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On Certain Loci of Smooth Degree
d ≥ 4 Plane Curves withd-Flexes

G. Casnati & A. Del Centina

0. Introduction and Notation

Vermeulen [Ve] studied the subvarietiesVα ⊆M3 (whereMg is the moduli space
of smooth, genus-g curves over the complex fieldC) corresponding to plane,
smooth quarticsC havingα hyperflexes—that is, pairsh := (P, r) ∈ P2 × P̌2

(with P n the projectiven-space overC) such thatC · r = 4P.
Vermeulen proved that ifα = 1,2 thenVα is an irreducible subvariety of di-

mension 6− α, and thatV3 is the union of three irreducible components each of
whose dimension is 3. He also studiedVα for α ≥ 4. Since it follows from the re-
sults listed in [Ve] that each component ofVα is unirational, we obtain that all such
components are actually rational whenα ≥ 4 (via Castelnuovo’s and Lüroth’s the-
orems, since their dimension is at most 2).

The aim of this paper is to generalize these kind of results by considering smooth,
plane curves of degreed havingd-flexes, that is, pairsh := (P, r)∈P2× P̌2 such
thatC · r = dP.

Let d ≥ 4 andg := (
d−1

2

)
, and denote byVd,α ⊆ Mg the locus of points

representing isomorphism classes of smooth, plane curves havingα d-flexes. In
Section 2 we prove the following theorem.

Theorem A. The lociVd,α (α = 1,2) are irreducible, rational locally closed
subvarieties of dimension

(
d+2−α

2

)− 8+ 3α.

The locusV4,1 has been considered also by Faber [Fa], who proved that the Chow
ringA(M3) can be generated by it together with the hyperelliptic locusH3. Since
H3 is known to be rational (see [BK] and [Ka]; see also [Do] and [PV]), it fol-
lows thatA(M3) can be generated by rational subvarieties (see [CD] for a similar
result aboutA(M4)).

Whenα ≥ 3, the locusVd,α is no longer irreducible. Let{hi}i=1, ...,α be the
set ofd-flexes ofC. For any triple in this set, one can define a projective invari-
ant3i,j,k := λ(hi, hj, hk) that always satisfies3di,j,k = 1 (see Section 1). In
order to detect the irreducible components ofVd,α, one introduces the

(
α
3

)
-tuple
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3 := (3i,j,k)i<j<k and the related sublociV3d,α ⊆ Vd,α. This is what Vermeulen
[Ve] did when dealing with the cased = 4.

As d increases, the lociV3d,α become too numerous for all to be taken care of
(thoughV3d,α = V3′d,α for some3 6= 3′, as shown in [Ve] whenα = 3, 3 = (i),
and3′ = (−i)). Thus we examine here only the cases3 = (1), (−1), (±i) for
α = 3 and3 = (1,1,1,1) for α = 4.

In Section 3 we prove the following.

Theorem B. If 3 = (1) and d ≥ 5 or if 3 = (−1) or 3 = (±i), then the
locusV3d,3 ⊆ Mg is an irreducible, rational locally closed subvariety of dimen-
sion

(
d−1

2

)
.

Observe that if(P1, r1), . . . , (Pd−1, rd−1) are pairwise distinctd-flexes ofC then
thedth residual intersectionPd of C is ad-flex point; that is, there is anrd ∈ P̌2

such that(Pd, rd) is ad-flex (see Section 1). It follows thatV (1)d,3 = V (1,1,1,1)d,4 .

In Section 4 we prove our final theorem.

Theorem C. If d 6= 5, then the locusV (1,1,1,1)d,4 ⊆Mg is an irreducible, rational
locally closed subvariety of dimension

(
d−1

2

)− 2.

From Theorems B and C it follows, in particular, that all the components ofV4,3

are rational.
To locate our results in a more general setting, let us consider another view-

point. LetMg,α be the moduli space ofα-pointed smooth curves of genusg ≥ 3,
and fixn(1), . . . , n(α) ∈Ng.

Eisenbud and Harris [EH] define the locusCn(1), ...,n(α) ⊆Mg,α of isomorphism
classes [C,P1, . . . , Pα] of α-pointed curves(C, P1, . . . , Pα) such that the Weier-
strass gap sequence ofPj is n(Pj ) = n(j), and they then pose the problem of its
description.

