THE n-CUBE AS A PRODUCT SEMIGROUP

Allen Shields

If a topological space S with a "boundary" is a semigroup with identity, then the boundary seems to play a special role. For example, if S is a compact manifold with boundary, then the identity and all elements with inverses lie on the boundary [1], [3]. If in addition the boundary is a connected Lie group, then the multiplication in S may be described by the introduction of generalized "polar coordinates," that is, a unit interval coordinate and a boundary coordinate [2]. The importance of the boundary was first pointed out to us in conversations with A. D. Wallace.

In this note we show that if the boundary of a semigroup S on the n-cell is isomorphic to the boundary of a product semigroup, then S is a product semigroup.

By a *semigroup* S we mean a topological semigroup, that is, a Hausdorff space with a continuous associative multiplication. If A and B are subsets of S, then AB denotes the set of all products ab with a ϵ A and b ϵ B. An ideal is a subset A such that AS \subset A and SA \subset A.

An (I)-semigroup is a semigroup on the unit interval in which 0 is a zero, 0x = x0 = 0 for all x, and 1 is an identity. Such a semigroup must be abelian [4]; but there are infinitely many nonisomorphic (I)-semigroups. A classification is given in [2].

A \ B denotes set-theoretic difference.

We are now ready to state our main result.

THEOREM. Let S be a semigroup on the n-cell (n > 1), with boundary B. Let J_1, \dots, J_n be (I)-semigroups, and let $T = J_1 \times \dots \times J_n$ be the product semigroup on the n-cell with boundary C. If ϕ is a homeomorphism of C onto B such that $\phi(c) \phi(d) = \phi(cd)$ whenever c,d and cd are in C, then S is isomorphic to T.

In other words, if the boundaries are isomorphic, then the isomorphism may be extended throughout the interiors.

Proof. The points of T may be represented by coordinates (x_1, \dots, x_n) $(0 \le x_i \le 1)$, with the boundary consisting of those points which have 0 or 1 for at least one coordinate. It follows that $(0, \dots, 0)$ is the zero for T and $(1, \dots, 1)$ is the identity. Let $0 = \phi(0, \dots, 0)$, $1 = \phi(1, \dots, 1)$; these points are respectively a zero and an identity for B.

(i) If Q is any arc in B from 0 to 1, then QB = S. Indeed, assume that there is a $z \in S$ such that $z \notin QB$. Then $z \notin qB$ for each $q \in Q$, and the index ("winding number") of the mapping qB with respect to the point z is defined for each $q \in Q$ and is therefore constant. But for q = 1 the index is one, and for q = 0 the index is zero; the contradiction shows that QB = S.

In C, let $I_1 = (x_1, 1, \dots, 1)$ $(0 \le x_1 \le 1)$, $I_2 = (1, x_2, 1, \dots, 1)$ $(0 \le x_2 \le 1)$, and so forth. The sets I_k are those edges of T that have $(1, \dots, 1)$ as a vertex, and $T = I_1 I_2 \cdots I_n$. Let C_1 be the set of those points of C that have at least one coordinate zero. Then C_1 is an ideal in T and therefore in C. Let $J_1 = \phi(I_1)$ and $B_1 = \phi(C_1)$. Then the J_1 are (I)-semigroups and B_1 is an ideal in B.

Received November 12, 1956.

(ii) We now show that $J_1J_2\cdots J_n=S$ in a one-to-one manner, that is to say, that if $j_1j_2\cdots j_n=k_1k_2\cdots k_n$ $(j_i,k_i\in J_i)$, then $j_i=k_i$ $(i=1,2,\cdots,n)$. Let Q be an arc from 1 to 0 which follows along J_1 to B_1 and then stays in B_1 . Let $Q_1=Q\setminus J_1$, so that $Q_1\subset B_1$. Now S=QB, by paragraph (i); but $Q_1B\subset B_1$, and therefore $S=J_1B$. In C one verifies easily that $I_1(C\setminus I_2I_3\cdots I_n)\subset C$; the mapping ϕ carries this over to B, that is, $J_1(B\setminus J_2J_3\cdots J_n)\subset B$. Therefore $S=J_1J_2\cdots J_n$.

Assume that x_i , $y_i \in J_i$ (i = 1, ..., n), and that

$$x_1 \cdots x_n = y_1 \cdots y_n.$$

Let u be the endpoint of J_1 which is a zero for J_1 (u = $\phi(0, 1, \dots, 1)$). Then $ux_1 = u = uy_1$, and $u \in B_1$. Multiply (1) on the left by u; then

$$ux_2 \cdots x_n = uy_2 \cdots y_n.$$

In C, the product $I_2 \cdots I_n$ is one-to-one and is contained in C, and the product $(0, 1, \dots, 1)I_2 \cdots I_n$ is one-to-one. Therefore this carries over to B, and from (2) we deduce that $x_i = y_i$ $(i = 2, 3, \dots, n)$.

Similarly, if we multiply (1) on the right by v, the zero of J_n , we get the relations $x_i = y_i$ ($i = 1, 2, \dots, n-1$); in particular, $x_1 = y_1$.

(iii) The elements of J_i , J_k commute with each other for every i, k. The proof will be given for J_1 , J_2 . If n>2, the result is immediate, for then $I_1I_2\subset C$; in C the elements commute, and so this carries over to B. If n=2, then by paragraph (ii), $J_1J_2=S$. Similarly, $J_2J_1=S$. Let $j_i\in J_i$ (i=1,2) be given, and let $t_i\in J_i$ (i=1,2) be such that

$$j_1 j_2 = t_2 t_1.$$

Let $u = \phi(0, 1)$ be that endpoint of J_1 which is a zero for J_1 . Then $uj_1 = ut_1 = u$. Also, $u \in B_1$ and therefore u commutes with all elements of B. Multiplying (3) by u, we deduce that $uj_2 = ut_2$. But in C the product $(0, 1)I_2$ is one-to-one, and therefore $j_2 = t_2$. Similarly $j_1 = t_1$, and therefore $j_1 j_2 = j_2 j_1$.

By combining paragraphs (ii) and (iii), we are able to introduce coordinates (x_1, \dots, x_n) $(x_i \in J_i)$ in S, and the multiplication is coordinatewise; this completes the proof.

REFERENCES

- 1. P. S. Mostert and A. L. Shields, Semigroups with identity on a manifold, to appear.
- 2. ——, On the structure of semigroups on a compact manifold with boundary, Ann. of Math. (2) 65 (1957), 117-144.
- 3. A. D. Wallace, *Inverses in euclidean mobs*, Math. J. Okayama Univ. 3 (1953), 23-28.
- 4. W. M. Faucett, Compact semigroups irreducibly connected between two idempotents, Proc. Amer. Math. Soc. 6 (1955), 741-747.

Tulane University and University of Michigan