GENERALIZED FOURIER INTEGRAL FORMULAS
R. V. Churchill

1. INTRODUCTION. The solution of certain types of boundary value problems in
partial differential equations depends on a representation of a function f(x), pre-
scribed on the semi-infinite interval x> 0, in terms of the functions that satisfy
the system

vy, A+ Ry, A =0 x>0),
(1)
hy(0, A) - ky'(0, A) + my"(0, A) = O,

where y(x, A) is bounded for all x (x> 0). Here h, k, and m denote non-
negative constants at least one of which is positive, and A is a paramenter. Since
y" (0, A) = -22 y(0, A), the boundary condition above involves the parameter explicitly
when m # 0.

The boundary value problem (1) with m # 0 arises, for example, in problems on
diffusion of gases within electrodes of vacuum tubes to the surface where they enter
the vacuum chamber. It also arises in problems on transverse displacements of
membranes with certain forms of elastic support along an edge. Applications in
which m = 0 while h and k are positive are treated in references [1], [2, pp. 206-
210], and [3].

The characteristic functions of the system (1) are
(2) y&, A) = cos[xx-a(N)],

where X is real and positive and where, for k> 0, a(\) is defined by the condi-
tions

h-ma2
kA

(3) tan o(2) = (-5 <o <3).

In case k = 0 the characteristic functions are y = sin Ax and the representation
of the function' f(x) is the classical Fourier sine integral formula. When h =m = 0,
y = cos Ax and the representation is the Fourier cosine integral formula. In these
two special cases the generalized formulas found in this paper reduce to those clas-
sical formulas. In establishing the generalized representation formula, then, the two
cases k=0 and h=m =0 will be excluded from consideration.

2. THE TRIGONOMETRIC FUNCTIONS. Certain properties of functions asso-
ciated with the characteristic functions (2) will be needed in the following sections.
Their introduction here simplifies the presentation of the principal resulis.

The identities
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cos(Ax-a)cos(Au-a) = cos[Ax+u)-a] cosa + sin Ax sin AL

)

sin[A(x+p)-a] sina + cos Ax cos AL

can be verified by elementary trigonometry.
When m> 0 and k> 0, consider the function

r r

cos[At-a (A) Jcos @ (A) dx =J y{t,)y(0,A)dx .

(5) P, r) =j
(4] 0
Let H=h/m and 2K = k/m; then, in view of equation (3),

r
_ 2KX? cos At + A(H-X?) sin At
6) P(t, r) = :aKfo IKEE 7 (HCF dx .

It is to be proved that P(t, r)> 0 as r > «, uniformly with respect to t for
t> x, where x is any positive constant.

An alternate form of the integral (6), found by formally writing the Laplace
transform of that integral with respect to t, leads to the formula

1) P(t, r) = KJ E(r-t) sin r‘Tg,; ,
t

where the function E is defined by the equations
BE({t) = e ¥t [(K+B)e Pt -(K-B)ePY], B = (K2-H)V2
when H # K2, When H = K3 |
E(t) = 2¢7°F (1-Kt).

To verify that formulas (6) and (7) represent the same function P(t, r) it is only
necessary to show that both give the same function dP/dr and the same initial
value P(t, 0) = 0.

If K2> H then B isrealand 0 <B< K; if K2 < H then B is a pure imagi-
nary constant. Thus it is seen from the two formulas above for E(t) that, whether
B is zero or not, the function E(t) is either a function of the form

Ft) = A e—(a+ib)t

(t+C),
where A, a, b, and C are constants, a >0 and real, and b is real, or else E(t)
is the sum of two such functions. Now, by a partial integration,

dr _ 1)F(0)
r

J F(r-t) sinrr — = : ﬂ"———_f;—)_.,d'r
t

T

o0
Pe cos rt +J cos rrT A—[

t 0T

When t >x> 0, the absolute value of the first term inside the braces does not ex-
ceed the constant [F(0)|x™*. Since t/T <1 and 1/t < 1/x, itis easy to see that
the absolute value of the integrand of the integral inside the braces does not exceed
a constant multiple of exp[-a(rT-t)], where the constant is independent of t. Thus
the quantity in the braces is bounded uniformly with respect to t, and it follows
that
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Xl
(8) P, )| < t>x>0

for some constant X, independent of t.

