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1. Introduction

In this paper we give a finiteness property of some embedded surfaces in a 3-
manifold M. These embedded surfaces will be called “acylindrical” or “pseudo-
acylindrical” in Section 2. Acylindrical surfaces are important for hyperbolic 3-
manifolds; for example, i is a hyperbolic 3-manifold and § is an embedded
totally geodesic surface, thehis acylindrical. Furthermore, if is acylindrical
or pseudo-acylindrical, thefiis a quasi-Fuchsian surface; that is, the limit set of
the imager1(S) — 71(M) — Isomi" H3 is a simple closed curve 2 ([10]).

In Section 3, we prove the following finiteness result.

THEOREM 1.1. There exist only finitely many pseudo-acylindrical surfaces, up to
isotopy, in a compact orientable 3-manifold.

Aresult similar to Theorem 1.1 was obtained by Hass [3] and Sela [9]. Since Gabai
suggested that [3, Thm. 10] can be obtained using techniques of branched surface
theory, we give a proof of Theorem 1.1 using some results about branched surfaces
obtained by Floyd and Oertel [1].

In Section 2, we give definitions for acylindrical and pseudo-acylindrical sur-
faces and for branched surfaces.

In Section 4, we consider the finite cyclic covering spaces of a 3-manifold. In
fact, for a Haken 3-manifold/ with positive Betti number, some finite cyclic cov-
ering spaceV’ contains pseudo-acylindrical surfaces Mt is a surface bundle
over the circle or constructed by booksiebundles.

In Section 5, we will give some examples of 3-manifolds that are related to
our results. As an application of Theordm, one carconstruct infinitely simple
3-manifolds (cf. Proposition 5.1).

2. Preliminaries

Unless stated otherwise, we & be a compact orientable 3-manifold, and we
let F be a 2-manifold that (a) is not homeomorphicstoor P? and (b) is prop-
erly embedded in. We denote a regular neighborhood of a subset M by
N(X; M) and denote its interior by(. For a topological spac¥, we denote the
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number of components KX |. For a setS, we denote the cardinality &f by #S.
By asurfacewe mean a compact 2-manifold. For a surfatproperly embedded
in a 3-manifoldM, the frontier of N(F; M) is denoted byN(F; M).

A surfaceF properly embedded in a 3-manifold is said to banjective (7;-
injectivg in M if the mapi,: m1(F) — mi(M) is injective. Acompressing disk
for a surfaceF' embedded in a 3-manifolt is an embedded 2-disk such that
F N D = aD andaD does not bound a disk iR. A surfaceF embedded in a
3-manifoldM isincompressiblén M if there exists no compressing disk fBr A
surfaceF is d-incompressibléf, for each diskD ¢ M with 9D = « U 8 (where
DN F = « is a properly embedded arc mandoM N D = B), there is a disk
D' c FwithdD' = o U B’ andp’ = D’ N dF.

An embedded surfack is two-sidedin M if N(F) is homeomorphic td x I;
otherwise, F is said to beone-sided. It is known that an injective surface is
incompressible and that a two-sided incompressible surface is injective (see [4,
Chap. 6]). A 3-manifoldM is said to bdrreducible if each embedded 2-sphere
bounds a 3-ball idZ, andM is P2-irreducibleif M is irreducible and contains no
two-sided projective plan®?. A manifold M is said to be:sufficiently largeif
M contains some two-sided incompressible surfatakenif M is compact,P?-
irreducible, and sufficiently large; arédirreducible if each component ofM is
incompressible id. A surfaceF properly embedded i/ is said to be)-parallel
if there exists an embeddinf): F x [0,1] — M such thatf(F x {0}) = F and
fOF x[0,1]U F x {1}) C oM. If M contains no incompressible torus that is not
d-parallel, thenM is said to beatoroidal. An annulusA properly embedded in
a 3-manifoldM is said to beessentialif A is incompressible and nétparallel
in M. A 3-manifold M is said to beanannularif M contains no properly embed-
ded essential annuli. A 3-manifold that is irreducitdlérreducible, atoroidal, and
anannular is called simple3-manifold.

A closed two-sided incompressible surfacén M is said to bepseudo-acylin-
drical if, for somei = 0, 1, each essential annulus M — N(F) has boundaries
in F x {i}, whereN(F) is identified with the produck x [0, 1]. An incompress-
ible closed surface” in a 3-manifoldM is acylindrical if each component of
M — N(F) contains no essential annuli with boundaries containedVi(¥').