Wheng = (d−1
2

) ≥ 3 and the first two nongaps at eachPi ared − 1 andd, it
is known (see Lemma 1.5) that [C,P1, . . . , Pα] ∈ Cn(1), ...,n(α) if and only if C can
be embedded inP2 and the images of the pointsPi ared-flex points. In partic-
ular, one checks thatn(Pi) is the complementn(d ) of the semigroup generated
by d − 1 andd and thatVd,α is the projection via the natural forgetful mapping
p : Mg,α →Mg of Cn(d ), ...,n(d ).

We state our results in terms ofd-flexes rather than in terms of Weierstrass points
and gaps, because the former way is closer to our methods of proof.

Notation. C[x, y, z] is the ring of polynomials andC[x, y, z]d is its vector
subspace of degree-d forms. We useMg to denote the coarse moduli space of
smooth, projective curves of genusg defined over the complex fieldC and use [C]
to denote the point inMg representing the isomorphism class of the smooth curve
C of genusg. If g1, . . . , gh are elements of a certain groupG, then〈g1, . . . , gh〉 de-
notes the subgroup ofG generated byg1, . . . , gh. We denote by∼= isomorphisms
and by≈ birational equivalences.

For all other definitions, results, and notation, we refer to [Ha].
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1. Preliminary Results

For all results aboutd-flexes, we refer to [Ve]. Since this work has not (to our
knowledge) been published in any journal, for the reader’s benefit we summarize
here the definitions and some of the statements that we shall need in the sequel.

Let C ⊆ P2 be a curve (i.e., a divisor inP2) of degreed ≥ 1. A pair (P, r) ∈
P2 × P̌2 is ad-flex of C if C · r = dP. We callP a d-flex point andr a d-flex
tangent line.

Notice that, if(P1, r1) and(P2, r2) ared-flexes on a smooth curveC, thenP1 /∈
r2 andP2 /∈ r1. We set

T := { (P, r)∈P2 × P̌2 | P ∈ r },
Bn := { (h1, . . . , hn)∈ T n | Pi /∈ rj if i 6= j andPi, Pj, Pk are collinear

if ri, rj, rk are concurrent}.
If h1, . . . , hn ∈ T n are distinctd-flexes on a curveC of degreed with P1, . . . , Pn
smooth, then(h1, . . . , hn)∈Bn [Ve, Lemma II.2.8].

We define a morphismλ : B3 → C∗ as follows. Ifhi := (Pi, {`i(x, y, z) =
0}), i = 1,2,3, for a suitable linear form, then we set

λ(h1, h2, h3) := −`2(P3)`1(P2)`3(P1)

`3(P2)`2(P1)`1(P3)

(see [Ve, formula 2.9]);λ(h1, h2, h3) is a projective invariant known as theλ-
invariant of (h1, h2, h3). Let

Bn,d := { (h1, . . . , hn)∈Bn | λ(hi, hj, hk)d = 1 for all distinct i, j, k }.
Proposition 1.1. Let (h1, . . . , hn)∈Bn be given. There exists a curve of degree
d for whichh1, . . . , hn ared-flexes if and only if(h1, . . . , hn)∈Bn,d .
Proof. See [Ve, II.2.12].

Corollary 1.2. LetC be a curve of degreed and letP1, . . . , Pd ∈ C bed dis-
tinct collinear points. IfP1, . . . , Pd−1 are d-flex points, thenPd is also ad-flex
point.

Proof. See [Ve, II.2.17].

For eachi, j, k ∈ {1, . . . , α}, letLi,j,k := λ(Pi, Pj, Pk) (we’re not concerned about
the order ofi, j, k). Then the pointL := (Li,j,k)i,j,k ∈ (C∗)α(α−1)(α−2) is a point
whose coordinates satisfy the set of equations

Li,j,k = Lsgn(σ)
σ(i),σ(j),σ(k), σ ∈Sα,

Li,j,kLk,l,i = Lj,k,lLl,i,j, i, j, k, l ∈ {1, . . . , α} (1.3)

(see [Ve, II.3.2 and II.3.3]). In particular, the
(
α
2

)
-tuple3 defined in Section 0

must satisfy a set of equations arising from (1.3).
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Let (h1, . . . , hn) ∈ Bn,d . We identifyP(C[x, y, z]d) with the projective space

P(
d+2

2 )−1. Under this identification, we denote byP(h1, . . . , hn)d the subset con-
sisting of forms representing integral curves of degreed carryingh1, . . . , hn as
d-flexes.

