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On Certain Loci of Smooth Degree
d > 4 Plane Curves witl-Flexes

G. CASNATI & A. DEL CENTINA

0. Introduction and Notation

Vermeulen [Ve] studied the subvarietigs C M3 (wheredi, is the moduli space
of smooth, genug- curves over the complex fiel@) corresponding to plane,
smooth quartic€ havinga hyperflexes—that is, paits := (P, r) € P2 x P2
(with P" the projectiven-space ove€) such thatC - r = 4P.

Vermeulen proved that it = 1, 2 then), is an irreducible subvariety of di-
mension 6— «, and thatV; is the union of three irreducible components each of
whose dimension is 3. He also studiédfor « > 4. Since it follows from the re-
sults listed in [Ve] that each componentfis unirational, we obtain that all such
components are actually rational wher 4 (via Castelnuovo’s and Liroth’s the-
orems, since their dimension is at most 2).

The aim of this paper is to generalize these kind of results by considering smooth,
plane curves of degreehavingd-flexes, that s, pairs := (P, r) € P? x P2 such
thatC - r = dP.

Letd > 4 andg := (%;'), and denote by, , < 9, the locus of points
representing isomorphism classes of smooth, plane curves haviritexes. In
Section 2 we prove the following theorem.

TueoreM A. The lociV,, (¢ = 1, 2) are irreducible, rational locally closed
subvarieties of dimensioff ¥3~*) — 8 + 3a.

The locusV, 1 has been considered also by Faber [Fa], who proved that the Chow
ring A(9Mt3) can be generated by it together with the hyperelliptic IoRysSince
H3 is known to be rational (see [BK] and [Ka]; see also [Do] and [PV]), it fol-
lows thatA(9)t3) can be generated by rational subvarieties (see [CD] for a similar
result aboutd(Mi4)).

Whenea > 3, the locusV, , is no longer irreducible. Lefh;}i—1 . o be the
set ofd-flexes ofC. For any triple in this set, one can define a projective invari-
antA; jx = A(h;, hj, hy) that always satisfieﬁ‘,{i’k = 1 (see Section 1). In
order to detect the irreducible components/pf,, one introduces thé})-tuple
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A = (A j)i<j<« and the related sublodi?*, < V, .. This is what Vermeulen
[Ve] did when dealing with the case= 4.

As d increases, the lod?;', become too numerous for all to be taken care of
(thoughV}, = Vd"a for someA # A/, as shown in [Ve] whe = 3, A = (i),
and A’ = (—i)). Thus we examine here only the cases= (1), (—1), (+i) for
a=3andA =1,111) fora = 4.

In Section 3 we prove the following.

THEOREM B. If A = () andd > 5orif A = (-1 or A = (&i), then the
locusV;'; € M, is an irreducible, rational locally closed subvariety of dimen-

sion (4;1).

Observe that if Py, r1), ..., (Ps_1, r4—1) are pairwise distinct-flexes ofC then
the dth residual intersectio®; of C is ad-flex point; that is, there is ary € P?
such that(P,, ry) is ad-flex (see Section 1). It follows tha«tf)3 = 5}4”’1).

In Section 4 we prove our final theorem.

Theorem C. If d # 5, then the locug/j,*Y € M1, is an irreducible, rational
locally closed subvariety of dimensi¢fy,*) — 2.

From Theorems B and C it follows, in particular, that all the componeni ef
are rational.

To locate our results in a more general setting, let us consider another view-
point. LetM, ., be the moduli space of-pointed smooth curves of gengs> 3,
and fixn®, ..., n@® e N8,

Eisenbud and Harris [EH] define the lodlisy . @ S 91, , of isomorphism
classes(, Py, ..., P,] of a-pointed curvesC, Ps, ..., P,) such that the Weier-
strass gap sequence Bfis n(P;) = n'/), and they then pose the problem of its
description.

