THE n-CUBE AS A PRODUCT SEMIGROUP
Allen Shields

If a topological space S with a “boundary” is a semigroup with identity, then the
boundary seems to play a special role. For example, if S is a compact manifold
with boundary, then the identity and all elements with inverses lie on the boundary
[1], [3]. If in addition the boundary is a connected Lie group, then the multiplication
in S may be described by the introduction of generalized “polar coordinates,” that
is, a unit interval coordinate and a boundary coordinate [2]. The importance of the
boundary was first pointed out to us in conversations with A. D. Wallace.

In this note we show that if the boundary of a semigroup S on the n-cell is iso-
morphic to the boundary of a product semigroup, then S is a product semigroup.

By a semigroup S we mean a topological semigroup, that is, a Hausdorff space
with a continuous associative multiplication. If A and B are subsets of S, then AB
denotes the set of all products ab with a € A and b € B. An ideal is a subset A
such that ASc A and SA C A,

An (I)-semigroup is a semigroup on the unit interval in which 0 is a zero,
0x = x0 = 0 for all x, and 1 is an identity. Such a semigroup must be abelian [4];
but there are infinitely many nonisomorphic (I)-semigroups. A classification is
given in [2].

A \ B denotes set-theoretic difference.
We are now ready to state our main result.

THEOREM. Let S be a semigvoup on the n-cell (n> 1), with boundary B. Let
J,, ++, In be (D-semigroups, and let T = J, X ++xXJy, be the product semigyoup on
the n-cell with boundary C. If ¢ is a homeomovphism of C onto B such that
¢(c) ¢(d) = ¢(cd) whenever c,d and cd ave in C, then S is isomovrphic to T.

In other words, if the boundaries are isomorphic, then the isomorphism may be
extended throughout the interiors.

Pyoof. The points of T may be represented by coordinates (x,, ***, Xp)
(0 < x;i < 1), with the boundary consisting of those points which have 0 or 1 for at
least one coordinate. It follows that (0, ---, 0) is the zero for T and (1, -+, 1) is
the identity. Let 0 = ¢(0, .-+, 0), 1 = ¢(1, ---, 1); these points are respectively a
zero and an identity for B.

(i) ¥ Q is any arc in B from 0 to 1, then QB = S. Indeed, assume that there is
a z € S such that z ¢ QB. Then z ¢ gB for each q € Q, and the index (“winding num-
ber”) of the mapping qB with respect to the point z is defined for each q € Q and is
therefore constant. But for q = 1 the index is one, and for q = 0 the index is zero;
the contradiction shows that QB = S.

InC, let I, =(x,1,--,1) (0<x,<1), L=(1,x,,1,-,1) (0<x,<1), and so
forth. The sets Iy are those edges of T that have (1, ---, 1) as a vertex, and
T=1I1-..-1,. Let C; be the set of those points of C that have at least one coordi-
nate zero. Then C, is an ideal in T and therefore in C. Let J; = ¢(I;) and
B, = ¢(C,). Then the J; are (I)-semigroups and B, is an ideal in B.
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(ii) We now show that J,J,+J, = S in a one-to-one manner, that is to say, that
if jydact in = Ky Ky ook (ij,k; € J;), then j;=k; (i=1, 2, ---, n). Let Q be an arc
from 1 to 0 which follows along J, to B, and then stays in B,. Let Q, = Q\ J,, so
that Q, c B,. Now S = QB, by paragraph (i); but Q,B c B,, and therefore S = J,B,
In C one verifies easily that I,(C\ L, I;:--I)) c C; the mapping ¢ carries this over
to B, thatis, J,(B\ J,J;--J,) C B. Therefore S=J,J,J,,.

Assume that x;,y; € J; (i=1, -+, n), and that

(1) xlcnoxn= yltooyn.

Let u be the endpoint of J, which is a zero for J;, (u= ¢(0, 1, -=-, 1)). Then
ux, = u = uy,, and u € B,. Multiply (1) on the left by u; then

(2) UXp**Xn= Uyz***¥n-

In C, the product L,---I, is one-to-one and is contained in C, and the product
(0, 1, ++-, 1)L, --- I, is one-to-one. Therefore this carries over to B, and from (2)
we deduce that x; =y; (i=2, 3, *+-, n).

Similarly, if we multiply (1) on the right by v, the zero of J,, we get the rela-
tions x;=y; (i=1, 2, «--, n - 1); in particular, x, = y,.

(iii) The elements of J, J commute with each other for every i, k. The proof
will be given for J,, J,. If n > 2, the result is immediate, for then I,I, c C; in C
the elements commute, and so this carries over to B. If n = 2, then by paragraph
(ii), J,J, = S. Similarly, J,J, = S. Let j; € J; {i= 1, 2) be given, and let
t; € J; (i=1, 2) be such that

(3) il = Gty

Let u = ¢(0, 1) be that endpoint of J, which is a zero for J,. Then uj, = ut;, = u.
Also, u € B, and therefore u commutes with all elements of B. Multiplying (3) by
u, we deduce that uj, = ut,. But in C the product (0, 1)I, is one-to-one, and there-
fore j, = t,. Similarly j, = t;, and therefore j,j, = j, ;.

By combining paragraphs (ii) and (iii), we are able to introduce coordinates
(xy, ***, Xn) (x; € J) in S, and the multiplication is coordinatewise; this completes
the proof.
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