For m=0 and k> 0 it will now be shown that the function
r

Qt, r) j sin [at-a (V)] sin @ (M) da
0

9)

r -
_ h.[ kA sin At - h cos )\td)t
0

hZ + k232

tends to zero as r > «, uniformly with respect to t for t> x> 0. By the same
procedure used above to obtain formula (7), the following alternate form of the funec-
tion (9) is found:

(10) Qlt, r) = _% J:oexp [- % (;7'-t)] sin r1 %;’- .

Since the integral here has the same form as the integral in equation (7) when E(t)
is replaced by a special case of the function F(t), it follows at once that a constant
X, exists, independent of t, such that

(11) |Q(t, r)| <% t>x>0).

3. FORMAL DEVELOPMENT. The linear representation of an arbitrary func-
tion f(x) prescribed on the semi-infinite interval, in terms of the characteristic
functions y(x, 1) where the values of the parameter A range over all positive
numbers, may be written in the form

(12) £(x) =f yx,A) g(d) dx.

A formal solution of this integral equation for the function g(A) will give the ex-
pansion formula that is to be established. The method of solution used here is
analogous to the procedure with orthogonal functions when the eigenvalues A are
discrete. It has some advantages over the formal method used by Karush [1] in
the special case m = 0.

Let both members of equation (12) be multiplied by y(x,t) and integrated with
respectto x from 0 to r; then let the order of integration in the resulting
iterated integral be changed. This leads to the equation

13) f fx)ykx, t)dx = 1i)m g()t)f y(x, My, t)dxdx.

From either the Green’s formula for the boundary value problem (1) or the
direct integration of the product y(x,A) y(x,t) of trigonometric functions (2) it fol-

lows that, for k > 0,
!
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(14) ZJ y(x,M) y(x,t) dx

[}

_ zk_m (0,8 y(0,2) + sin[()\+t¥;a EA)-a (t)] , sin [(A—;)r_—at()xha(t)].

According to the Riemann-Lebesgue theorem in the theory of Fourier integrals,

o0 o0

lim G(A) sin[(A+t)r] dA = lim G(A) cos [(A+t)r]dx = 0
r >o0Jo - T >00v0 -

when the function G(1) is sectionally continuous on each finite interval 0< A <),
and absolutely integrable on the semi-infinite interval [5, pp. 14-15]. The function
(A-t)"! sin [a(A)-a (t)] that arises in equation (14) has a limit as A->t. Thus if g(})
satisfies the conditions just cited on G(1), it follows from equation (12) that

=]

£(0) = J y(0,2) g(A) dx
4]
and, from equations (13) and (14) and the Riemann-Lebesgue theorem, that

(15) ZJ £(x)y(x,t) dx = - ERII_I £(0) y(0,t) + lim Jwg(h) cos[a (V)-a(t)] —-—J—]Sinh(it_tt)r dx .

Now suppose that, in addition to satisfying the conditions of sectional continuity
and absolute integrability assumed above, the function g(A) has one-sided deriva-
tives of the first order from the right and from the left at the point A =t (t> 0).
If g(A) is discontinuous at the point A =t, let g(t) represent the mean value of
the limits g(t+0) and g(t-0). Then the limit that appears in equation (15) repre-
sents wg(t), according to the primitive form of the classical Fourier integral
formula or the extension of the Dirichlet integral formula to the unbounded interval
[4, p. 90]. Thus

(16) gt) = %L f(x) y(x, t) dx + % f(0)y(0,t) (&> 0).

When m > 0, the representation (12) now becomes

f(x) = %J; y(x, A)L (W y A)dudh+%f(0)fo y(x, My(0, A)dA.

The last integral on the right vanishes when x> 0 since it represents the limit, as

r > o, of the function P(x, r) defined by equation (5) and satisfying condition (8).
When m = 0, the final term in equation (16) vanishes. Thus for m> 0 the expansion
formula becomes

o0

(17) f(x) = %L y(x, A)L f(wWy(w Ndudr (x> 0).

When the trigonometric form (2) of the function y is substituted here, the
formula becomes
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2 o0 oo
(18) fx) = EJ. cos [Ax-a()&)]f f(u) cos[Ap-a(A)] dudr (x> 0).
0 1]

This is the principal generalized Fourier integral formula that is to be established.
When h=m =0 and k> 0, it follows from equation (3) that a(x) = 0; then formula
(18) reduces to the Fourier cosine integral formula. When k=0, then o =+ /2
and the formula reduces to the Fourier sine integral formula.