Wheng = (%) > 3 and the first two nongaps at eahared — 1 andd, it
is known (see Lemma 1.5) thaf[ Py, ..., P,] € C,0, ., if and only if C can
be embedded i?? and the images of the poinfy ared-flex points. In partic-
ular, one checks that(P;) is the complement(d) of the semigroup generated
by d — 1 andd and thatV, , is the projection via the natural forgetful mapping
p: mg’a — mg of Cl1(d)¢...,n(d)'

We state our results in termsdfflexes rather than in terms of Weierstrass points
and gaps, because the former way is closer to our methods of proof.

NotatioN. C[x, y, z] is the ring of polynomials and’[x, y, z]4 iS its vector
subspace of degre¢forms. We uselt, to denote the coarse moduli space of
smooth, projective curves of gengislefined over the complex fie[d and use (]
to denote the point iflt, representing the isomorphism class of the smooth curve
C ofgenusg. If g4, ..., g, are elements of a certain grogp then(gy, ..., g,) de-
notes the subgroup @ generated by, ..., g,. We denote by= isomorphisms
and by~ birational equivalences.

For all other definitions, results, and notation, we refer to [Ha].
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1. Preliminary Results

For all results about/-flexes, we refer to [Ve]. Since this work has not (to our
knowledge) been published in any journal, for the reader’s benefit we summarize
here the definitions and some of the statements that we shall need in the sequel.
Let C < PP? be a curve (i.e., a divisor iR?) of degreed > 1. A pair (P,r) €
P2 x P2 is ad-flex of C if C - r = dP. We call P ad-flex point andr a d-flex
tangent line.
Notice that, if( Py, r1) and(P,, r,) ared-flexes on a smooth curn, thenP; ¢
rpand P, ¢ r1. We set

T:={(P,r)eP?xP?|Per},
B, = {(hy,....,hy) €T" | P; ¢r; if i # jandP;, P;, P, are collinear
if r;, rj, r, @re concurrerit

If hy, ..., h, € T" are distinctd-flexes on a curv& of degreed with Py, ..., P,
smooth, ther{hy, ..., h,) € B, [Ve, Lemma 11.2.8].

We define a morphism: B — C* as follows. Ifh; := (P;, {€;(x,y,2) =
0}), i =1 2, 3, for a suitable linear form, then we set
_ La(P3)la(P2)E3(Py)

£3(P2)E2(P1)e1(P3)

(see [Ve, formula 2.9))A(hq, ho, h3) is a projective invariant known as the
invariant of (hq, ho, h3). Let

A(hy, ho, h3) =

Bng ={(hy, ..., h,) € By | A(h;, by, hy)? = 1 for all distincti, J.k}.

ProrosiTiON 1.1. Let(hy,..., h,) € B, be given. There exists a curve of degree
d for whichhy, ..., h, ared-flexes if and only if(hy, ..., h,) € B, 4.

Proof. See [Ve, 11.2.12]. O

CoroLLARY 1.2. LetC be a curve of degreé and letPy, ..., P, € C bed dis-
tinct collinear points. IfPy, ..., P,_1 are d-flex points, thenP, is also ad-flex
point.

Proof. See [Ve, 11.2.17]. O

Foreach, j,ke{l ..., a}, letL; j ; := A(P;, P;, Px) (we're not concerned about
the order ofi, j, k). Then the point := (L; j )i, j.x € (C*)*@~D@=2 is 3 point
whose coordinates satisfy the set of equations
sgno)
Lijk = Loty a(row: O € Ga (1L3)
LijxLini=0LjxiLyij i, j.kle{l.. . o}

(see [Ve, 11.3.2 and 11.3.3]). In particular, tHg§)-tuple A defined in Section 0
must satisfy a set of equations arising from (1.3).
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Let (hy, ..., h,) € B, 4. We identifyP(C[x, y, z]4) with the projective space
P(“4)-L Under this identification, we denote By, ..., h,)4 the subset con-
sisting of forms representing integral curves of degtesarryinghy, ..., h, as
d-flexes.

