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Introduction

In this paper we investigate the topology of the Eschenburg spaces in some de-
tail. Thisis carried out in order to determine how inhomogeneous these spaces are
topologically. Using the idea of the biquotient construction in [12], Eschenburg
constructed, in 1982, an infinite family of 7-manifolds admitting positive sectional
curvature (see [9]) and, in a sequel, another example in dimension 6 [10]; see Sec-
tion 1 for construction and notation.

We point out two subclasses of the Eschenburg spaces that are of interest to us.
The first of these is the subclass of the Aloff-Wallach spaces. These are obtained
by settinga = (0, 0, 0) and are usually denoted 85 , := M0,0,0),(p,q,.—p—q)-
where gcdp, g) = 1. These spaces admit homogeneous metrics of positive sec-
tional curvature (cf. [1]), with the exception of the spaée ;. The Aloff-Wallach
spaces were also investigated by Kreck and Stolz [16; 17], who found examples
of (positively curved) Aloff-Wallach spaces that are homeomorphic but not dif-
feomorphic to each other. Every one of these spaces fibers over the homogeneous
flag manifold, F = SU(3)/ T2. The other subclass is given lay= (1, 1, k) and
b = (0,0, k + 2), wherek is any integer. It is shown in [13] that this is precisely
the class of Eschenburg spaces that admits a cohomogeneity one metric; that is,
the orbit space of the action of the isometry group of the Eschenburg metric is an
interval. Note that the cohomogeneity one metric on these spaces (with one ex-
ception) has positive sectional curvature.

A topological space is said to Isrongly inhomogeneodsit is not homotopy
equivalent to any compact homogeneous sgatd, whereG is a compact Lie
group andH is a closed subgroup.

The motivation comes from studying Riemannian manifolds that admit a metric
of positive sectional curvature. The Eschenburg spaces are metrically inhomoge-
neous since the homogeneous examples have been classified (see [1; 3; 4; 20]),
but one may ask: Do they admit a transitive group action or are they topologically
inhomogeneous as well? Eschenburg himself gave a partial answer; see Theorem
3.2. In this paper we shall give a more complete answer by using homotopy in-
variants computed independently by Milgram [19] and Kriiggel [18].
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THEOREM 1. The Eschenburg spaM({l; is strongly inhomogeneous if it satisfies
one of the following conditions.

(l) Y= Zd,’ = Zb, E= 0 (mod 3.
(i) fn=|H*M]};, 2)|, then3? | n or there is a primep | n such thatp = 2
(mod 3.

Turning to the class of cohomogeneity one Eschenburg spaces, a simple applica-
tion of Theorem 1 yields the following corollary.

COROLLARY 2. LetM; := M1 14),0,0k+2 represent a conomogeneity one Esch-
enburg space. It is congruent td or 2 (mod 3, thenM; is strongly inhomoge-
neous. Ik = 1 (mod 3 then, with the exception of the cases 1andk = —2,

M; is never homeomorphic to any homogeneous space.

The manifoldsM; and M_, in Corollary 2 are both diffeomorphic to the Aloff—
Wallach spaceéVy ;. The corollary is a critical step in the computation of the isom-
etry groups of the cohomogeneity one Eschenburg spaces in [13].

Another simple application of Theorem 1 and Corollary 2 is to produce examples
of inhomogeneous Einstein manifolds. In [5; 6] the authors show that, among the
cohomogeneity one Eschenburg spaces, the fandiligs; and M3, both contain
infinitely many strongly inhomogeneous Einstein manifolds (see [6, Prop. 5.2]).
We can improve their result by using Corollary 2. Note that the Einstein metrics
constructed in [5] and [6] are not isometric to the Eschenburg metrics.

CoroLLARY 3. LetM; be acohomogeneity one Eschenburg space equipped with
a 3-Sasakian structure as 5]. If k is congruent td or 2 (mod 3, thenM; isa
strongly inhomogeneous Einstein manifoldk ¥ 1 (mod 3 then, with the excep-
tion of the casek = 1andk = —2, M, is an Einstein manifold not homeomorphic

to any homogeneous space.

One may well ask about the case when both conditions in Theorem 1 are negated.
Obviously there are Eschenburg spaces thanhatestrongly inhomogeneous—
namely, the Aloff-Wallach spaces—but we can do a little better.

THEOREM 4. Under the condition® = ) a; = Y b; = 0(mod 3 andn =
3pt- p% .- p/ witht < landp; = 1 (mod 3 for all i, there exist Eschenburg
spacesM;,; with H4(M,Z) = Z, homotopy equivalent to some Aloff-Wallach
space but not homeomorphic to any homogeneous gpaedable 1in Section.3

For instance, the spac@sa 10 —14),a317,—30 and Mg 0,0),(0.17.—26) are homotopy
equivalent but not homeomorphic to each other. Note that either space admits a
metric of positive sectional curvature. These are the first known examples of the
following corollary.

