, and ¥, x as the existential quantification of x with respect to £,. The
diagonal element ,,e, is interpreted as &,, = £,. It follows readily from the postu-
lates that ,,Qux = x A pwen, and this equation furnishes an interpretation of ., Qpx.
We interpret ., S,, x as the function which results when £,, is substituted in place
of &, in x.

The algebras A are defined by means of the following twelve postulates. Inter-
pretations are given below.

P1l. A is a boolean algebra.

P2. I, T, T™!, P are endomorphisms of A, and I is the identity.

P3. TT1=P2=

P4. P2 = (4P oPm)® = (oPn oPm oPn oPx)? if m,n# 0 and m# n and k # m, n.

P5. Hx N dHy)= (dx) AN@y).

P6. x AN dIx =x.

P7. H0=0.

P8. (AP)?= (PH)?2= HP I,

P9. ,,P,d=H P, if m,n+0.

P10. QxAy) = x AQy = x A QPy.

Pll. HQ ~x= ~ HQx.

P12. ;P,QiI=4dQ,P,P Q H.

Postulates 1 to 7 and Postulate 9 are self-explanatory. By D2, Postulate 8 can
be written in the form

A, H = 3,3, =P =T AP,

If we set y = 1 in Postulate 10, we get Qx = x A ,e,; and if we set x =1, we get
€1 Y =08, AY = o, APy (see D4). From this the general case follows. Postu-
late 11 can be written in the form S, ~ x = ~ /S, x (see D5). Postulate 12, to-
gether with Postulate 10 and Definition 4, implies that e, = e, A ¢en.

The following theorems display the important properties of the algebras we have
defined. We omit the proofs, since they require patience rather than ingenuity.

T1. The operators P, generate a group which is isomorphic to the group of
finite permutations of the integers.

T2. Postulates 5, 6, 7 hold if H is replaced by H,,.
T3, 32 = H,, and d,1 =1,

T4. x A\ H,y = x implies (A x) A (H,y) = T, x.

T5. q,(x Vy) = (I,%) V (H,y).

T6. (P =" Py if k¢#m,n; P H =8 P,
™. WP d,=3, I, =4 F =3 d P

n"m--n mn n nmn-m?*
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T8. The operators _S are endomorphisms of the boolean algebra.

T9. _S2=_S..
T10. /P 1S, = nSnmPp if m, n, m', n' are distinct.
Tii. _P S S S 1%

mnmn nm nmm n'

T12. P H S =H _S

mn nmmn- “"nm-n’

Ti13. H e,=1 ¥ e =_ce if k+m,n

mim m n
T15. 'S e = _e = 1.

m nn m nn

Ti6. e = _e

mn nm'

T17. e, =9 e Ay €.

Ti8. (mek N ken) N mn” mek N ken'

We can interpret T 15, 16 and 18 as stating the reflexivity, symmetry and
transitivity of the equality. The condition d,x = X can be interpreted as stating
that x is independent of £,. Thus we interpret the first half of T3 as implying that
Hnx is independent of £,, and the second half of T13 as implying that . e, depends
only on &, and £,. A locally finite algebra A (see [1]) can be interpreted as one in
which each function depends only on a finite number of variables. The formal defi-
nition of local finiteness is the following.

D6. An algebra A is said to be locally finite if for each x in A there is an
integer N such that 3, x = x whenever |n| > N.
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