Notice thatP(h1, . . . , hn)d is a projective space. In order to compute its dimen-
sion, lethi := (Pi, {`i(x, y, z) = 0}) for i = 1, . . . , n. Let C := {f(x, y, z) =
0} ∈ P(h1, . . . , hn)d, D := {g(x, y, z) = 0} ∈ P(h1, . . . , hn)d, and E :=
{e(x, y, z) := ∏n

i=1`i(x, y, z) = 0}. Notice thatC · E = ∑n
i=1 dPi. We claim

thatgOP2,Pi ⊆ (f, e)OP2,Pi , i = 1, . . . , n.
Indeed, in affine coordinatesx, y we can assume thatP1 = (0,0) and`1 = x,

so thatf(x, y,1) = xf1(x, y) + y d andg(x, y,1) = xg1(x, y) + g2y
d. Since

`i(P1) 6= 0 wheni = 2, . . . , n, one has(f, e)OP2,Pi = (y d, x)OP2,Pi .

It follows from the Max Noether theorem thatg ∈ (f, e); that is,

g = af + be = af + b
n∏
i=1

`i, (1.4)

wherea ∈ C andb ∈ C[x, y, z]d−n. In particular,P(h1, . . . , hn)d is obtained by
joining the point represented byf with the spaceP(eC[x, y, z]d−n). Hence,

dim(P(h1, . . . , hn)d) =
(
d + 2− n

2

)
(see Lemma II.2.15 of [Ve] and its proof ).

We conclude this section with the following result, which was stated in Sec-
tion 0.

Lemma 1.5. Fix d ≥ 4 andg := (d−1
2

)
. LetC be a smooth curve of genusg and

let P ∈ C. Then the first nongaps ofP are d − 1 andd if and only ifC can be
embedded inP2 in such a way thatP becomes ad-flex point.

Proof. LetC be a plane smooth curve with ad-flex pointP. In the proof of Lemma
1.1 of [CK] it is shown thatn(P ) = n(d ), wheren(d ) is the complement inNg of
the semigroup generated byd − 1 andd. For instance,n(4) = (1,2,5), n(5) =
(1,2,3,6,7,11), andn(6) = (1,2,3,4,7,8,9,13,14,19).

Conversely, letD := |dP | andE := |(d − 1)P |. Then it is easy to check that
dim(E) = 1 and dim(D) = 2, henceD has no fixed points. The linear system
D induces a finite mapϕ : C → C ′ ⊆ P2 of degreen onto a curve of degree
δ := d/n ≥ 2. On the other hand, the linear systemE induces a second finite map
ψ : C → P1 of degreed − 1. Let n ≥ 2; thenn andd − 1 are coprime and thus
ψ cannot be composed withϕ. Now we apply Castelnuovo’s inequality (see [Ac,
Thm. 3.5]) and obtain(

d −1

2

)
≤ n

(
δ −1

2

)
+ (d − 2)(n−1).

Taking into account thatnδ = d, simple computations yieldnd − 2d + 2 ≤ 0,
which is absurd becauseδ ≥ 2. It follows thatn = 1 and thatC is a nonsingular
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model ofC ′ and hence the geometric genus ofC is g = (d−1
2

)
. We conclude that

C ′ is nonsingular; thusϕ is an embedding. Moreover,dP is cut out onC by the
lines inP2.

2. α=1,2 d-Flexes

2.1. α = 1

LetC be a plane irreducible curve of degreed carrying oned-flex, that is, a nonsin-
gular pointP1 whose tangent liner1 intersectsC only at the pointP1. We briefly
write h1 := (P1, r1) in order to denote such ad-flex.

Up to a proper choice of the coordinates inP2, we can assume thatP1 :=
[1,0,0] andr1= {z = 0}. Then the equation for the curveC must be of the form

f(x, y, z) = ay d + zψ(x, y, z), (2.1.1)

wherea ∈ C∗ andψ ∈ C[x, y, z]d−1. Let V := { f ∈ C[x, y, z]d as in (2.1.1) }.
This is a vector space, and we now study the subgroupG of GL3 sendingV to
itself.

Lemma 2.1.2. If d ≥ 4 then the generalf ∈ V represents a smooth curve with
exactly oned-flex.

Proof. Computing dimensions yieldsP(V ) = P(h1)d . We must check that

P(h1)d
∖ ⋃
h2∈T

P(h1, h2)d 6= ∅.

Indeed, the scheme
⋃
h2∈T P(h1, h2)d has a mapϕ ontoT that is clearly surjective

(sinceB2 = B2,d); hence, ifd ≥ 4 we have(
d +1

2

)
= dim(P(h1)d) > dim

( ⋃
h2∈T

P(h1, h2)d

)
= 3+

(
d

2

)
.

