D. K. KAZARINOFF’S INEQUALITY FOR TETRAHEDRA
Nicholas D. Kazarinoff

1. INTRODUCTION

Let S be a tetrahedron, and P a point not exterior to S. Let the distances from
P to the vertices and to the faces of S be denoted R; and rj;, respectively. In this
paper we establish an analogue of the Erdos-Mordell inequality for triangles [3, p.
12].

THEOREM 1. For any telrahedvon whose civcumcenter is not an extevior point,
(1) SR/ X r; > 2V2,

and 2V?2 is the greatest lower bound,

D. K. Kazarinoff stated that this inequality holds for all tetrahedra [3, p. 120]; but
he refused to divulge his proof, probably because it was not simple enough, in his
opinion, to be made public. Before his death, however, he did provide a simple proof
of the Erdos-Mordell inequality [2], and he gave a generalization of this proof to
three dimensions. This generalization and his proof of (1) for trirectangular tetra-
hedra are given in Sections 2 and 3. We use this work as a basis for the proof of
Theorem 1.

2. THE FUNDAMENTAL INEQUALITY

Let the vertices of S be i, j, k, and I; let (i) and (jkl) denote the area of the
face opposite i, and (ij) the length of the edge joining i and j; let H; be the length
of the altitude through i, R the radius of the circumsphere with center O, R; the
distance from P to i, and r; the distance from P to the face opposite i.

A theorem of Pappus plays a leading role in the proof of the Erdos-Mordell in-
equality given in [2]. The following generalization of this theorem to three dimen-
sions is of importance in the proof of Theorem 1. Construct three triangular prisms
which have for theiv bases three faces of S, which have a lateral edge in common,
and of which all or none lie entively outside of S. On the remaining face, constvucta
Jourth prism whose lateval edges ave translates of the common lateral edge of the
first thvee prisms. Then the sum of the volumes of the fivst three prisms is equal
to the volume of the fourth prism.

LEMMA 1. For any tetrahedvon S,

2) >R, > » W +:§g‘1);i+ az,

Equality holds if and only if P and O coincide.

Proof. The ingredients of the proof are the generalized Pappus theorem, an in-
version (a reflection was used in[2]), and a theorem of von Staudt [1, p. 117]. We
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Figure 1,

transform S into a new tetrahedron ij'k'l' by a transformation of inversion I(i, p;),
where p? = (ij)(ik)(il). We consider the inversion as affecting only the vertices j, k,
and 1. Applying Pappus’ theorem to ij'k'l' with iP as the common lateral edge, we
find

3 R; cos (iP, i0) (j'k'l") = (j'k'D) ry+ (&'1') ry+ 1'§'D ry,

where cos (iP, iO) is the sine of the angle between iP and the plane of j'k'l'. Since
()G = p?, (1j") = (iD(ik). Similarly, (ik'} = (ij)(il). Thus

@) ({i'k"/(ijk) = ({1D)3,

and so forth. Since ijk and ik'j' are similar triangles, (j'k")/(jk) = (ij")/(ik). But
(ij')/(ik) = (il); hence,

(5) (G'x") = (K@ED,

and so forth.
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Let T = (j'k'l'), which by (5) is the area of the triangle whose sides have lengths
(1) (1), (jK) (1i), and (ki)(jl). Together, (3), (4), and (5) yield the conclusion that

(6) TR; > (DM ry+ (120 r; + (i) (W) ry,

and so forth. Now, a theorem of von Staudt states that T = 6RV, where V is the vol-
ume of S. Thus, since 3V = (i)H;,

@) T = 2RH;(>i),

and so forth. We now sum both sides of (6) over all vertices of S and divide by T,
using (7). Equality will hold in the resulting relation (2) if and only if

cos (iP, iO) = cos (jP, jO) = +-- = 1;

that is, if and only if O is not exterior to S and P coincides with O. This com-
pletes the proof of the lemma.

Remark. If the faces of S all have equal area, Pappus’ theorem may be applied
directly, without an inversion, to show that

ZRiZ 3 Zri.

3. TRIRECTANGULAR TETRAHEDRA

In this section we suppose that S is trirectangular, in other words, that at one
vertex the edges are mutually perpendicular.

THEOREM 2. For any trivectangular tetvahedvon,
ZR;>2)2 Zr,.

]Proof. Let the vertex common to the orthogonal edges be i. It is known [1, p.
177 that

1 1 1

H TG MG (111)2 and 2R = [(ij)? + (iK% + (i)2]*/2.

Thus the coefficient of r; in (2) is

{[(ij)2+ (ik)% + (iD?] [(gyﬂ (111{ " EIF] }1/2’

which is greater than or equal to 3. The coefficient of any other r in (2), say T, is
at least 22, since

(k)2 + (D2 + (ji)2 3(ij)%2 + (ik)? + (il)"’ (1])
2RH; = 2R(1j) > 2V2.