A compact 2-polyhedro® C M is called abranched surfac# the local struc-
ture is modeled on the space in Figure 1(A) (see [1] for details).bFéuech locus
of B is the set of points iB each of which has no neighborhood homeomorphic to
R2. A neighborhoodV of B in the 3-manifoldM is naturally constructed as indi-
cated in Figure 1(B). Such a neighborhood is calldidbered neighborhoodOb-
serve thabN is the union of three compact subsurfa¢gsv, 9, N, andN N oM )
that meet only in their common boundary points. A fibeNofmeetsd, N trans-
versely at its endpoints, while a fiber 8f intersectsd, N in a closed interval in
the interior of the fiber. A surfacg is carried by B if F can be isotoped int&y so
that F' intersects the fibers transversely. A surfdces carried byB with positive
weightsif F' can be isotoped int&y so thatF intersects all fibers transversely.

A branched surfac® properly embedded in a Haken 3-manifdiflis said to
beincompressibléf the following conditions are satisfied (see Figure 2).
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(1.1) There exists no dislo C N such thatD is transverse to the fibers of
andaD C 8 N (such a disk is called disk of contack, and there is no disk
D C N such thatD is transverse to the fibers 8f with 9D = o U g, where
aca N andB C oM are arcs and N B = da = 9.

(1.2) Each component af, N is incompressible ang-incompressible i/ — N.

(1.3) There exists no diskb c M — NwithdD = DNN =a U B, wherea C
d,N is afiberand3 C 9, N (such a disk is called monogoi).

3. Proofs

Throughout this section, we l&& be a branched surface that carries some con-
nected surface with positive weights in an orientable irreducible 3-maniold
We assume that each surfaEearried byB with positive weights is isotoped into

a fibered neighborhool’ of B so thatF intersects all fibers transversely. Since
S = ON(F) intersects each fiber @¢¥’ at least twice, we may assume th¢F)

is isotoped so that, N’ ¢ S andS NN’ = 9, N’ (see Figure 3). If we leL’ be

the closure ofN’ — N(F), then each component &f is an/-bundle over a sur-
face. Unless stated otherwise, the base spaces bhalhdles are homeomorphic
to neitherS? nor P2.
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Figure 3

If some component of 9,N’ is compressible il — N’ then, by condition
(1.2), both components &fA bound disksDg and D1 in 9, N'. By the irreducibil-
ity of M, the sphereDo U A U D4 bounds a 3-balC on the side containing the
compressing dislo for A. The 3-ballC can be identified with the produét x /
so thatD x {0} = Dg andD x {1} = D;. Hence, thd-bundleL’ is naturally ex-
tended to thd-bundleL = L' U, C, and we putvV = N’ U C. It can be seen that
conditions (1.)—(1.3) hold for N, by an argument similar to [1, Thm. 2]. We call
the 3-manifoldV constructed as described heresatended fibered neighborhood
of B. Note that the extended neighborhaidnay not be a regular neighborhood
of a branched surface. In fact, the maniféidcould be the whole manifold/,
or some of the induced fibers &f may beS* or noncompact ifB has “Reeb
components”.

A branched surfac is said to beeducedif B is an incompressible branched
surface such that no componendghV is a closed surface. The following theorem
is a consequence of the main result of Floyd and Oertel in [1].

THEOREM 3.1. Let M be a HakerB-manifold. There exist a finite number of re-
duced branched surfaces and incompressible surf&es., B, such that each
two-sided closed incompressible surfacédns carried with positive weights by
SOMeR;.

Proof. If M is 9-reducible, thenwe leb, ..., D,, be disks properly embedded in
M such that each componentitff— N (|J;", .,Di) is irreducible and-irreducible
(see [5, Lemmall.21]). We putMo = M — N(U;, D;). If M is 9-irreducible
then we putMy, = M. Let By, ..., B, be branched surfaces fafy given in [1,
Thm. 1] without boundaries. Then each two-sided closed incompressible surface
in My is carried with positive weights by song. By the construction in [1],
these branched surfaces are incompressibMgnlf some component of 9, NV;

is closed, whereV; is an extended fibered neighborhoodR)f then each con-
nected two-sided surface carried By with positive weights is isotopic t§. If
somea; is a one-sided surface, then we repl&dy N (B;). Now it follows that
each branched surfa@ is either a reduced branched surface or a two-sided sur-
face. SinceM is irreducible, each closed incompressible surfack iis isotopic

to an incompressible surface M. Furthermore, eacB; is also incompressible

in M. Therefore, each closed incompressible surfac¥ iis carried by some;

with positive weights. O
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We call the branched surfacé, ..., B, given in Theorem 3.basic branched
surfaces forM.