Thus the subsetV0 ⊆ V representing curves with exactly oned-flex is open and
nonempty.

Finally, notice thatf(x, y, z) = y d + xz(x − z)(xd−3 + zd−3) represents a
smooth curve having thed-flex h1; thus the subsetV1 ⊆ V representing smooth
curves is open and nonempty. Therefore, eachf ∈ V ′ := V0 ∩ V1 6= ∅ satisfies
the required conditions.

Remark 2.1.3. The conditiond ≥ 4 is sharp. Indeed, each conic contains infin-
itely many 2-flexes, whereas it is well known that each (possibly singular) cubic
with two 3-flexes necessarily contains another flex.

If g ∈G, theng must fix bothP1 andr1. Thus

G :=

α0,0 α0,1 α0,2

0 α1,1 α1,2

0 0 α2,2

.
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Proposition 2.1.4. Letg := (d−1
2

)
, d ≥ 4. The locusVd,1 ⊆Mg (whose general

points represent plane curves of degreed with exactly oned-flex) is irreducible
and rational of dimension

(
d+1

2

)− 5.

Proof. We have a natural rational map9 : V 99K Mg sendingf to the class of
the curveC := {f(x, y, z) = 0} and defined on the open subsetV ′ (see the pre-
ceding proof of Lemma 2.1.2). In particular,V ′ dominatesVd,1, which then turns
out to be irreducible. ClearlyGf ⊆ 9−1([C]).

Conversely, letC ′ := {f ′(x, y, z) = 0} ∈ im(9) and assume the existence
of φ : C ∼−→C ′. SinceC andC ′ are smooth, each of them carries exactly one
very ampleg2

d (see [ACGH])—say, |D| and |D ′| (respectively). It follows that
φ∗|D ′| = |D|; hence we have8 ∈GL3 sendingf to f ′ and thus8 ∈G, that is,
f ′ ∈Gf. ThenVd,1 := im(9) ≈ V/G turns out to be rational, sinceG is triangular
(see [Mi]; see also [Vi; Do; PV]).

Let f(x, y, z) := y d + xz(x − z)(xd−3 + zd−3). It represents a smooth curve
C and so Aut(C) is finite. Letg be in the stabilizerGf of f inG. If its restriction
to C is the identity, theng fixes four points onC in general position and thusg
is scalar. It follows that the restriction mapGf → Aut(C) is injective, henceGf
must be finite. The statement then follows by a parameters computation.

Since the general point ofVd,1 represents a smooth plane curve of degreed with
exactly oned-flex and no other, then the restriction toCn(d ) of the natural forget-
ful mapp : Mg,1→ Mg induces a birational equivalenceCn(d ) ≈ Vd,1. We thus
conclude as follows.

Corollary 2.1.5. Letg := (d−1
2

)
, d ≥ 4. The locusCn(d ) ⊆Mg,1 is rational of

dimension
(
d+1

2

)− 5.

2.2. α = 2

LetC be a plane irreducible curve of degreed carrying twod-flexes,h1 := (P1, r1)

andh2 := (P2, r2).

Up to a proper choice of the coordinates inP2, we can assume thatP1 :=
[1,0,0], P2 := [0,0,1], r1 = {z = 0}, andr2 := {x = 0}. Then the equation for
the curveC must be of the form

f(x, y, z) = ay d + xzψ(x, y, z), (2.2.1)

wherea ∈ C∗ andψ ∈ C[x, y, z]d−2. Let V := { f ∈ C[x, y, z]d as in (2.2.1) }.
We have to deal with its stabilizerG ⊆ GL3.

Lemma 2.2.2. If d ≥ 4, then the generalf ∈ V represents a smooth curve with
exactly twod-flexes.

Proof. Again one hasP(V ) = P(h1, h2)d . We check that

P(h1, h2)d
∖ ⋃
h3∈T0

P(h1, h2, h3)d 6= ∅,
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whereT0 := {h3 ∈ T | (h1, h2, h3) ∈ B3,d }. Indeed, ifh3 = ([x0, y0, z0],
{ax+by+ cz = 0}), thenxd0 a

d − (−1)dzd0c
d = 0. Thus dim(T0) ≤ 2 and hence,

if d ≥ 4, we have(
d

2

)
= dim(P(h1, h2)d) > dim

( ⋃
h3∈T0

P(h1, h2, h3)d

)
= 2+

(
d −1

2

)
.

Thus the subsetV0 ⊆ V representing curves with exactly twod-flexes is open and
nonempty.