This completes the proof of Theorem 2. The circumcenter of a trirectangular tetra-
hedron is, of course, always outside the tetrahedron.
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4, THE PROOF OF THEOREM 1

We prove the theorem by showing that the coefficients of the r’s in (2) all exceed
21/2_. Moreover, we show that £ R; = 222 r;, whenever S degenerates to an isosceles
right triangle with two vertices (of S) at the vertex opposite the hypotenuse and with
P at the circumcenter. The coefficients in (2) actually need not exceed 2¥2 if the cir-
cumcenter of S is allowed to be exterior to S, as the following example shows: Let
jkl be an isosceles triangle with (jk) = (jl) = ¥10 and (k1) = 6, and let ij be perpen-
dicular to the plane of jkl with (ij) = 3; then the coefficient of r; in (2) is less than
2V2. The reason that (2) ceases to be a “good approximation” in this instance is that
in deriving (2) we have replaced the cosines in (3) by 1.

LEMMA 2. If O is not exievior to S, then

(ij)? + (ik)? + (iD?
oRH, > 2V2.

Proof. Clearly, we may assume that R = 1 and that O is fixed. The proof has
two main steps. We first minimize (ij)?+ (ik)? + (il)?, keeping fixed the vertex i, the
length H;, and the plane of jkl, and keeping O in or on S. Let this minimum be
f(i, H;). Second, we minimize (i, H;) /2H;, subject to the same restriction relative
to O and S; and we show that £(i, H;)/2H; > 2y/2.

Since S is convex, iO extended must pierce the face jkl, say at m. Let n be the
foot of the altitude from i, and note that n does not lie outside the circumcircle of
the triangle jkl. In fact, the points m and n lie on a diameter rmns of this circle;
and the center O' lies between them or
coincides with them. Now, r

(i5)? + (ik)? + (i1)? Kk
= 3HZ + (nj)% + (nk)2 + (nl)2.
Let us fix i, H;, and the plane of jkl.
The vertices j, k, and 1 may move
only along their circumcircle, and they

are subject to the restriction that m
not lie outside jkl.

We proceed to minimize
o = (nj)? + (nk)? + (nl)2.
Suppose that k and 1 lie on opposite

sides of rs. For fixed k and 1, the
minimum value of ¢ occurs when j is

at s. We further decrease o by mov- S
ing 1 toward s until k, m, and 1 are )
collinear. Suppose that (nk) > (nl), and Figure 2.

rotate kil about m so that (nl) de-

creases. An application of the law of cosines to the triangles nO'k and nO'l shows that
(nk)? + (n1)? also decreases, provided cos o + cos B increases, where a and g8 denote
the angles at O' in nO'k and nO'l, respectively. Let the rotation of kl increase «

by w; then g decreases by at least w. Now, sin 8 > sin @; and
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d
% [cos (@ + w) + cos (8 - W) ,_g

= sin B - sin a.

The right member is positive, except
when (nl) = (nk) or ¢ =7 and 8= 0.
From this it is easily seen that ¢ is a
minimum when k=r and 1=j=s. The
minimum value £(i, H;) of

(ij)% + (K2 + (D2,

for fixed Hj;, thus occurs when i, j, k, 1,
and O are coplanar. This completes the
first stage in the proof.

We next minimize f(i, H;) /2H;. Let
(OO") = H and H; = H+ H', where
1> H' > H. Also, let

Figure 3.

F(H, H) = £(i, H;) /2H,.

Clearly,

_3H+H)*+2VI-H-VI-H?) + (V1- B2+ VI- B’

F(H, H) (A + )

3(HH'+ 1) - V1 - H2V1 - H'2
H+ H ‘

We wish to find the minimum value of F in the isosceles right triangle containing all
points (H, H') for which H <H' <1 and 0<H<K1. On the perimeter of this triangle
we find that

F(H, 1) = 3;
F(0, H') > 2V2, and F(0, H') = 2V2 if and only if H' = 2V/2/3;
F(H, H) > 2V2, and F(H, H) = 2V2 if and only if H= 1/V2.

The minimum value of F, if any, over the interior of the triangle is taken on at a point
where 9F/9H = 9F/0H' = 0. A computation reveals that this condition implies

H' = (3H - 2V2)/(2V2H - 3).

But in this instance F(H, H') = 2V2. This completes the proof of the lemma.

Theorem 1 is an immediate consequence of the lemmas. Lemma 2 also provides
a simple upper bound for R when O is not exterior to S.

Remark 1. The proof of Theorem 1 shows that the relation ZR; = 2V2 > r; can
hold only if P and O coincide and S is a degenerate tetrahedron in which two ver-
tices coincide. If P = O, then Z R; = 4R; and Z r; is a maximum when two vertices
of S are at opposite ends of the hypotenuse of an isosceles right triangle and the two
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coincident vertices of S are at the third vertex of the triangle. In this case, and in
this case alone, ZR;= 2V2Z r;.

Remark 2. One might suspect that in n-dimensional Euclidean space the rela-
tion Z R; > 2n/2x r; holds. But A. L. Shields has pointed out a counter-example: if
two vertices of a simplex in E, (n> 3) are opposite ends of a diagonal of a square,

P is the midpoint, and the remaining n - 1 vertices approach one of the other corners,
then

n+1
ZR1—>——§—-\/§2ri.
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