LemMA 3.2. Let M be an orientable HakeB-manifold. For each closed con-
nected incompressible surfa¢ecarried by a reduced branched surfadewith
positive weights, each component®fN is an essential annulus i — N(F)
whereN is an extended fibered neighborhoodsof

Proof. Let A be a component of,N. Since M is orientable,A is an annulus.
First, we show thatd is incompressible il — N(F) If it is not, then—for a
compressing dislD for A with the numbeif D N 3, N| minimal among all com-
pressing disks—we laby be an innermost disk with respect tab N 3, N. We
claim thatDy is isotopic to a disk of contact fav. Notice thatD, is properly em-
bedded inV because each componenifV is incompressible i/ — N. Since
D is contained inf — N(F) it follows that Dg is contained inL, whereL is the
closure ofN — N(F), which is an/-bundle. SincéDg is contained iro, N, the
component of. containingDg is homeomorphic to a produéty x 1. Thus, there
exists a disk of contact that is isotopic B. This contradicts condition (1.1).
Next, we show thatd is a-ioncompressible inM — N(F). Let D be ao-
compressing disk foA in M — N(F). By the incompressibility 0b, N, we may
assume thab N d, N consists of properly embedded arcdinLet Dy be an out-
ermost disk ofD with dDg = o U B8, wheredDg N 9,N = a. We let Ag be the
component ob, N such thatr ¢ Ag. By the minimality of| D N a,N|, it follows
that the two pointd« are contained in mutually distinct componentdf,. Since
L is an/-bundle, it follows thatD is contained il — N. This contradicts con-
dition (1.3). O

LemMma 3.3. Let M, F, and B be as in Lemma 3.2. Theh is not pseudo-
acylindrical in M.

Proof. Let N be an extended fibered neighborhoodotf 9N is empty, then each

componentoM — N(F)lsanl -bundle. Hencé' is not pseudo-acylindrical ii.
We assume thalN is not empty and thaf is pseudo-acylindrical i4. By

Lemma 3.2, for each componeatof 3, N it follows thatdA c F x {0}, sinceF

is pseudo-acylindrical; here/(F) is identified with the produck’ x [0, 1]. Since

9, N has no closed componerf, x {1} is contained inV. Hence, some compo-

nentL; of L with 9L; N F x {1} # @ is anI-bundle over a closed surface. By

the hypothesis thak, N is not empty,L; must be a twisted-bundle over a closed

surface. This shows that there exists an essential an@las L, with A’ C

F x {1}. HenceF is not pseudo-acylindrical. O

Now let us prove Theorerh.l. First, we prove the following lemma about re-
ducible 3-manifolds.

LemMma 3.4. Let M be a reducible-manifold. ThenV does not contain acylin-
drical surfaces.
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Proof. Let F be any two-sided closed incompressible surface embeddéf] in
Our plan is to show thaf cannot be pseudo-acylindrical. Liebe a nontrivial
simple closed curve i and letE be an essential sphere embeddeffirBy the
incompressibility ofF, we can choose the sphefesuch thatt does not meek'.
We join pointsx € [ andy € E with an arca suchthak N F = x anda N E =

y, and we putd’ = aN( Ua U E; M). Clearly, A’ consists of three components:
one of the three is a sphere parallelzpand the other two are annuli. For an an-

nular componentl of A’ — F “surroundinge U E”, we see that N (M — N(F))
is mcompressmle and notparallel in theM — N(F) Therefore,A is essential
in M — N(F) and hencéF is not acylindrical. O

Proof of Theoreni.l. First, we prove the theorem for irreducible 3-manifolds.
By Theorem 3.1, each closed two-sided incompressible surface is carried with
positive weights by some basic branched surf&cthat is a reduced branched
surface or has no branch loci. By Lemma 3Rjs pseudo-acylindrical if and
only if B has no branch loci and the surfaBeis pseudo-acylindrical. Hence,
each pseudo-acylindrical surfacefifis isotopic to one of the basic surfaces that
are pseudo-acylindrical surfaces. Since the number of basic branched surfaces
B1, ..., B, is finite, the conclusion follows.

Next, we consider the case wheve is reducible. By the same argument as
Lemma 3.4, ifM is reducible and is a pseudo-acylindrical surface M, thenS
is isotoped off the reducing spheres &his a separating surface M. Let M, be
the cutting result oM along the a union of reducing spheregfifand letM, be the
manifold obtained fronMq by capping off spherical boundary components with
3-ballsC. ThenMj is an irreducible 3-manifold. Suppog¢ contains infinitely
many pseudo-acylindrical surfacgs Sz, ..., up to isotopy. Then eacs} is sep-
arating and does not meet the reducing spheresSambontalned inVo. Since
Mo is irreducible, som; ands; is isotopic mMo The isotopy can be chosen so
thatC is preserved. Thus, §; is notisotopic taS; in M, then (a)S; can be isotoped
to S;in M sothat$;N s; = @ and (b) inMo, ;U S; bounds a produdV = S; x I
such thatC is contained inW. Hence, the number of isotopy classes of pseudo-
acylindrical surfaces i is at most twice of that aff,. The proofis complete. [J