Notice thatP(hq, ..., h,), IS a projective space. In order to compute its dimen-
sion, leth; ;= (P;, {{;(x,y,z) =0 fori =1, ...,n. LetC = {f(x,y,2) =
0} € P(hy,....,hp)a, D = {g(x,y,2) = O} € P(hy,...,hy)q, and E =
{e(x,y,2) == [1i_; i(x, y,2z) = 0}. Notice thatC - E = )" _; dP;. We claim
thatgOpz p, € (f,e)Op2 p,, i =1, ..., 1.

Indeed, in affine coordinates y we can assume tha = (0, 0) and¢; = x,
so thatf(x, y,1) = xfi(x,y) + y¢ andg(x, y,1) = xgi(x,y) + g2y?. Since
¢;(P1) # 0wheni = 2,...,n, one has f, €)Opz p, = (y¢, x)Op2 p..

It follows from the Max Noether theorem thgie (£, e); that is,

g:af+be=af+bl_[£i, (1.4)
i=1

wherea € C andb € C[x, y, z]4—». In particular,P(hq, ..., h,), is obtained by
joining the point represented by with the spac& (eC[x, y, z]4—.). Hence,

d+2—n)

dlm(P(l’ll, L hy)g) = ( 2

(see Lemma 11.2.15 of [Ve] and its proof).
We conclude this section with the following result, which was stated in Sec-
tion O.

Lemma 1.5, Fixd > 4andg := (4;*). LetC be a smooth curve of gengsand
let P € C. Then the first nongaps df ared — 1 andd if and only if C can be
embedded ifP? in such a way thaP becomes a-flex point.

Proof. LetC be a plane smooth curve witllaflex pointP. In the proof of Lemma
1.1 of [CK] it is shown that:(P) = n(d), wheren(d) is the complement if¥¢ of
the semigroup generated by— 1 andd. For instancen(4) = (1, 2,5), n(5) =
(1,2,3,6,7,11), andn(6) = (1,2, 3,4, 7, 8,9, 13,14, 19).

Conversely, letD := |dP| andE := |(d — 1) P|. Then itis easy to check that
dim(E) = 1 and dim{(D) = 2, henceD has no fixed points. The linear system
D induces a finite map: C — C’ € P? of degreen onto a curve of degree
8 :=d/n > 2. On the other hand, the linear systéhinduces a second finite map
¥: C — P! ofdegreed — 1. Letn > 2; thenn andd — 1 are coprime and thus
Y cannot be composed with Now we apply Castelnuovo’s inequality (see [Ac,
Thm. 3.5]) and obtain

(d;l)§n<8;1)+(d—2)(n—l).

Taking into account thaié = d, simple computations yieldd — 2d + 2 < 0,
which is absurd because> 2. It follows thatn = 1 and thatC is a nonsingular
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model ofC’ and hence the geometric genustofs ¢ = (“;). We conclude that
C’ is nonsingular; thug is an embedding. MoreovedP is cut out onC by the
lines inP2. O

2. a=1,2d-Flexes

2l a=1

Let C be a planeirreducible curve of degetearrying onel-flex, thatis, a nonsin-
gular pointP; whose tangent ling; intersect<C only at the pointP;. We briefly
write hq := (P4, r1) in order to denote suchflex.

Up to a proper choice of the coordinatesiA, we can assume thal; =
[1, 0, 0] andr; = {z = 0}. Then the equation for the curé@must be of the form

f(x,y,2) =ay’ + z9(x, y, 2), (2.1.1)

wherea € C* andy € C[x, y, z]q4-1. LetV = { f € C[x, y,7]s as in (2.1.1}.
This is a vector space, and we now study the subgi@ugd GL3 sendingV to
itself.

LemMma 2.1.2. If d > 4then the generaf € V represents a smooth curve with
exactly onel-flex.

Proof. Computing dimensions yieldd(V) = P(h1),. We must check that
P(he)a\ | Plha, ha)a # 9.

hoeT

Indeed, the schent_ejhzd P(h1, hy)s has a mag ontoT thatis clearly surjective
(sinceB; = By 4); hence, ifd > 4 we have

d+1 . i I
( '2" ) =dimP(h1)q) > d'm( U P(ha, hZ)d> =3+ <2>

hoeT

Thus the subséty C V representing curves with exactly odeflex is open and
nonempty.