Finally, observe thatf(x, y, z) = y d + xz(x − z)(xd−3 + zd−3) represents a
smooth curve having thed-flexesh1 andh2. Thus we conclude as in the proof of
Lemma 2.1.2.

Remark 2.2.3. Again, the conditiond ≥ 4 is sharp.

If g ∈ G, theng must fix the set{P1, P2} as well as the set{r1, r2}. ThusG :=
G0 o 〈i〉, where

G0 :=

α 0 0

0 β 0
0 0 γ

 and i =
0 0 1

0 1 0
1 0 0

.
Proposition 2.2.4. Let g := (d−1

2

)
, d ≥ 4. The locusVd,2 ⊆ Mg (whose gen-

eral points represent plane curves of degreed with exactly twod-flexes) is irre-
ducible and rational of dimension

(
d
2

)− 2.

Proof. As in the proof of Proposition 2.1.4,Vd,2 is irreducible andV/G ≈ Vd,2.
Let

V ′ := { f ∈V | f(x, y, z) = xz(axd−2 + bxd−3y + czd−3y + dzd−2) }.
It is easy to check thatV ∼= V ′ ⊕ V ′′ as a representation of the groupG. We will
prove the rationality ofV/G by proving thatV ′ is an almost free representation of
G; because the quotientV ′/G has dimension 1 and is unirational, the rationality
of V/G will follow from the method of reducible representation (see [Do, Cor. 1]
or [PV, Thm. 2.13]).

Let

g :=
α 0 0

0 β 0
0 0 γ


stabilizef(x, y, z) := xz(axd−2 + bxd−3y + czd−3y + dzd−2). Then

αd−1γ = 1,

αd−2βγ = 1,

αγ d−1= 1,

αβγ d−2 = 1
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and henceα/β = γ/β = 1; that is,g is a scalar matrix. By substitution we also
get thatβd = 1. Thus the intersection ofGf (the stabilizer off ) with the com-
ponentG0 acts trivially onV (it is also contained in the center ofG and thus is a
normal subgroup).

Now letg ∈Gf ∩G0i. Then

aαd−1γ = d,
bαd−2βγ = c,
dαγ d−1= a,
cαβγ d−2 = b;

hence
α

β
= bd

ac
= β

γ
and

(
α

γ

)d−2

= d2

a2
.

We then conclude that
d2

a2
=
(
bd

ac

)2(d−2)

,

which is a nontrivial relation among the coefficients off. Thus, forf general
enough, we haveGf = Gf ∩G0.

For the statement on the dimension we repeat the argument of Lemma 2.1.2.

We conclude this section with the following.

Proof of Theorem A.Propositions 2.1.4 and 2.2.4 yield Theorem A.

3. α=3 d-Flexes

3.1. λ = 1 andd ≥ 5

Let C be a plane irreducible curve of degreed carrying three collineard-flexes:
h1 := (P1, r1), h2 := (P2, r2), andh3 := (P3, r3).

Since thesed-flexes lie on a curve of degreed, their λ-invariant must sat-
isfy λ(h1, h2, h3)

d = 1 (see Proposition1.1). Thus we have the particular case
λ(h1, h2, h3) = 1, which (by the same proposition) means thatP1, P2, P3 are
collinear.

Hence, up to a proper choice of the coordinates inP2,we can assume thatP1 :=
[1,0,0], P2 := [0,0,1], andP3 := [1,0,1] as well asr1 = {z = 0}, r2 :=
{x = 0}, andr3 := {ax + by + cz = 0}. We have

1= λ(h1, h2, h3) = −c/a
anda + c = 0, sor3 = {a(x − z) + by = 0} wherea 6= 0. Sinceb = 0 if and
only if the linesr1, r2, r3 are concurrent, we will assume from now on thatb 6= 0.
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The projectivity associated to the matrix 1 0 0
0 a/b 0
0 0 1


allows us to assume thatr3 = {x + y − z = 0}. Thus, the equation forC must be
of the form

f(x, y, z) = ay d + xz(x + y − z)ψ(x, y, z), (3.1.1)

wherea ∈C∗ andψ ∈C[x, y, z]d−3. Let V (1) := { f ∈C[x, y, z]d as in (3.1.1) }.
It is a vector space, and we study its stabilizerG ⊆ GL3.

Lemma 3.1.2. If d ≥ 5, then the generalf ∈V (1) represents a smooth curve with
exactly three collineard-flexes.