In [9], Sela obtained a stronger result than Theorem 1.1 and [3, Thm. 10], a result
concerning ak-acylindrical surface” for simple 3-manifolds (see [9] for the defini-
tion of k-acylindrical surfacé. In [12], the author gave a proof of &-acylindrical
finiteness property” for irreducible 3-manifolds using branched surfaces. Further-
more, it was shown in [12] that, i#/ is hyperbolic and if each component of

M — N(F)is notanl-bundle, then the incompressible surfdtes k-acylindrical

for somek.

4. Finite Covering Spaces and Books af-Bundles

In this section, we will search for pseudo-acylindrical surfaces in finite-fold cyclic
covering spaces of an atoroidal 3-manifold. In fact, if we fail to find pseudo-
acylindrical surfaces, then the 3-manifold would be finitely covered by some 3-
manifold that can be decomposed into “bookd dfundles”.
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Let M be a 3-manifold. We say a surfasén dM is d-incompressibléf there
exists no properly embedded digkin M such thatD N S is a single essential arc
in S. A 3-manifold pair(M, R) is called arincompressible pseudo-sutured mani-
fold pair if each component aR is an incompressible torus or an incompressible,
d-incompressible annulus M. An essential loop in a component &fis called
asuture. Notice that, if 8 is an incompressible branched surfacednthen (by
Lemma 3.2) the pai(M — N, 9, N) is a pseudo-sutured manifold pair, whe¥e
is the extended neighborhood Bf

Let (Vy, Ry), ..., (V,, R,,) be incompressible pseudo-sutured solid torus pairs
with |R;| > 2. EachR; is a union of mutually parallel disjoint annuli 8V; with
nonmeridional slopes. Léf, ..., F, be compact surfaces with boundaries. If we
gluelJ;_,(F; x I) to|J/~, V; with ahomeomorphisrp);_,(3F; x I) — |/~ R;,
then we obtain a compact 3-manifold. Such a 3-manifold is calledak of /-
bundles cores of theV; (or the solid toriV;) are calledbindersand theF; are
calledpages.

Let BZ be the set of 3-manifoldd/ in which there exists a finite union of
two-sided incompressible surfaces, ..., S, such that each component of
M — N (U, S:) is a book off-bundles.

We describe some properties of books/ebundles. Hereafter, we shall use
the following notation for books of-bundles:(V;, R;) denotes a binder pseudo-
sutured solid torus paitf; denotes a page; and we pit= | JV;, R = U R,
andF = J F;.

LemMma 4.1. Let M be a book of/-bundles. If each pagg; has negative Euler
characteristic, therV is irreducible,d-irreducible, and atoroidal.

Proof. By the hypothesis thgt(F;) < 0, each annulug; is incompressible and
a-incompressible in1. Thus, if M is reducible then there exists an essential sphere
in someV; or F; x I, which is impossible because there are handlebodies. Hence
we can concludeé/ is irreducible. IfM is 3-reducible then we leD be a com-
pressing disk fobM. By the incompressibility and-incompressibility ofR;, we

may assume thab N R = @, sinceRr; is incompressible and-incompressible.
The diskD is therefore contained il or F x I. If D is contained inV then, by

the incompressibility oR, aD must bound a disk idV — R;. If aD is contained

in F x {0} then, sinceF x {0} is incompressible in the produgt x I, it follows
thatdaD bounds a disk itF’ x {0}. These statements contradict the assumption that
D is a compressing disk féM. Hence M is irreducible and-irreducible. LetT

be an incompressible torus M. By the incompressibility oR, we may assume
that the closure of each componenflof- R is an essential annulus ihor F x 1
andthatV NT # #andT N (F x I) # @. However, since(F;) < 0, each com-
ponent ofT N (F x I') cannot be essential i x 1. The proof is complete. [

LemMma 4.2. Let M be a book of/-bundles with each pagg of negative Euler
characteristic. LeBoM be a component oM. Suppose thafl) doM contains
at most one component &f x {0, 1} for anyi, (2) each componerk; of R has
integral slope orV;, and (3) doM contains at most one componentd¥f; — R;
for anyi. ThendgM is acylindrical in M.
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Proof. Let A be an essential annulusMiwith 0A C 9oM. Let F’ be the maximal
union of components of such that(F’ x I) N dgM = . Since each compo-
nent of F has negative Euler characteristic, we may assumedtitator’ x 1) =

¢@. Because the slope of each suture is integral on the boundary of the binder solid
torus, we may assume (by a suitable choice of a urioof essential annuli i/

with A'N (0gM U A) = @) that the componen¥y of M — N(A ) that contains

doM is homeomorphic to the produg§M x I. Thus, the annulud is d-parallel

to dgM. This is a contradiction to the essentiality &f O

The mainresultin this section is the following theorem. A surfacea 3-manifold
M is said to betaut if >_.(|x(S:)|) is minimal among surfaces in the homology
class ofS, where the sum is over componetsof S with x(S;) < 0.