Finally, notice thatf(x, y,z) = y¢ + xz(x — 2)(x4~2 4+ z¢73) represents a
smooth curve having thé-flex 1; thus the subset; C V representing smooth
curves is open and nonempty. Therefore, efch V' := Vo N V; # @ satisfies
the required conditions. O

ReMaRk 2.1.3. The conditio@ > 4 is sharp. Indeed, each conic contains infin-
itely many 2-flexes, whereas it is well known that each (possibly singular) cubic
with two 3-flexes necessarily contains another flex.

If ¢ € G, theng must fix bothP; andr;. Thus

o0 Op1 Q2
G = 0 011 o122
0 0 22
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ProposiTION 2.1.4. Letg := (4;'),d > 4. Thelocus/,; 1 € M, (whose general
points represent plane curves of degre®iith exactly onei-flex) is irreducible
and rational of dimensioif“;*) — 5.

Proof. We have a natural rational map: V --» 9, sendingf to the class of
the curveC := {f(x, y, z) = 0} and defined on the open sub3&t(see the pre-
ceding proof of Lemma 2.1.2). In particuldf; dominates/, 1, which then turns
out to be irreducible. Clearlgf < w—[C)).

Conversely, letC’ := {f'(x,y,z) = 0} € im(¥) and assume the existence
of ¢: C = C’. SinceC andC’ are smooth, each of them carries exactly one
very ampleg? (see [ACGH])—say, |D| and|D’| (respectively). It follows that
¢*|D’| = |D|; hence we have® € GL3 sendingf to f’ and thusd € G, that s,
f'€ Gf. ThenV,; 1 := im(¥) =~ V/G turns out to be rational, sineg is triangular
(see [Mi]; see also [Vi; Do; PV]).

Let f(x,v,2) = y? 4+ xz(x — 2)(x?=3 + z9738). It represents a smooth curve
C and so AutC) is finite. Letg be in the stabilizeG, of f in G. If its restriction
to C is the identity, therg fixes four points orC in general position and thuyg
is scalar. It follows that the restriction map — Aut(C) is injective, hences,
must be finite. The statement then follows by a parameters computation.[

Since the general point df, ; represents a smooth plane curve of degtegth
exactly oned-flex and no other, then the restriction@gy, of the natural forget-
fulmap p: M, 1 — M, induces a birational equivalenCg,y ~ V, 1. We thus
conclude as follows.

CorOLLARY 2.1.5. Letg 1= (%), d = 4. The locuZ,4) € M, 1 is rational of
dimension(“}*) — 5.

22.0=2

LetC be aplane irreducible curve of degegearrying twod-flexes iy := (P1, r1)
andhy, ;= (P2, r2).

Up to a proper choice of the coordinatesiA, we can assume that; =
[1,0,0], P2:=10,0,1], r1 = {z = 0}, andr, := {x = 0}. Then the equation for
the curveC must be of the form

fx,y,2) =ay’ +xz9(x, y, 2), (2.2.1)

wherea € C* andy € C[x, vy, z]4_2. LetV :={ f e C[x, y,z]s asin (2.2.1}.
We have to deal with its stabilizé&? < GLa.

LEMMA 2.2.2. If d > 4, then the generaf € V represents a smooth curve with
exactly twad-flexes.

Proof. Again one ha® (V) = P(hy, h2),. We check that
P(hy h2)a\ | P(h h2, ha)a # 0,

h3eTop
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WheI'ETo = {h3 eT | (hq, hy, h3) € Bg’d } Indeed, |fh3 = ([XO, yo,Zo],
{ax +by +cz = 0}), thenxga? — (—=1)?z8c? = 0. Thus dim(T,) < 2 and hence,
if d > 4, we have

d . . d—1
(2> = dim(P(hy, h2)a) > d|m< U P hz,hg)d> =2+ ( ) )

h3eTy
Thus the subséfy C V representing curves with exactly twleflexes is open and
nonempty.
Finally, observe thaf (x, y, z) = y? + xz(x — 2)(x?~3 + z¢73) represents a
smooth curve having thé-flexesh; andh,. Thus we conclude as in the proof of
Lemma 2.1.2. O