CoroLLARY 5. There exist simply connected, positively curved manifolds that
are homotopy equivalent but not homeomorphic to each other.
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Without the assumption of simple connectedness, the lens spaces provide examples
of such a phenomenon. For instaric@, 1) andL (7, 2) are homotopy equivalent
but not homeomorphic to each other (see e.g. [7, Thm. 10.14]).

AckNowLEDGMENTS. | would like to thank Karsten Grove for his generous sup-
port during the academic year 1996—97 and for many illuminating discussions. |
would also like to thank N. Kitchloo and B. Kruiggel for clarifying many topolog-
ical questions and J. Wyss-Gallifent for programming assistance.

1. Preliminaries

Given a compact Lie grou@, let U be a subgroup of; x G. Consider the fol-
lowing two-sided action ot/ on G:

UxG— G,
(1, u2) g — ur-g-uy-

If this action is free then the resulting quotient space, denGtgd/, is called a
double coset spaaer abiquotient.Note that wherU lies strictly in one compo-
nent ofG x G, the quotient is simply a homogeneous space. The following class
of manifolds will be the focus of this paper.

ESCHENBURG SPACES. Leta := (a1, az, as) andb := (b1, bo, b3) be triples of
integers such thagf_a; = >_b;. Let

74 b

Sip= 72 , zh2 1zeU@)
% zbs

Then S(%’E acts on SU3) by a two-sided action. The action is free if and only if
gcd(ar — byqy, az — be(2), as — byz)) = 1 for every permutation € S3. When
the action is free we will call the resulting 7-manifoltt;, ; := SU(3)//S} ;. an
Eschenburg spacén his paper [9], Eschenburg considered normal homogeneous
metrics on SWJ3) that are right-invariant with respect to(2). Under these con-
ditions, he showed thal/; ; has positive sectional curvature if and onlyijf ¢
[@min, amax (OF @; ¢ [Dbmin, bmax if the invariance of the metric is switched) for
alli.

The cohomology of these spaces is well known (see [9; 10]); we have

H*(M;5,2) = (u) = Z,

H*(M; ;,2) = (u?) = Z/(02(@) — 02(b)) (torsion)
H%(M;5,2) = (v) = Z,

H'M;;,2) = (w) = Z.
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2. The Homotopy Invariants

In this section we will review the construction of part of the homotopy invariants
in [19]. Although that paper includes calculation of PL-homeomorphism invari-
ants (up to a possibl&, indeterminacy), in this paper we shall be concerned only
with homotopy invariants. Moreover, we remain consistent with the notation and
conventions of [19]. We regard $B) asV,,, the Stiefel manifold of 2-frames in
C3, that is, as pairs of vectors

V1w
v2 wz |,
v3 w3
wheret - w = 0 and||7|2 = || w||? = 1 Given four integerps, p, pa, ps satis-

fying the constrainp; = p, = p3 = p4 (mod 3, we define ars*-action onV,
as follows:

v, w Z(prm)/f'ivl Z(prp4)/3wl
z- vy wy | = 7(P2=p3)/3y, 7(P2=pa)/3y),
v3 w3 Zf(p1+p2+p3)/3v3 z*(P1+p2+P4)/3w3

wherez € S The resulting quotient space is denotedMS$ p1, p2, p3, pa)

and is an Eschenburg space. We now introduce two assumptions on the set
(p1, p2, p3, pa) for this section. These conditions ensure freeness of the circle
action.

(2.1) Thegcdofthefourintegetss, p2, p3, pa)iseitherlor 3. Thisis equivalent
to assuming the circles?, thatwe picked embeds in a torus of @Yx SU(3).
(2.2) The intersection of the s€tp1, p2, —(p1+ p2)} and{ps, pa, —(ps+ pa)}

contains at most one element.
The Invariantr

Consider a fibratiorV,; — E — B with structure group SB) « SU(3), where
SU3) * SU(3) = SU(3) xz, SU(3). All cohomology is understood to be i
coefficients unless otherwise stated.

Consider the universal case:

Bi .
Va1 ——= Bpsus —— Bsu@suz — M(Bi),

wherei : PSU3) < SU(3) * SU3) = SU(3) x PSU3) andM (Bi) is the map-
ping cone of the mai.

The cohomology o0Bsus)«suc) With Fs coefficients has the following structure
(see [19, Rem. 7.5]):

H? = (i),
H® = (Bi,) (whereg is the Bockstein)

H*+#0 (i.e., there exists & wye H%).
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The map(Bi)*: H*(Bsuw)xsua) — H*(Bpsus)) has the following properties:

(Bi)*(i2) #0, (Bi)*(Bi2) #0, (Bi)*(wa) =0.
Now consider the cofiber sequence

Bi .
Bpsus —— Bsu@su@ — M(Bi).