THEOREM 4.3. Let M be a closed atoroidaB-manifold withg1(M) > 1. Then,
for any primitive elemente H,(M; Z), M has afinite-fold cyclic coves: M’ —
M that is dual toe with at least one of the following properties

(&) M' e BT,

(b) M’ contains a pseudo-acylindrical surface.

In order to prove Theorem 4.3, we need some lemmass lbet a two-sided sur-
face inM; namely,N(S) is identified with the produc§ x [0, 1]. An essential
annulus (or a Seifert paip) properly embedded it — N(S) is said to be ofype
Ao (A1, Agy, resp.) ifdA C S x {0} (0A C S x {1}, one component ofA is
contained inS x {0} and the other ir§ x {1}, resp.).

Lemma 4.4. Let M be an atoroidal close@-manifold and letS be a two-sided
nonseparating incompressible surface embeddédd such thatM — N(S) is not
an /-bundle. Then there exists a finite-fold cyclic coperM’ — M such that,
for some liftS’ of S, the manifoldM’” — N(S ) contains no essential annulus of
typeAg1. Furthermore, ifS is taut in M, thenp: M" — M can be chosen so that
S'istautinM’.

Proof. Let (X, ®) be the characteristic Seifert submanif@df M. Suppose that
someA g-type component of is not ans?- -pair. Letg: M — M be the infinite
cyclic cover ofM that is dual taS, and letr : M — M be a generator of the cover-
ing translation. Leds; be afundamental domain v such that the paiiM1, dM1)

is homeomorphic to the pai/ — N(S) IN(S)), so that:q|;, is @ homeomor-
phism;dM; is a union of two copies of; andg|s, is a 2- fold cover ofS. We

put M; = | J!_; t"~"X(My). Then eachM; has the common boundary component
doM; = dgM1. We putdiM; = dM; — doM;. Let (X;, ;) be the characteristic
Seifert pair of(M;, 9M;), and IetE01 be the subset that consists of components of
¥, of type Agu. We put<1>0 2010 doM; and®} = =N 31 M;.

We claim thatz® = @ for some positive mtegeln By a suitable isotopy,
each component 0‘a‘:,+1 N M; that meets)oM; is contained in=%; this follows
because, after eliminating trivial circle component$nf .1 N d; M; via their in-
compressibility, the intersection;; N M; forms an essential Seifert pair of;.
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So, the equationr(®?, ;) = x(®?) — x(¥? — @2 ) holds. Puta(i) = —x(®?)
andb(i) = —|8q3?| Setc(i) = (a(i), b(i)), a complexity that is ordered lexico-
graphically. As we have seen beforgi + 1) = a(i) + x(CD? l+1) Thus, we
havea(i +1) < a(i).

CLamM 4.5. c¢(i) > ¢(2i).

Proof. We may assume that each componentfn 3, M; is incompressible and
d-incompressible or parallel t3; in =9~ Let =’ be the union of the closures of
components oﬁg} — 01M; each of which meet&, M,;. If ¥’ = @, we are done.

It follows thatt~/(%’) can be isotoped int(E?l. If ¢(i) = ¢(2i) then, for each
component of 3(X’' N 3:M;), the loopr —1(!) is parallel to a component @fcp?

in dgM;. Furthermore,):f?1 is isotopic tor~/(Z’). Hence we can find an incom-
pressible torus (possibly immersed)My/z?. Now the torus theorem [5] yields
a contradiction to the condition thaf is atoroidal and contains a nonseparating
surface such that the exterior is not &bundle. O

Itis true (see [11]) that the number of mutually nonparallel disjoint essential annuli
properly embedded in an atoroidal 3-maniféitis bounded by a number that is
dependent only oxy(aM). As a result, the inequalityp(i)| < n holds for some
n, and thus we hav&® = ¢ for somem.