REMARK 2.2.3. Again, the conditiod > 4 is sharp.
If ¢ € G, theng must fix the se{P,, P>} as well as the sdtry, ro}. ThusG =

Go x (i), where

Gg =

O OR

0 0 0 01
B 0 and i=|0 1 O
0 y 1 00

ProOPOSITION 2.2.4. Letg := (1), d = 4. The locusV, » < M, (whose gen-
eral points represent plane curves of degrewith exactly twad-flexe$ is irre-
ducible and rational of dimensioff) — 2.

Proof. As in the proof of Proposition 2.1.4/), , is irreducible and//G ~ V; ».
Let

Vii={feV]fx,y,2) =xz(ax? 2+ bx? 3y + ez 3y + dz77?) ).

Itis easy to check thal = V'@ V” as a representation of the groGp We will
prove the rationality o#//G by proving thatV’ is an almost free representation of
G; because the quotiefit’/G has dimension 1 and is unirational, the rationality
of V/G will follow from the method of reducible representation (see [Do, Cor. 1]
or [PV, Thm. 2.13]).

Let
a 0 O

g=10 B O
0 0 vy
stabilize f(x, y, z) := xz(ax? 2 4+ bx9 "3y 4+ cz9 73y + dz??). Then
al™ly =1,
al=28y =1,
aydfl — 1’
afyi?=1
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and hencer/8 = y/B = 1, that is, g is a scalar matrix. By substitution we also
get thatB? = 1. Thus the intersection af; (the stabilizer off) with the com-
ponentGy acts trivially onV (it is also contained in the center 6fand thus is a
normal subgroup).

Now letg € Gy N Goi. Then

aa®ly = d,
ba? 2By =,
day~t=a,
cafy?? =b;
hence Y ,
o bd a\ d
iy ™ (5) -

We then conclude that

d? bd \2@=2
a=i)

which is a nontrivial relation among the coefficients fThus, for f general
enough, we havé, = G, N Go.
For the statement on the dimension we repeat the argument of Lemma 2.1.2.
O
We conclude this section with the following.

Proof of Theorem APropositions 2.1.4 and 2.2.4 yield Theorem A. O

3. a =3 d-Flexes

31. A=1landd >5

Let C be a plane irreducible curve of degréearrying three collinead-flexes:
hy:= (P1,1r1), hp := (P2, 1r2), andh3 = (P3, r3).

Since thesel-flexes lie on a curve of degra& their A-invariant must sat-
isfy A(ha, ho, h3)? = 1 (see Proposition.1). Thus we have the particular case
A(hy, ho, h3) = 1, which (by the same proposition) means ttRat P,, P; are
collinear.

Hence, up to a proper choice of the coordinaté®?nwe can assume th& :=
[1,0,0], P, :=[0,0,1], and P3 := [1,0,1] as well asr; = {z = 0}, rp =
{x =0}, andrz := {ax + by + cz = 0}. We have

1= A(h1, ho, h3) = —c/a

anda + ¢ = 0, sorz = {a(x — z) + by = 0} wherea # 0. Sinceb = 0 if and
only if the linesry, ro, rz are concurrent, we will assume from now on that 0.
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The projectivity associated to the matrix

1 0 O
0 a/b 0
0o 0 1

allows us to assume thaeg = {x + y — z = 0}. Thus, the equation faf must be
of the form

flx,y,2) =ay? +xz(x +y — 2)¥(x, y, 2), (3.1.1)

wherea € C* andy € C[x, y, z]4—3. Let V® :={ f e C[x, v, z]4 asin (3.1.1}.
It is a vector space, and we study its stabiligec GL3.

LemMa 3.1.2. Ifd > 5, then the generaf € V@ represents a smooth curve with
exactly three collinear/-flexes.

