On the Definition of Clifford Algebras

by

Leonard Tornheim

Clifford algebras are usually defined in one of two ways. Let \(K \) be a field of characteristic not two. One method is to give a basis of the algebra [1]. The basis consists of the elements \(e_A \) where \(A \) ranges through the subsets of the set \(N = \{1, 2, \ldots, n\} \), including the null set \(\emptyset \). We write \(e_i \) for \(e_{\{i\}} \) and define

\[
(1) \quad e_i^2 = a_i e_\emptyset \quad (i = 1, \ldots, n)
\]

where the \(a_i \) are elements of \(K \); also

\[
(2) \quad e_i e_j = -e_j e_i \quad (i \neq j).
\]

Then if \(A = \{i_1, \ldots, i_r\} \) with \(i_1 < \cdots < i_r \), we require that \(e_A = e_{i_1} \cdots e_{i_r} \) and \(e_\emptyset = 1 \). From (1) and (2) products of the \(e_A \) can be defined. That multiplication is associative needs to be verified by computation.

A second method of definition is more intrinsic [2]. Let \(V \) be an \(n \)-dimensional vector space over \(K \). Let \(T(V) \) be the tensor algebra of \(V \), i.e., the free associative algebra over \(K \) consisting of sums of products of vectors in \(V \), where it is assumed that the product with a scalar is commutative. Let \(f \) be a symmetric bilinear scalar function on \(V \). Let \(J \) be the ideal of \(T(V) \) generated by \(\forall v w + w v - 2 f(v, w) \), where \(v \) and \(w \) range through \(V \). The difference algebra \(T(V)/J \) is defined to be a Clifford algebra.
The two definitions are connected by choosing an orthogonal basis in the space V with the metric defined by f, i.e., a basis u_1, \ldots, u_n of V such that

$$f(u_i, u_j) = \delta_{ij} a_j.$$

Let $\overline{u_i}$ be the residue class of u_i modulo J. The mapping

$$\theta: e_i \rightarrow \overline{u_i}$$

is clearly a homomorphism onto. In order to show that it is an isomorphism it is necessary to prove that the $\overline{u_{i_1}} \cdots \overline{u_{i_r}} (i_1 < \cdots < i_r)$ are linearly independent. This can be done by considering the inverse mapping θ^{-1} but then one must already have the algebra as given by the first definition. We shall prove directly that the $\overline{u_{i_1}} \cdots \overline{u_{i_r}}$, which we shall denote by $\overline{u}_A (A = \{i_1, \ldots, i_r\})$, are linearly independent.

The proof is by contradiction. Suppose $\sum c_A \overline{u}_A = 0$ (c_A in K). Then $\sum c_A u_A$ is in J and so

$$\sum c_A u_{i_1} \cdots u_{i_r} = \sum a_{ij} (u^2 - a_i) b_{ij}$$

$$+ \sum c_{ijk} (u_{i_1} u_{j_1} + u_{j_1} u_{i_1}) d_{ijk},$$

where the a_{ij}, b_{ij}, c_{ijk}, d_{ijk} are non-commutative polynomials in the u_i. Suppose for some $B = \{j_1, \ldots, j_s\}$ we have $c_B \neq 0$; we may assume $c_B = 1$. Since (3) is an identity in the indeterminates u_i, we can equate those terms in which u_{j_1}, \ldots, u_{j_s} appear to odd powers and the other u_i to even powers. Hence

$$u_{j_1} \cdots u_{j_s} = F,$$

where
\[F = \sum a_{ij}^l (u_i^2 - a_i)^b_{ij} \]
\[+ \sum c_{ijk}^l (u_i u_j + u_j u_i)^d_{ijk} ; \]

consequently

\[(4) \quad u_{j_1}, \ldots, u_{j_s}, u_{j_1}, \ldots, u_{j_s} = (u_{j_1}, \ldots, u_{j_s})^F \]

and every term in this expression contains each \(u_i \) to an even power and every \(u_{j_1}, \ldots, u_{j_s} \) to a power at least 2.

Let \(x_1, \ldots, x_n \) be \(n \) commutative independent indeterminates over \(K \). To each expression \(\sum c u_{i_1} \cdots u_{i_p} \) where each subscript appears an even number of times in each term we make correspond \(\sum (-1)^v cx_{i_1} \cdots x_{i_p} \) where \(v \) is the number of inversions from the natural order in \(i_1, \ldots, i_p \). This is a homomorphism onto \(K[x_1, \ldots, x_n] \). Clearly addition is preserved. In order to show that multiplication is preserved it is sufficient to prove that if \(i = (i_1, \ldots, i_p) \) and \(k = (k_1, \ldots, k_q) \) are both in natural order, then \((i_1, \ldots, i_p, k_1, \ldots, k_q) \) has an even number of inversions. But this is true because the numbers in \(i \) appear in pairs of adjacent equal numbers.

Under this mapping \(c' (u_i u_j + u_j u_i) d' \) has image 0. Hence from (4) we find that

\[(x_{j_1} \cdots x_{j_s})^2 = (x_{j_1} \cdots x_{j_s})^2 \sum g_i(x_i^2 - a_i), \]

where \(g_i \) is a polynomial in \(x_1^2, \ldots, x_n^2 \). Division by \((x_{j_1} \cdots x_{j_s})^2 \) gives

\[1 = \sum g_i(x_i^2 - a_i). \]

But this is impossible because under the mapping
\[x_i \rightarrow a_i^{1/2} \quad (i = 1, \ldots, n) \]

into the field \(K(a_1^{1/2}, \ldots, a_n^{1/2}) \), the right side has image 0.

References

2. M. Eichler, Quadratische Formen und orthogonale Gruppen, p. 22 (1952).

University of Michigan
January 1953