Now we letM" be anm-fold cyclic cover of M that is dual toS. Let S’ be
a lift of S. If there exists an essential annulusifi — N(S ) of type Ao, then
some component of the characteristic Seifert suoman®olof M’ — N(S )isan
S'-pair. Letk be the number of*-pairs inX’. By the atoroidality ofM, for the
(k + 1)-fold cyclic coverM” of M’ dual toS’, the exteriorM” N(S”) contains
no essential annuli of typd o, whereS” is a lift of §’. So, by taking a finite cyclic
cover of M, we can eliminate the essential annulus of tyjg.

Now we prove the latter part of this lemma. Let M' — M be the result-
ing cyclic cover. Suppos§ is taut inM and there is an incompressible surface
F’ that is homologous t68’ in M’ with x(F') > x(S’). By an argument similar
to [2, Lemma 3.6], we can find a surfaég’ that is homologous t6’ in M’ with
x(F") > x(S") such thatF” N p~(S) = @. SinceF” andS’ are homologous in
M’, there exists a compact 3-manifall embedded il with 9B’ = F” U §’
andB’ N p~X(S) = S’. Hence,p(F") is an embedded surface homologousto
in M, sincep|p is an embedding. This contradicts the assumption $hattaut
in M. O

Proof of Theorem 4.3Let S be a taut, incompressible, nonseparating surface such
that[S] =e€ Ho(M:Z). LetT be the characteristic submanifold &f — N(S)
fx=M-— N(S) then M is a surface bundle oves with a fiberS (property

(@)). If £ = ¢, thenS is acylindrical (property (b)). By Lemma 4.4, we may as-
sume thatM — N(S) contains no essential annuli of typky;. Furthermore, since
the cyclic covering space dual fois unique up to homology class 8f by taking
acyclic cover ofif we may assume that, for each incompressible sutfeitet is
homologous ta in M with x(F) = x(S), the manifoldM — N(F) contains no



166 YUKIHIRO TSUTSUMI

essential annulus of typég;, since there exists only finitely many incompressible
surfaces inlM (up to isotopy) with any fixed Euler characteristic [6, Cor. 2.3].

Letg: M — M be an infinite cyclic covering space of that is dual taS. Let
Sobea Ilftlng ofS into M, and letA o be an annulus i such thatdo N So = dA¢
and(M — N(So)) N Ag is an essential annulus of typg .

We construct surface{ss,} in M successively as follows. We are given an in-
compressible surfac§ in M such thats; = q(S;) is an embedded incompress-
ible surface inM, so thatM — N(S;) contains no essential annulus of tygde;.
We identify the regular neighborhoa¥(S;) with the productS; x [0, 1], so that
S; x {1/2} = §; andS; x {1} is contained in théront-sideof M — §;, that is, the
component of — §; that containg (S;), wherer : M — M is a generator of the
covering translation group. See Figure 4.

binder

Figure 4

Ifthere exists an annulus; in M suchthaid;NS; = A, and(M — N(S,)) N A,
is an essential annulus of typé;, then we setS;;1 = 8+N(§ U A;), where
aN(S UA;)) =d_N(S; UA;)U 8N+(S U A;) andd_N(S; U A;) is parallel to
S;. Notice that the manifoldB; cobounded b)S, U S,+1 is a book of7/-bundles
and thatX(SlH) = x(S)). FurthermoreS,+l = q(Sl+1) is embedded in/; other-
wise, for the annulugi; we would haveq(A )N q(S ) # @. In this case, some
componentofy(A;) N (M — N(q(S ))) is an essential annulus of typly, which
contradicts the absence of essential annuli of typgsfor all surfaces inM of
Euler characteristic equal ta(S). Furothermore, sinceS; U t(8;)) N ;41 # 9,
the surfaces; ., is embedded il — N(S;). Thus, the book of -bundlesq (B;)
is embedded il and hence the surfac® is homologous tdS;,; in M. Here
we can prove that the surfacg,; is incompressible i directly as follows.
For otherwise, leD be a compressing disk fd_,. Recall thatS;,1 = ¢(S;+1)
is embedded il — ﬁ(S[). Since S; is incompressible, we may assume that
DNUZ_., /(5 = 0. Therefore,D = ¢(D) is a compressing disk fas; 1.
This contradicts the assumption thsat Sy is taut inM and so proves our claim.

If there exists no such annulus M thenS; is pseudo-acylindrical idZ, and
q(S;) is also pseudo-acylindrical it (property (b)).