Proof. As in the proof of Lemma 2.2.2, we define
To:={haeT | (hy hz h3, ha) € By}
We have dini7y) < 2 and hence, ifl > 5,

d—-1 . .
( 2 > = dlm(P(l’ll, ho, h3)g) > d|m< U P(hq, ho, ha, h4)d)

haeTp
d—2
=2
+< 2 )’

WhenCdP’(hl, ho, h3)g \ Uh4€To P(hq, ho, h3, ha)g =~ A.

Consider the pencil of curveSy, g = {a(y? + xz(x — 2) (x93 + z973)) +
Bxyz(x?=3 + z973) = 0}. Since the curveCy o} is smooth, it follows that, for
general [18] € PL the same is true fof|,, 4. Because each such curve is projec-
tively isomorphic inP? to a curve whose equation lies ¥f", the statement can
be proved using the same argument of Lemmas 2.1.2 and 2.2.2. O

REMARK 3.1.3. Corollary 1.2 implieg > 5, so Lemma 3.1.2 is sharp.

If ¢ € G, theng must fix the linerg := {y = 0} and the setry, ro, r3}. In partic-

ular, the restriction of its action te, coincides with the action of3 on the set
{P1, P2, P3}. With some easy computation one checks that Gy x &3, where

Go C GLjis the torus of scalar matrices and

0 0 -1 0 0 1
G3=({0 1 0}, O 1 O
11 -1 -1 0 O

LemMa 3.1.4. Let &3 act linearly on the vector spacé®. ThenV®/&3 is
rational.

Proof. Leto: &3 — GL(V®) be any representation. dfis not faithful, then it
is a linear representation @f, < G3.
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It is known (see [Fi]) that each linear representationk — GL(U) of a fi-
nite abelian grougk has rational quotient//K. Thus V¥/G&3 is rational if o is
not faithful.

If o is faithful thenV® = V' @ V”, whereV' is the irreducible representation
of degree 2. Sinc¥’/G3 is unirational of dimension 2, a theorem of Castelnuovo
yields its rationality, whence we get the rationality of"/ &3 by the method of
reducible representation (see [Do, Cor. 1] or [PV, Thm. 2.13]). O

ProposiTioN 3.1.5. Letg := (4;'), d > 5. The Iocusv(l) C M, (whose points
represent plane curves of degrée/\nth exactly three coIImead -flexe$ is irre-
ducible, and it is rational of dlmenS|o@42 )

Proof. As in the proof of Proposition 2.1.4)} is irreducible and/ @/G ~ V.
We haveC(V®)¢ = (C(P(V®)))®s = C(U)®3, where
U = {classes off asin (3.1.1with a # 0}.
Via the isomorphism
VU — Clx, y, 2]a-3,

class of ¢ + xz(x +y — ) (x, y, 2)] = ¥(x, . 2),

2

we obtain a linear action o3 onto C[x, y, z]4_3 and V&/G ~ U/S3
Clx, y, z]4-3/S3, whose rationality follows from Lemma 3.1.4.

For the dimension, we repeat the argument of Lemma 2.1.2 fiith y, z) :
vy 4 xz(x + 2y — 2)(x973 4 z973).

O

32.12=-1

We now consider the other easy case, when the thiftexesh; := (P, r1), ho =
(P2, 7r2), andhg ;= (P3, r3) are such thak(hy, hy, hz) = —1 (henced must be
even). By Propositiof.1, itfollows that they must lie on an integral coric

Up to a proper choice of the coordinatesiA, we can assume that; =
[1,0,0], P, := [0,0,1], and P3 := [1,1,1] and thatr; = {z = 0}, r2
{x =0}, andrz := {ax + by + cz = 0}. We have

—1= )»(hl, hz, hg) = —C/Cl

anda +b+c¢ = 0, thusrz = {x —2y+z = 0}. The unique conic havinky, ks, h3
as 2-flexes i := {y? — xz = 0}. Hence, the equation fa must be of the form

fx,y,2) = a(y? —x2)Y2 + xz(x — 2y + D)Y(x, ¥, 2) (3.2.)

(see (1.4)), where e C* andyr € C[x, v, z]4_3. Let VD := { f e C[x, y, z]4
asin (3.2.1}. This is a vector space, and we can consider its stabifizer GL 3.

