THE SPECIAL HOMOTOPY ADDITION THEOREM
James Munkres

The homotopy addition theorem is an elementary result concerning homotopy
groups which is used in proving the Hurewicz isomorphism theorem. It was long con-
sidered obvious, and only recently has a proof, given by Sze-tsen Hu, found its way
into the literature [3]. This proof of the general theorem entails considerable com-
plications of a technical nature, and it would be even more complicated if Hu did not
define homotopy groups in an unusual way, using simplices instead of cubes as basic
anti-images. The present paper attempts to avoid some of these complications by
considering only that special case of the theorem which is actually needed in the proof
of Hurewicz’s theorem. Further, it follows the present-day trend by retaining the
usual definition of homotopy groups but using the cubic rather than the simplicial
singular homology.

Eilenberg’s proof of the Hurewicz theorem ([1], pp. 439-444) is readily adapted to
the cubic theory, but the (implicit) appeals to the homotopy addition theorem remain.
The two final corollaries of the present paper apply the special homotopy addition
theorem to this situation.

LEMMA 1. Lef ue F (X, x) and
V(Xn *ety Xn) = u(xl, R xi—p 1- Xit1s Xjiy Xipoy " Xn)'

Then v € F™(X, x) and u = v. (The notation is defined in [5]}, pp. 72, 73.)

It is obvious that v € F*. The homotopy is constructed by twisting the face of I,
lying in the xi,x;j,, -plane through an angle of #/2 as t goes from 0 to 1. Specifi-
cally, the homotopy is defined as follows:

H(xla ***s Xny t) = u(xl.y vy Xj-1» f(xi, Xi+1 t); g(Xi, Xi+1s t), Xit2y *** xn),
where

f(x, y, t) = (Aa + 1)/2,

g(x, vy, t) = (Ab + 1)/2,

a(x,y, t)= 2x - 1)cos nt/2 - 2y - 1)sin nt/2,

b(x, y, t) = @x - 1)sin 7t/2 + (2y - 1)cos 7t/2,

max(|2x- 1], [2y - 1|)
max ([a], [b])

i

A, y, t)= , unless x =y = 1/2, in which case A = 0.

It is a matter of computation to show that H is well-defined and continuous and pro-
vides an admissible homotopy between u and v. (The word ‘admissible’ is used to
emphasize that I, must remain at x during the homotopy.) A is discontinuous at
x =y = 1/2 (where [a|= [b|= 0); but since A is bounded (indeed, A< ¥2), f and g.
are continuous there. '
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Remark. This homotopy may be used to demonstrate that 7, is abelian for
n > 2 (compare [5], p. 74). For if f ¢ F® (n> 2), let Tf be the cube defined by

TE(x;, ***, Xp) = (1 - x;, 1 - X,, X5, *++, Xp).

A double application of Lemma 1 shows that f = Tf. Hence if u,v € F(X, x), then
u = Tu and v = Tv, whence

u+vs=Tu+ Tv =T(Tu + Tv).
It is readily verified that T(Tu + Tv) = v + u.
COROLLARY. If u,ve F", let
w(x,, =+, Xp) = ulx,, -+, 2%, -, X)) for 0< x;< 1/2
w(x,, *+y Xp) = V(X000 25 - 1, o, x) for 1/2<x, < 1,

and denote w by u+; v. Then u+; v=u+V.

This corollary merely states that the group operation in 7, is independent of
which coordinate we choose to “add along.” Assume n > 1, since otherwise the
theorem is trivial. If f € F2, let

TE(x,, **+, Xp) = £(x;, -+, Xj+1s 1- Xjs ** Xp)
and
St(x,, ***, Xp) = _f(xl, o0y 1= Xjygy X5, o0y Xy
Then f = Tf and f = Sf. If u, v e F?, then v = Tv and u = Tu, so that
v+ u=Tv+ Tu (this is proved just as for addition along the f1rst coordinate); -
therefore v +j u = S(Tv +j Tu). But S(Tv +j Tu) =u +j;, v. Since this holds for

1< j<n, u+; v is homotopic either to u + v or to v + u. Since =, is abelian,
this means that u +; v=u + v.