Because(S;) = x(S), the manifold contains only finitely many incompress-
ible surfaceg (S;), up to isotopy [6, Cor. 2.3]. As a result, the surfate= ¢(S;)
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is isotopic to someS; = ¢(S;) for somei > j. The isotopy betwees; ands; is
lifted to an isotopy betwees; andr”(§j) for somen. Hence there exists a map
g: Si x[0,1] — M such thatg(S; x {0}) = S; andg(S; x {1}) = t"(S;). Since
S; x [0, 1] is compact, we may assume tha8S; x [0,1]) N S; = #. By an ar-
gument similar to [13, Cor. 5.5], we can construct an isotgfpyM — M such
that 1y is the identity, eacb‘,|s is the identity, andfy(S;) = r”(S ). The com-
pact submanifold/” of M cobounded b)S, U r"(S ) is thus homeomorphic to
the union of books of -bundlesB” = B; U - - - U B;_1, and so the manifold/ is
finitely covered by a union of books a)fbundlesM” " (property (b)).

5. Examples

As an application of Theoreml, we give anethod to show the existence of in-
finitely many certain Haken 3-manifolds, up to homeomorphism.

To state our result, we use the following notation. RecallB¥ais defined to be
the set of 3-manifolds (up to homeomorphism) such that, for daahBZ, there
exists a union oﬁtwo—sided incompressible surfages. ., S,, such thateach com-
ponent ofM — N (J/Z,S:) is a book of/-bundles. Lefi = (ny, ..., n) be ak-
tuple of positive integers; (possiblyn; = n; fori # j). PUutABZy = {M € BT |
M is closed orientable, irreducible and atorojddlet ABZ; be the set of com-
pact, orientable, irreduciblé-irreducible, atoroidal and anannular 3-manifolds
in BZ such thabM consists ok component$, M, ..., 9; M with genugo,M) =
n; forn = (n, ..., ng).

It is easy to prove the following proposition using a result of Myers [7].

ProrosiTioN 5.1 [11]. #ABZ; = oo for any# (possiblyi = ¢).

The proposition is applied when one constructs 3-manifolds that contain acylin-
drical surfaces arbitrarily; a proof based on the finiteness result on acylindrical
surfaces is given in [11].

Here we give a sketch proof for the “infinitely many” part.

Proof. If ABZ; is a finite set then there exists a numlgesuch that, for any 3-
manifold M € ABZ;, M does not contain acylindrical surface of genus greater
than g, since each manifold it BZ; contains only finitely many acylindrical
surfaces (up to isotopy) by Theorelmd. Howeverthis contradicts the following
argument. Le®,; be a 3-manifold inABZ;,, wheren’ = (ny, ..., ny, g+1.

If we identify dM, 1 with the componend, W,,1 of dW,,1 whose genus ig + 1,

then the result is it BZ; and contains the acylindrical surfag®,,; = 9, W,11

with genusg + 1 Hence 8. ABZ; is infinite. O

Recall that an annulus properly embeddediiis defined to bessentialf it is in-
compressible and nétparallel inM. An annulus properly embeddedMf is said

to bestrictly essentialf it is incompressible and-incompressible inV. Notice
that, if M is irreducible and-irreducible, then these definitions are equivalent.
However, for a reducible 3-manifold we can prove the following proposition. Here
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we say that a surface embedded irM is weakly acylindricalif M — ]CI(S) does
not contain properly embedded strictly essential annuli.

ProrosiTION 5.2. There exists a reducible clos&dmanifold M such thatM
contains infinitely many weakly acylindrical surfaces, up to isotopy.

Proof. Let My be a closed irreducible 3-manifold that contains a nonseparat-
ing acylindrical surfaces,. Let V be a solid torus inM that meetsSy with a
single meridian disk oV. Let x; be a point inV — S and letx; be a point in

Mgy — (V U So). We attach the product? x [0, 1] to Mo — N(x1U x») and ob-

tain a reducible 3-manifold/ with the nonseparating sphefe = 2 x {1/2},
where we takeV(x1 U x») sufficiently small so that it does not medt Then there
exists an embedding: [—1, 1] x S* x S — M such thatg({0} x S x S1) =

aV, g([—1,1] x {0} x S') C So, andxy, x» are not contained in the image of
whereS! = R/(mod 2. Thus, the mag can be thought to be local coordinates
of N(3V; M) = Im(g).