Proof. As in the proof of Lemma 2.2.2, we define

T0 := {h4 ∈ T | (h1, h2, h3, h4)∈B4,d }.
We have dim(T0) ≤ 2 and hence, ifd ≥ 5,(

d −1

2

)
= dim(P(h1, h2, h3)d) > dim

( ⋃
h4∈T0

P(h1, h2, h3, h4)d

)
= 2+

(
d − 2

2

)
,

whenceP(h1, h2, h3)d \⋃h4∈T0
P(h1, h2, h3, h4)d 6= ∅.

Consider the pencil of curvesC[α,β] := {α(y d + xz(x − z)(xd−3 + zd−3)) +
βxyz(xd−3 + zd−3) = 0}. Since the curveC[1,0] is smooth, it follows that, for
general [1, β] ∈P1, the same is true forC[α,β] . Because each such curve is projec-
tively isomorphic inP2 to a curve whose equation lies inV (1), the statement can
be proved using the same argument of Lemmas 2.1.2 and 2.2.2.

Remark 3.1.3. Corollary 1.2 impliesd ≥ 5, so Lemma 3.1.2 is sharp.

If g ∈G, theng must fix the liner0 := {y = 0} and the set{r1, r2, r3}. In partic-
ular, the restriction of its action tor0 coincides with the action ofS3 on the set
{P1, P2, P3}. With some easy computation one checks thatG = G0×S3, where
G0 ⊆ GL3 is the torus of scalar matrices and

S3 =
〈0 0 −1

0 1 0
1 1 −1

,
 0 0 −1

0 1 0
−1 0 0

〉 .
Lemma 3.1.4. Let S3 act linearly on the vector spaceV (1). ThenV (1)/S3 is
rational.

Proof. Let % : S3 → GL(V (1)) be any representation. If% is not faithful, then it
is a linear representation ofZ2 E S3.
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It is known (see [Fi]) that each linear representationτ : K → GL(U) of a fi-
nite abelian groupK has rational quotientU/K. ThusV (1)/S3 is rational if% is
not faithful.

If % is faithful thenV (1) = V ′ ⊕ V ′′, whereV ′ is the irreducible representation
of degree 2. SinceV ′/S3 is unirational of dimension 2, a theorem of Castelnuovo
yields its rationality, whence we get the rationality ofV (1)/S3 by the method of
reducible representation (see [Do, Cor. 1] or [PV, Thm. 2.13]).

Proposition 3.1.5. Letg := (d−1
2

)
, d ≥ 5. The locusV (1)d,3 ⊆Mg (whose points

represent plane curves of degreed with exactly three collineard-flexes) is irre-
ducible, and it is rational of dimension

(
d−1

2

)
.

Proof. As in the proof of Proposition 2.1.4,V (1)d,3 is irreducible andV (1)/G ≈ V (1)d,3.
We haveC(V (1))G = (C(P(V (1))))S3 = C(U )S3, where

U := { classes off as in (3.1.1)with a 6= 0 }.
Via the isomorphism

9 : U → C[x, y, z]d−3,

class of [y d + xz(x + y − z)ψ(x, y, z)] → ψ(x, y, z),

we obtain a linear action ofS3 onto C[x, y, z]d−3 and V (1)/G ≈ U/S3 ≈
C[x, y, z]d−3/S3, whose rationality follows from Lemma 3.1.4.

For the dimension, we repeat the argument of Lemma 2.1.2 withf(x, y, z) :=
y d + xz(x + 2y − z)(xd−3+ zd−3).

3.2. λ = −1

We now consider the other easy case, when the threed-flexesh1 := (P1, r1), h2 :=
(P2, r2), andh3 := (P3, r3) are such thatλ(h1, h2, h3) = −1 (henced must be
even). By Proposition1.1, it follows that they must lie on an integral conicD.

Up to a proper choice of the coordinates inP2, we can assume thatP1 :=
[1,0,0], P2 := [0,0,1], andP3 := [1,1,1] and thatr1 = {z = 0}, r2 :=
{x = 0}, andr3 := {ax + by + cz = 0}. We have

−1= λ(h1, h2, h3) = −c/a
anda+b+c = 0, thusr3 = {x−2y+z = 0}. The unique conic havingh1, h2, h3

as 2-flexes isD := {y2− xz = 0}. Hence, the equation forC must be of the form

f(x, y, z) = a(y2 − xz)d/2 + xz(x − 2y + z)ψ(x, y, z) (3.2.1)

(see (1.4)), wherea ∈ C∗ andψ ∈ C[x, y, z]d−3. Let V (−1) := { f ∈ C[x, y, z]d
as in (3.2.1) }. This is a vector space, and we can consider its stabilizerG ⊆ GL3.