Lemma 3.2.2. If d > 4is even, then the generdle VY represents a smooth
curve with exactly threg-flexes on a conic.

Proof. If d > 6 thenwe use the argument of Lemmas 2.1.2,2.2.2,and 3.1.2. Inany
case, we have a natural rational méip V=2 --» 90t, and imw) = V7" (see
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the proof of Proposition 2.1.4). if = 4, Vermeulen showed that difw' ") =
3, whereas the sublocus of points representing curves with at least four 4-flexes
has dimension 2 (see [Ve, Props. 11.10.11, 11.12.5, 11.12.9). Then, for each even
d > 4, the generalf € V=Y represents a curve with exactly thiédlexes.
Now consider the pencil of curves

Clo.p) i= (2 = x2)Y? + xz(x + 2) (x93 = 2973))
+ Z,Bxyz(xd’?’ — 7978 = 0},

and imitate the argument of Lemma 3.1.2. O

If ¢ € G theng must fixD. SinceD is an irreducible conic, it is isomorphic B};
thusG = Gg x &3, whereGy is the torus of scalar matrices in GLExplicitly,
since the seth, hy, h3} must remain fixed, we have

0 0 1 1 0 O
G3=(|{0 1 0)],|1 -1 O
1 00 1 -2 1
ProposITION 3.2.3. Letg := (%;1), d > 4even. The locut); ;" < 9, (whose
points represent plane curves of degrewith exactly threel-flexes on a smooth
conid) is irreducible and rational of dimensioff ;).

Proof. The argument is the same as that for the proof of Proposition 3.1.5]

33. A=

Finally, consider the case when the thtk8exeshy ;.= (P, r1), ho := (P2, r2),
andhs = (Ps, r3) satisfyA(hy, ho, h3) = £i (henced is divisible by 4). If this is
the case then they must lie on a quafiidut not on a conic (see Proposititbii).

Notice thati (hy, ho, ha) = A(hy, ha, ho) 7L, S0 the two cases give rise to the
same curves. Ik(hy, hy, h3) = i then, up to projective isomorphisms, we can
takeP; :=1[1,0,0], P, :=1[0,0,1], andP3 := [1,1,1] as well as-; := {z = 0},
rp:={x =0}, andrz ;= {1+ i)x —2y + (1—i)z =0}.

The curveD = {y* —xz(2y — x)(2y — z) = O} € P(hy, ho, h3)4 and hence the
equation forC € P(hy, ha, h3), must be of the form

f(x,y,2) = a(y* —xz(2y — x)(2y — 2))"*
+xz(Q+i)x — 2y + 1 - DY (x, y,2) (3.3

(see (1.4)), where € C* andyr € C[x, y, z]q_3. Let VE) .= { f e C[x, y, z]4
asin (3.3.1} and letG C GLj be its stabilizer.

Lemma 3.3.2. If 4 > 4is divisible by4, then the generaf € V& represents a
smooth curve with exactly threkflexes on a quarti¢but not on any conic

Proof. If d > 6 then we use the argument of Lemmas 2.1.2, 2.2.2, and 3.1.2. We
have a natural rational majp: V@& --» 9t, and im¥) = V5. Again, if d =
4 then dimv;};”) = 3, whereas the sublocus of points representing curves with
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at least four 4-flexes has dimension 2 (see [Ve, Props. 11.10.16, 11.11.4, 11.12.9,
11.13.4).
Consider the pencil of curveSyy g = {e((y* — xz(2y — x)(2y — 2))¥* +
xz(x — 2) (x93 4 z2973)) + 2Bx(ix — 2y + iz) (x93 + z973) = 0} and imitate
the argument of Lemma 3.1.2. O

Everyg € G must fix the sethy, hy, h3}. HenceG C Gg x &3, whereGg C GL3
is the torus of scalar matrices. Explicitly,

0 01 1+ 0 0
G3=(|0 1 O}, 1+i —-1-i 0 .
1 00 1+i -2 1-i

ProposiTioN 3.3.3. Letg := (') withd > 4 divisible by4. The Iocuw(i’) -
M, (whose points represent plane curves of degtedth exactly threel flexes
on a quartic, but not on any conigs irreducible and rational of dlmen5|o(7’2 )

Proof. Again, the argument is the same as that for the proof of Proposition 3.1.5.