In considering cubic singular homology, we use the notation of [4], pp. 439, 440.
We shall let Q, (X, x) denote the subgroup of Q,(X) generated by those singular

cubes under which all faces of I,, of dimension less than m are mapped into x.
Then Z,Qn,m corresponds to the group S,,(X) used by Eilenberg ([1], p. 439).

LEMMA 2. There exists amap £ : I, ->I such that 1f u is a cube of
Qn,n-1(X, x) and v = uf;, then

(1) v is a cube of Qnn.-i,

(2) Mv=x (=0, 1),

(3) ‘Af+1v = (7‘1+1 )"’1 (A"u)

) : li1+1‘; = (A\fu) 4 (li+1u),'

(5) A;?v = Agu (as elements of F* (X, x)), if j#1i,i+ 1; and if Agu = X,

then Ag'v =X
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Proof. We define a map F: I,>1I, by defining it first on I, X 0 and I, X I and

then using the homotopy extension theorem ([2], p. 20) to extend it to all of I;. Let

(a) F(X, Yy, 0) = (X, Y),
®) F(x, 0, t) =(§§:’5—t o) for 0<x<1 - t/2,
2x
F(x,o,t)=(1,-2—_—t--1) for 1-t/2<x<1,
©) F(1,y,t)=(1,§§i_it3-1) for 0<y<1-t,
F(l,y,t)=(@,1) for 1-t<y<1,
(d) Fix,1,t)=(1, 1) - F(1 - x, 0, t),

(e)

FO,y,t)=(1, 1) - F(1,1-y,t)

It is readily verified that definitions (b) and (c) are unambiguous on their respec-
tive domains. Then each of (a) to (e) defines F on a face of I;; it remains only to
check that the definitions agree on the intersection of these faces. Note also that F
maps I, XI into I, and I, X 0 into I,, so that it may be extended to map I, into I,.

Now let a and b be functions such that F(x, y, t) = (a(x, y, t), b(x, y, t)). Then a
and b have the following properties:

(A) a(x,y,0)=x and bx,y, 0)=y.

(B) a(e,y,1)=b(e,y,1)=¢ for € =0 and £=1.

(C) If either x or y is 0 or 1, either a or b must be 0 or 1 (since

F:Lx1>1,).

(D) a(x,0,1)=bx,1,1)=2x for 0<x<1/2,
a(x,0,1)=bx,1,1)=1 for 1/2<x<1,
a(x,1,1)=b(x,0,1)=0 for 0<x<1/2,

a(x,1, 1)=b(x,0,1)=2x-1 for 1/2<x<1

Now we define f;: I,>1I,, as follows:
(*)

and verify that f; has the desired properties. Let u 'be a cube of Qy, ,,-;, and let
v = ufj.

Property (1). v is a cube of Qn,n-1- -Suppose that two of the variables
X,, ***, Xp of v are 0 or 1. Then one may use (B) and (C) above to check that in
every possible case at least two of the n quantities on the right side of (*) are 0
or 1. Since u is a cube of Qp n-;, it follows that v = x, as desired.

fi(xl’ R xn) = (xn vty Xio1, a(xis Xit+1s 1), b(xi, Xit1s 1), °ccy Xn),

Properties (2) to (4) are easy consequences of (B) and (D). To prove (5), suppose
that j#i,i+1 (1<j<n). Let )

(*%) w(x,, -, xn+1) =u(x,, ---, alx;, Xit1 Xn1), b(Xi, Xipg, Xnt1)s **% xn); :

and define’
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H(x;, *, Xn) = Xjw.

Then H maps In_; X I continuously into X; and H(x,, -+, 0) = Agu by (A) (since

i < n), while H(x,, -, 1) = )\?v by definition of v. Moreover, H maps in.l X1 into
X, for H is obtained from (**) by setting Xj= ¢ and shifting indices, and if one of
the variables x;, +-+, Xn_; of H is 0 or 1, it follows from (C) that another one, be-
sides xj of the quantities in the right side of (*%) is 0 or 1. Then since u is a
cube of Qp n-;, H=x. Hence H is an admissible homotopy between Ag'u and Agv.
Moreover, if )\ﬁu = X, H = x from the definition, so that )t_']-’v = X,