Lemma 3.2.2. If d ≥ 4 is even, then the generalf ∈ V (−1) represents a smooth
curve with exactly threed-flexes on a conic.

Proof. If d ≥ 6 then we use the argument of Lemmas 2.1.2, 2.2.2, and 3.1.2. In any
case, we have a natural rational map9 : V (−1) 99K Mg and im(9) = V (−1)

d,3 (see
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the proof of Proposition 2.1.4). Ifd = 4, Vermeulen showed that dim(V (−1)
d,3 ) =

3, whereas the sublocus of points representing curves with at least four 4-flexes
has dimension 2 (see [Ve, Props. II.10.11, II.12.5, II.12.9). Then, for each even
d ≥ 4, the generalf ∈V (−1) represents a curve with exactly threed-flexes.

Now consider the pencil of curves

C[α,β] := {α((y2 − xz)d/2 + xz(x + z)(xd−3− zd−3))

+ 2βxyz(xd−3− zd−3) = 0},
and imitate the argument of Lemma 3.1.2.

If g ∈G theng must fixD. SinceD is an irreducible conic, it is isomorphic toP1;
thusG = G0 ×S3, whereG0 is the torus of scalar matrices in GL3. Explicitly,
since the set{h1, h2, h3} must remain fixed, we have

S3 =
〈0 0 1

0 1 0
1 0 0

,
1 0 0

1 −1 0
1 −2 1

〉 .
Proposition 3.2.3. Letg := (d−1

2

)
, d ≥ 4 even. The locusV (−1)

d,3 ⊆Mg (whose
points represent plane curves of degreed with exactly threed-flexes on a smooth
conic) is irreducible and rational of dimension

(
d−1

2

)
.

Proof. The argument is the same as that for the proof of Proposition 3.1.5.

3.3. λ = ±i
Finally, consider the case when the threed-flexesh1 := (P1, r1), h2 := (P2, r2),

andh3 := (P3, r3) satisfyλ(h1, h2, h3) = ±i (henced is divisible by 4). If this is
the case then they must lie on a quarticD but not on a conic (see Proposition1.1).

Notice thatλ(h1, h2, h3) = λ(h1, h3, h2)
−1, so the two cases give rise to the

same curves. Ifλ(h1, h2, h3) = i then, up to projective isomorphisms, we can
takeP1 := [1,0,0], P2 := [0,0,1], andP3 := [1,1,1] as well asr1 := {z = 0},
r2 := {x = 0}, andr3 := {(1+ i)x − 2y + (1− i)z = 0}.

The curveD := {y 4− xz(2y− x)(2y− z) = 0} ∈P(h1, h2, h3)4 and hence the
equation forC ∈ P(h1, h2, h3)d must be of the form

f(x, y, z) = a(y 4 − xz(2y − x)(2y − z))d/4
+ xz((1+ i)x − 2y + (1− i)z)ψ(x, y, z) (3.3.1)

(see (1.4)), wherea ∈ C∗ andψ ∈ C[x, y, z]d−3. Let V (±i) := { f ∈ C[x, y, z]d
as in (3.3.1) } and letG ⊆ GL3 be its stabilizer.

Lemma 3.3.2. If d ≥ 4 is divisible by4, then the generalf ∈V (±i) represents a
smooth curve with exactly threed-flexes on a quartic(but not on any conic).

Proof. If d ≥ 6 then we use the argument of Lemmas 2.1.2, 2.2.2, and 3.1.2. We
have a natural rational map9 : V (±i) 99KMg and im(9) = V (±i)d,3 . Again, if d =
4 then dim(V (±i)d,3 ) = 3, whereas the sublocus of points representing curves with
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at least four 4-flexes has dimension 2 (see [Ve, Props. II.10.16, II.11.4, II.12.9,
II.13.4).

Consider the pencil of curvesC[α,β] := {α((y 4 − xz(2y − x)(2y − z))d/4 +
xz(x − z)(xd−3 + zd−3)) + 2βx(ix − 2y + iz)(xd−3 + zd−3) = 0} and imitate
the argument of Lemma 3.1.2.

Everyg ∈Gmust fix the set{h1, h2, h3}. HenceG ⊆ G0×S3,whereG0 ⊆ GL3

is the torus of scalar matrices. Explicitly,

S3 =
〈0 0 1

0 1 0
1 0 0

,
1+ i 0 0

1+ i −1− i 0
1+ i −2 1− i

〉 .
Proposition 3.3.3. Letg := (d−1

2

)
with d ≥ 4 divisible by4. The locusV (±i)d,3 ⊆

Mg (whose points represent plane curves of degreed with exactly threed-flexes
on a quartic, but not on any conic) is irreducible and rational of dimension

(
d−1

2

)
.