4. THEOREM 1. Let {(x) denote a function that is sectionally continuous on
each finite interval 0 < x< X,, defined at each point of discontinuity X as the mean
value of the two limits f(X+0) and £(X-0), and absolutely integrable on the semi-
infinite interval x> 0. Then at each point x (x> 0) at which the vight- and left-
hand derivatives of f(x) exist, the genevalized Fourier integral formula (18) repre-
sents the function 1(x).

Under the conditions stated in the theorem the function is represented by its
Fourier sine and cosine integral formulas, at the points specified in the theorem.
In view of the identities (4) it follows that formula (18) represents f(x) at those
points, provided that either '

(19) f I f(u) cos [Ax+w-a(A)] cos a(A) dudr = 0
or
(20) J J f(u) sin [Ax+w-a(r)] sin a(A) dpdr = 0.

Let each of the outer integrals here, with respect to A, be written as the limit as
r> of the integral from 0 to r. The conditions on f(u) insure the uniform
convergence, with respect to A, of each of the inner integrals and the validity of
interchanging the order of integration of the definite and improper integrals. Thus
the two conditions can be written

(21) lim ocf(.u)P(xHhL, r)dp=0 (x> 0),
I >»o0 (1]
(22) rl_i>n°no fo f(WQ&x+w, r)du=0 (x> 0),

where the functions P and Q are those defined by equations (5) and (9). Theorem 1
is true then if either of the conditions (21) or (22) is satisfied.

When m> 0 and k> 0 the function P satisfies condition (8). Hence for each
fixed x (x> 0) a constant X, exists such that

Ifof(u)P(x+,u, r)dp l <Zf—‘r’lf(u)ldu,
4] (4]

and from the absolute integrability of f(p) it follows that condition (21) is satisfied.
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When m =0 and k> 0 it follows from the condition (11) on Q(t, r), in the
same manner, that condition (22) is satisfied. As noted earlier, the case k = 0 is
included in the classical theory.

This completes the proof of Theorem 1.

5. REMARKS. The preceding proof is clearly valid under conditions other than
those stated in the theorem. It depends on f(x) being representable by its Fourier
sine and cosine integral formulas and satisfying either of the conditions (19) or (20).
In the proof above that one of those conditions is satisfied, it is sufficient that f(x)
be bounded and integrable on each finite interval and absolutely integrable on the in-
finite interval.

The formal development in Section 3 above involves conditions on the function
g(t). Those conditions are the same as the conditions imposed on f(x) in the theo-
rem. Under those conditions, the improper integral in equation (12) converges uni-
formly with respect to x (x> 0), and equation (13) holds provided that the limit on
the right-hand side exists. But for each positive t at which the one-sided deriva-
tives of g(t) exist, it was shown that the limit does exist and that g(t) is repre-
sented by formula (16). When the expression (12) for f(x) is substituted into (16} it
follows that, when k> 0,

(23) g(t) = TZJ y(x, t)L g\ yx, NdAadx + i—’f{‘ y(0, t)L g(A)y(0, A)dx

]

for each value of t just described. The following expansion is therefore estab-
lished.

THEOREM 2. Let f(x) satlisfy the conditions stated in Theovem 1. Then when
k> 0, for each positive value of x for which £(x) has a derivative from the vight
and from the left, the function is vepresented by the formula

(24) f(x) = % Jw cos [ =x-a (x)]on f(u) cos [A p-a(w)] dpdx
0 0

[+e]
£ 2moos a(x)f f(u) cos a(w) du.
rk 0
When h=m =0, then ofx) = 0 and this formula reduces to the Fourier cosine
integral formula. Thus, formula (24) is another generalization of the Fourier inte-
gral formula. It is a representation of f(x) in terms of the functions cos[Ax-« )]
(x> 0), not in terms of the characteristic functions of the boundary value problem

(1).

The special case of formula (18) when m = 0 was obtained formally in refer-
ences [1] and [2]. The general case of that formula and the representation (24)
together with the two expansion theorems are believed to represent new results.
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