There exists a homeomorphisfit M — M that agrees with the identity on
M — N(3V; M) and such that the mapo g: [-1 1] x S* x St — M is given
with f o g(z,61,02) = g(t,01+t +1,62). Such a homeomorphisrfiis some-
times called Dehn-twist alongV. PutS; = £(So). It is easy to see that each
S; is incompressible in. We show thatS; is weakly acylindrical inM. Since
eachsS; can be identified witt§, by the homeomorphisri: M — M, it suffices
to show thatSo is weakly acylindrical inM. SupposeSy is weakly acylindrical
in M; thenM — N(Sp) contains a strictly essential annulds By the incom-
pressibility of A, we may assume that N £ = #. Therefore,A is a properly
embedded annulus iy — N(So) SmceSo is acylindrical inMg, the annulusA
is compressible o#-compressible iy — A{(So) However, if D is a compress-
ing or ad-compressing disk foA in Mo — N(So), thenD is still a compressing
or ad-compressing disk fod in M — N(So). Hence A is not strictly essential in
M — N(Sp), s0Sg is weakly acylindrical inM. Because there exists a lobdual
to E such that intersectsS; with the algebraic intersection numheiit follows
that the weakly acylindrical surfacés, ... are mutually nonisotopic iM. O

It is not true that incompressible surfaces in a reducible 3-manifbldre iso-

toped off the reducing spheres; if we choose a separating incompressible surface
F in a 3-manifold and remove one point on each sidé othen the surfacé’ is

still incompressible and cannot be isotoped to be disjoint from a sphere bounding
a twice-punctured ball. It is true that, for the 3-manifold constructed in Propo-
sition 5.2, any incompressible surfaces can be isotoped off the essential sphere;
however, it contains infinitely many weakly acylindrical surfaces up to isotopy.
Therefore, some result on irreducible 3-manifolds is not inherited by reducible
3-manifolds. Before Lemma 3.4, the condition tidtbe irreducible is neces-

sary for the result of Floyd and Oertel [1] and for constructing an extended fibered
neighborhoodV of the incompressible branched surfaén Section 3.
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ProrosiTioN 5.3. Each pseudo-acylindrical surface in a Seifert manifold-s
parallel.

Proof. It is known that any closed incompressible surface in a Seifert manifold is
isotopic, either vertical to the dual-Seifert fibration or horizontal [5, Thm. VI1.34].
Let F be a closed incompressible surface in a Seifert manifold: i§ horizon-

tal then, by [5, Thm. VI1.34], each componentdf— N(F) is an/-bundle. IfF

is vertical, thenF is a-parallel or each component 8 — N(F) contains verti-

cal essential annuli. O

By Proposition 5.3, our interest in studying acylindrical surfaces is directed to
atoroidal 3-manifolds.

ProrosITION 5.4. There exists an atoroida&8-manifold M containing infinitely
many two-sided surfaces, up to isotopy, with one of the following properties

(A) each essential annulusin M — IST(F) is typeAqy; or
(B) each essential annulusin M — N(F) is typeAg or Aj;.

Proof. (A) For example, let be a surface bundle ovér that is atoroidal and

let B1(M) > 2. Neumann [8] showed that such a 3-manifold contains a nonsepa-
rating fiber surface of arbitrarily high genus.Afis a nonseparating fiber surface

in M, we haveM — N(F) = F x I. Consequently, there exists an essential an-
nulus of typed o; and there does not exist an essential annulus of #pand.A;.
Hence the conclusion follows.

(B) Let 7 be the train-track indicated on the left-hand side in Figure 5, and let
Bo be the 2-complex x S%. The 2-complexB is naturally embedded i and
forms a branched surface with the branch loci union of four circles and six sectors,
each of which is an annulus. L8tbe a branched surface obtained fr@gmby at-
taching a handle to each sector®f. The branched surfack is still embedded
in S and has six sectors, each of which is a torus with two disks removeaV Let
be a fibered neighborhood Bfin S3. Notice thatnV is a book of7-bundles, since
B has no “triple points”. We cap of with a 3-manifold inABZ3 355 SO that
the resulting manifoldV is orientable.

- n—+1

Figure 5
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Table 1
Ay Ao Ao1 finiteness
pseudo-acylindrical ] ] Yes Theorem 1.1
% ] Yes
] 7 No Proposition 5.4(A)
] No Proposition 5.4(B)

For the book off -bundlesV, each page has negative Euler characteristic. Thus,
by Lemma 4.1N is irreducible,d-irreducible, and atoroidal. Hend¥ is irre-
ducible and atoroidal. It can be seen that condition (1.1) follows becauge
irreducible anda-irreducible by Lemma 4.1. Furthermore conditions (1.2) and
(1.3) hold for N in M because — N is irreducible d-irreducible, atoroidal, and
anannular. Therefores is an incompressible branched surfacédnlLet F, be a
surface carried by with the positive weights indicated in Figure 5; an abstract
diagram forn = 5 is shown on the right-hand side of the figure. Notice thais
a connected two-sided surface with geifys = 4n + 7. By [1, Thm. 2], F,, is
incompressible in. Furthermore, there exists no essential annulus of Wpe
sinceM — N is anannular and has essential annuli of tgeandA; in the fibered
neighborhoodav. O

We have Table 1 as our conclusion.
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