Proof. Again, the argument is the same as that for the proof of Proposition 3.1.5.

Proof of Theorem B.Theorem B now follows from Propositions 3.1.5, 3.2.3, and
3.3.3.

4. Four Collinear d-Flexes

Let C be a plane irreducible curve of degreed carrying four collinear 4-flexes:
h1 := (P1, r1), h2 := (P2, r2), h3 := (P3, r3), andh4 := (P4, r4). Since these
d-flexes lie on a liner := {` = 0}, the equation forC must be of the form

f(x, y, z) = `d + ϕ(x, y, z)ψ(x, y, z), (4.1)

whereϕ,ψ ∈C[x, y, z] are forms of respective degrees 4 andd − 4 and whereϕ
can be factorized in linear forms.

Consider the Segre maps : H 0(P2,OP2(1))⊗4 ⊗ H 0(P2,OP2(d − 4)) →
H 0(P2,OP2(d )) and letX := im(s). Since the projectivization ofs corresponds
to the Segre embeddingP2 × P2 × P2 × P2 × P(d−2

2 )−1 ↪→ P(
d+2

2 )−1, it follows
that dim(X) = (d−2

2

)+ 8. We must therefore consider

V := { f ∈C[x, y, z]d as in (4.1) } ∼= H 0(P2,OP2(1))×X,
and the action of GL3 onV is induced by the natural action of GL3 on

H 0(P2,OP2(1))×H 0(P2,OP2(4)).

The subvarietyW ⊆ V defined by

W := { f ∈V | f(x, y, z) = `d + xyz(x + y + z)ψ(x, y, z) }
∼= H 0(P2,OP2(1))×H 0(P2,OP2(d − 4))

is GL3-dense inV. We now consider the subgroupG of GL3 sendingW to itself.
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Lemma 4.2. If d ≥ 4 andd 6= 5, then the generalf ∈ V represents a smooth
curve with exactly threed-flexes.

Proof. If d ≥ 6 then we use the argument of Lemmas 2.1.2, 2.2.2, or 3.1.2. The
cased = 4 follows from Propositions II.10.4 and II.11.4 of [Ve] (imitate the proofs
of Propositions 3.2.2 and 3.3.2).

Remark 4.3. Lemma 4.2 is sharp, again by Corollary 1.2.

If d ≥ 4 and d 6= 5, then we have two actions on the variablesx, y, z in
H 0(P2,OP2(1)) that leaveCxyz(x + y + z) fixed. The first one is the canon-
ical action of the symmetric groupS4 ⊆ GL3 generated by the transposition
matrices 0 1 0

1 0 0
0 0 1

,
0 0 1

0 1 0
1 0 0

,
 1 0 0

0 0 1
0 1 0

,
−1 −1 −1

0 1 0
0 0 1

,
 1 0 0
−1 −1 −1
0 0 1

,
 1 0 0

0 1 0
−1 −1 −1

.
The second one is the action of the torus of scalar matricesG0 ⊆ GL3. Since the
elements ofG0 andS4 commute each other, it follows that we have a natural ac-
tion ofH := G0 ×S4 onW.

Proposition 4.4. If d ≥ 4 andd 6= 5, thenW/H ≈ V/G.
Proof. It suffices to prove thatW is a (G,H )-section ofV. To this purpose let
W ′ ⊆ W be the open subset consisting of forms with irreducibleψ. Let g ∈GL3

satisfyg(W ′) ⊆ W. Theng fixesxyz(x+y+z) and sog = µσ,whereσ ∈S4 ⊆
GL3 andµ is a scalar matrix.

Proof of Theorem C.We studyW/H. Notice thatC(W )H = (C(W )S4)G0; since
S4 is finite,C(W )S4 is the field of fractions of the algebraC[W ]S4. On the other
hand,S4 is generated by pseudoreflections and soC[W ]S4 = C[a, b, c] for three
suitable homogeneousS4-invariantsa, b, c ∈C[W ] (see [Sp, Thm. 4.2.5]). This
implies thatC(W )H = C(a, b, c)G0, where the action ofG0 is diagonal; thus,
we haveC(a, b, c)G0 = C(A,B,C) for three suitableG0-invariantsA,B,C ∈
C(a, b, c).
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