THEOREM (The special homotopy addition theorem; compare [3], p. 118). Let
u map Iniy into X and all faces of Iny, of dimension less than n into x. Then
A?u € F*(X, x) and
T2+ (L1)iafu - = (L1)iaty = 0.
Proof. By hypothesis, u is a cube of Qn,;,n. Let

v; =uf;f,---f; (i< n),

where the f; are the functions of Lemma 2. If n =1, then v,: L,>X and by (2) of
Lemma 2, Av, = x, so that v, is an admissible homotopy between

Avy = AJu + Alu and Alv, = A%u + Alu,

by virtue of (3) and (4). Hence -A%u + AJu + Aju - AJu = 0, as desired.

Suppose n > 1. Then vj : In4+,> X, and by induction we may show that

(1) Avi=x for j<i
and

e - 1 aj
(In) AV FZ54y AU,

where &;,., = € and the other superscripts alternate between 0 and 1. These prop-
erties hold trivially for i = 0; suppose they hold for i - 1. By the induction hy-
pothesis, A;;vi__l =x for j<i - 1, whence by property (5) of Lemma 2, Agvi =x for
j <i-1. On the other hand, (1) states that A%v; is also identically equal to x.
Hence (I) holds.

To verify (II), we use (3) and (4), apply the corollary of Lemma 1 to change the
symbol +; to +, and recall that 7, is abelian. We get the relation

] I - 6
AipaVi T AigViey + A Vi,
' e
where 6§=1- ¢. Now by (5), Af,,vi_, = A{;,u, whence
e: e.
Ay = AL u+ Ofu e Atu),

where 6 = €;, by the induction hypothesis. Then (I) and (II) hold for all i < n.

By (I), v, maps I,,, into X and A§ vn=x for all j < n. Hence v, is an
admissible homotopy between A%, ,vn and A}, vh, so that A3, ,vy - AL vy = O.
By virtue of property (II), this is merely a restatement of the conclusion of the
theorem.
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The theorem above enters into the proof of Hurewicz’s theorem by way of two
corollaries, which pertain to pages 442 and 443 of [1], respectively.

We have the natural map of F'(X, x) >Qu(X) which assigns to f ¢ F* the same
map, considered as a singular cube and denoted by us. It is shown that the homology
class of u; depends only on the homotopy class of f, so that a map of 7, into H,
is induced.

COROLLARY 1. The natural map w, >H, is a homomovphism.

Let f, g ¢ F™ and let h denote f + g ¢ F®, We wish to show that u;, is homolo-
gous to ug + ugy € Q,. We define G : I,y > X as follows:

G(O: X2y X3y xn+1) = f(x27 *°% xn-l—l),
G(le 1, x5, **, Xn+1) = g(xu X3y %y xn+1)’

G = x elsewhere on IXI,.

Then G is defined on (0 X I,)U (I X I,,) and may thus be extended to I X I,,. Let
G(1, x,, ***, X,) be denoted by k or by uy, depending on whether we consider it in
F2 or Q,. Now f=X0G, g=21G, k=G and G = x on all the other faces of L, ;.
This gives us two results: first, since dG = -uf - ug + uy (the other cubes of the
sum are degenerate), u, is homologous to us + ug. On the other hand, the previous
theorem states that -f + k - g = 0, so that k =f + g =h. Then, by a previous re-
mark, u, and up determine the same homology class. Hence up is homologous to
us + Ug, and the proof is complete.

We may define a map 7 of Qp (X, x) into m4(X, x) merely by assigning to
every singular cube in Q, , its homotopy class, and extending linearly. If n=1,
we take 7,/C instead of m,, where C is the commutator subgroup of #,. If T
is a singular cube in Qu,, 5, then dT € Q, , and

COROLLARY 2. #(dT)=0.

dT = =2*1(-1)1(\9T --A}T). This expression is merely a formal addition of
singular cubes, but 7(dT) is the homotopy class of the sum of these cubes, where
the sum is taken in ¥2. This sum differs from the expression of the previous
theorem only in the arrangement of the terms, so that it is either homotopic to zero
(if n> 1) or to an element of C (if n = 1).
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