O
Proof of Theorem BTheorem B now follows from Propositions 3.1.5, 3.2.3, and
3.3.3. O

4. Four Collinear d-Flexes

Let C be a plane irreducible curve of degréecarrying four collinear 4-flexes:
h]_ = (P]_, rl), hz = (Pg,rz), /’l3 = (P3, r3), andh4 = (P4, l"4). Since these
d-flexes lie on a line := {¢ = 0}, the equation folC must be of the form

f(x,y,2) =L+ o(x, y, D¥(x, ¥, 2), (4.1)

whereg, ¥ € C[x, y, z] are forms of respective degrees 4 ahd 4 and where
can be factorized in linear forms.

Consider the Segre map HO%(P?, Op2(1))®* @ HOP?, Op2(d — 4)) —
HO(P?, Op2(d)) and letX :=im(s). Since the projectivization of corresponds
to the Segre embeddirf x P2 x P2 x P2 x P(2)-1 — P(Z)-L it follows
that dim(X) = (“3?) + 8. We must therefore consider

V:={feC[x,y, z]sasin (4.1} = HOP?, Op2(D) x X,
and the action of Gh.on V is induced by the natural action of Glon
HO(P?, Op2(1)) x HYP?, Op2(4)).
The subvariety? C V defined by

Wi={feV]|fx,y,2) =" +xyz(x +y+2)¥(x,y,2)}
HO%P2, 0p2(1)) x HYP?, Op2(d — 4))

is GLs-dense inV. We now consider the subgrodpof GL3 sendingW to itself.
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LEmMa 4.2, If d = 4andd # 5, then the generaf € V represents a smooth
curve with exactly threg-flexes.

Proof. If d > 6 then we use the argument of Lemmas 2.1.2, 2.2.2, or 3.1.2. The
caseal = 4follows from Propositions 11.10.4 and 11.11.4 of [ Ve] (imitate the proofs
of Propositions 3.2.2 and 3.3.2). O

REMARK 4.3. Lemma 4.2 is sharp, again by Corollary 1.2.

If d > 4 andd # 5, then we have two actions on the variablesy, z in
HO(P2, Op2(1)) that leaveCxyz(x + y + z) fixed. The first one is the canon-
ical action of the symmetric grou, € GL3 generated by the transposition
matrices

0 10 0 0 1 1 00
1 0 0),1{0 1 0},{0 O 1],
0 01 1 00 010
-1 -1 -1 1 0 O 1 0 O
o 1 oOo},{-12 -1 -1}),{0 1 O
0 0 1 0 0 1 -1 -1 -1

The second one is the action of the torus of scalar matigeS GL3. Since the
elements of7¢ andS, commute each other, it follows that we have a natural ac-
tion of H := Gg x G4 onW.

ProrosiTioN 4.4. If d > 4andd # 5, thenW/H ~ V/G.

Proof. It suffices to prove thaW is a (G, H)-section ofV. To this purpose let
W’ € W be the open subset consisting of forms with irreducibld_et ¢ € GL3
satisfyg(W’) € W. Theng fixesxyz(x +y+z) and sog = po, whereo € 64 C
GL3 andpu is a scalar matrix. O

Proof of Theorem CWe studyW/H. Notice thatC(W)* = (C(W)%*)%; since
&, is finite, C(W)®4 is the field of fractions of the algebf W] 4. On the other
hand,&, is generated by pseudoreflections an@$#]* = Cla, b, ] for three
suitable homogeneou,-invariantsa, b, c € C[W] (see [Sp, Thm. 4.2.5]). This
implies thatC(W)# = C(a, b, ¢)®°, where the action 06 is diagonal; thus,
we haveC(a, b, c)°° = C(A, B, C) for three suitables-invariantsA, B, C €
C(a, b, c). O
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