NOTE ON MY PAPER "INTRINSIC‘RELATIONS SATISFIED BY THE
VORTICITY AND VELOCITY VECTORS IN FLUID FLOW THEORY"

by
N. Coburn

The purpose of this note is: (1) to relate the papers of several other
authors to the above paper1 of the present author; (2) to provide sore fur-
ther details for the derivation of one equation of the above paper and to
generalize a theorem of S. S. Byiﬁ;’gens; (3) to indicate extensions? of our
previous results to more general types of gases. 3

1. Related Papers by other Authors. Our previous equation (2.19)
for the decomposition of the vorticity vector is equivalent to the relation
2.3(6)of Bjgrgum's paper. 4 This can be seen with the aid of the following

computation. If eijko elJk denote the permutation tensor in anorthogonal
Cartesian coordinate system, xJ, j=1,2,3, then it is well known that
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where Si is the Kronecker tensor. From (1.1), it follows that
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The left hand side of (1.2) can be written in form
9
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Further, the first term of the right hand side of (1.2) is the cross-product
of the unit vectors, b and n, or the negative of the unit tangent vector, t;
similarly, the second term of the right hand side of (1.2) is the curl oft.
Thus, (1.2) reduces to
(1.3) pk At |k 9ty
dn ob
The relation (1. 3) and 2.3 (6) of Bjgrgum's paper lead to our relation (2.19).
Similarly, our equation (2.21), which is a generalization of (2.19), is equiva-
lent to Bjgrgum's equation 2. 6 (17). In fact, Bjgrgum's dyadic decomposi-
tion of Section 2.6 and our tensor decomposition of Section2 are closely re-
lated. '
Our previous equation (4.16) results from applying the divergence to

the vector relation.

=mt~: curl t

(1.4) V=qt
and showing that
(1.5) div. t = h) + h,

where hy,hy are the two pr1nc1pa1 values of the symmetric part of the pro-
jection of the tensor, grad T, in the plane locally perpendicular to't. When
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Tis orthogonal to co* surfaces, then

(1.6) . hy+h; =M,
where M is the mean curvature of these surfaces. Thus in this case
(1.7) div. t =M.

The relation (1.7) is basic for the theorems? proved by'L. Castoldi for in-
compressible fluids, by S.S. Byuggens and M. Giqueaux for compressible
isentropic fluids, and whichholdinthe case of a compressiblenon isentropic
polytropic ga56 as noted by the present author. This relation was first
stated by J. Challis. 7 A similar result was used by H. Weyl,swho ex-
pressed the divergence of the electric field on a conductor in terms of the
mean curvature of the conductor surface and the normal component of the
field.

R.C. Prim? has recently obtained a related result. He has worked
with the reduced velocity vector and has generalized a resultof G. Hamel 10
on the geometry of the ol surfaces orthogonal tot, when these surfacesare
minimal (M = 0).

2. The Derivation of Equation (4.25) and the Generalization of
ByuSgens' Theorem. The following computation is needed to clarify the
validity of our equation (4.25). For an ideal gas, the following tworela-
tions are valid:

(2.1) p=RpT,
(2.2) c? =y RT,
where R is the universal gas constant. In the case of ideal gases, ¥ is a

function of the absolute temperature, T; for polytopic gases, ¥ is the ratio
of the specific heats of the gas and is a constant. Forming the differential
of (2.1), we find

(2. 3) dp =RT d» + RpdT .

Eliminating T in (2. 3) through use of (2. 2), we obtain the result
‘ 2

(2. 4) dp = d( ’;C)

From (2.4), the relation (4.25) of our previous paper is easily obtained.

The relations (4. 18), (4. 19) of our previous paper lead to a generali-
zation of Byu¥gen's theorem!l. These equations follow from vector de-
composition of the acceleration vector with respect to the unit normal and
binormal vectors of the stream lines and may be written as

9p 2 . 9p
— = = M ~ \" =
(2.5) dn Fa e, ob

This type of decomposiiion is a common one in analytical mechanics. How-
ever, the significance of this procedure for fluid dynamics does not seem
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to have been noted. Thus, the equations (2.5) show that: for any gas, with
no external force acting, if the stream lines are straight lines, then they
are orthogonal to the ! surfaces, p = constant; and conversely, if the
stream lines are orthogonal to the ol surfaces, p = constant, then the
stream lines are straight lines.

3. Extensions of the Previous Results to More General Types of
Gases. In our previous paper, the theory was developed for polytropic
gases;12 However, many of the equations are valid for more general types
of gases.

First, the.equations (4. 23) are deduced from (4. 19) by assuming that

(3.1) p = p(p,S)

and S, the entropy, is constant. Thus, our equations (4.23) are valid for
an arbitrary type of gas which is isentropic. In fact, the first relation of
(4. 23) holds even when S is constant along a stream line butmay varyfrom
one stream line to another.

Secondly, if we insert y inside the parenthesis of the left hand sides
of (4.25), so that (4.25) is replaced by
3, pc? 2q 0 pc’ 2
(3'2) aS( % )"—pqas ’ an( Y ) = = P K
then these equations are valid for-any ideal gas, 13 instead of for merely
polytropic gases.

Finally, it should be noted that our previous equations (4.24), (4.26)
are valid for any arbitrary gas, as longas S is constant along a stream line.
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