The long exact sequence in cohomology splits into short exact pieces and we obtain

, . , (Bi)* .
0 —— H'(M(Bi)) — H'(Bsu@+sum) — H'(Bpsysz) —0,

which impliesH*(M (Bi)) = ker(Bi)*. Also there existsi; € H*(M(Bi)) such
thatious € H8(M(Bi)). Note thati, ¢ H?(M (Bi)).

Now letV,, — E — B be any fibration with structure group $8) x SU(3).
Then it can be written as a pullback:

Vo1

Vaa
E —— Bpsyz

B —— Bsu@)«su@)

M(f) —g—= M(Bi).

WhenE in the fibration just displayed is homotopy equivalent to an Eschenburg
space (i.e., whell = Egq x 1 SU(3)), we haveH (M (f)) = (u) = FzandB =
Bgi = CP*°. Letr € F3 be defined by the equation

ru = g*(iaug).
The following result now follows; see [19, Sec. 7].

ProrosiTioN 2.1 (Milgram). If X and X’ are Eschenburg spaces that are ho-
motopy equivalent, then(X) = +r(X’) in F3.

The result implies that is an invariant in the oriented category. The indetermi-
nacy comes from the fact that there is no canonical choice for the generator of
H?(X,Z). If we don’t care about orientation-preserving homotopy equivalences,
then we need only cheakup to sign.

The Correspondence

We now provide the correspondence between Milgram’s description and the more
familiar description of Eschenburg spaces ag3)Js%. An element ofV,; can
be thought of as an element in 8) by “completing” the matrix:
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v1 w1 v1 w1 X1
V2 w2 <~ V2 w2 X2 |;
vz w3 V3 w3 X3

here the vectofx, x», x3) € C2 is the unique unit vector that is orthogonal to the
other two and makes the determinant of the resulting matrix equal to 1. If the space
M7(p1, p2, p3, pa) corresponds to the Eschenburg spM;}él; then, equating the

S action on SY3), for z € ST we have

Z(m—ps)/3vl Z(}?1—1’4)/3wl Zal—hlvl Zal_bzwl Zal_h3xl
Z(pz—ps)/3U2 Z(1’2—134)/3w2 — Zaz—blvz Zaz—bzwz Zaz—b3x2
Z—(I)l-*-1112-~-1!73)/3v3 Z—(p1+p2+114)/3w3 Z“3_blv3 Zaa—b2w3 Zaa—b3x3

This yields the following set of equations:
p1— p3=3(a1— by), p1— pa=3(a1— b2),
p2 — p3 = 3(az — by), p2 — pa=3(az — b2),
p1+p2+ p3=—3(az—b1), p1+ pz2+ ps=—3az—by).
Solving these equations, we get
p1=3a1— X, pr=3a— X, p3=3b1— X, ps=3by— L,

whereX = Y a; = > b;. From [19], we see that the homotopy invarianis
equal top; (mod 3. Hence, for the Eschenburg spzMé; we have the following
proposition.

PROPOSITION 2.2. r(MEZE) = —% (mod 3 is a homotopy invariant.

3. Homogeneous Spaces with Similar Homotopy

In his paper [9], Eschenburg showed the following result, although not explicitly
stated as such. In this sectiod, = MC-Z,; will denote an Eschenburg space—that
is, anS1-biquotient of SU3).

ProposiTION 3.1 (Eschenburg). If M7 is homotopy equivalent to a compact Rie-
mannian homogeneous spaké, then N’ must be an Aloff-Wallach space.

The proof of this theorem relies on the observation that the homotopy groups of
Eschenburg spaces put restriction on the p@itsH ) such thatG/H is homotopy
equivalent to an Eschenburg space. Furthermore, sifiéemust be a compact,
orientable manifold, we must have di@/H) = 7 and hencéd C O(7). A care-

ful enumeration and study of the finitely many pairs then yields the result. Using
this, Eschenburg was able to show the next result.

TueoreM 3.2 (Eschenburg). For the Eschenburg space with*(M’,Z) = Z,,,
if n = 2 (mod 3 thenM " is strongly inhomogeneous.
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This is now a simple application of Proposition 3.1 once we note that, for an
Aloff-Wallach spaceH*(N, ,,Z) = Z/(p? + q° + pq) and the quadratic form
p? 4+ g% + pq is never congruent to 2 modulo 3.

We are now in a position to improve on this considerably. Given an Eschenburg
spaceV /, we have the homotopy invariantM 7). From Proposition 2.2 this is eas-
ily computed: For the biquotientt " = M/ ;, we haver(M") = }"a; (mod 3 =
> b; (mod 3. For an Aloff-Wallach spacev, ,, it is clear thatr(N, ,) = 0
(mod 3. Putting this together with Theorem 3.2 yields, for any Eschenburg space,
the following proposition.

ProposiTION 3.3. If Y a; = Y b; # 0 (mod 3, thenM’ is strongly inhomo-
geneous.

This shows that, in a rough sense, two thirds of the Eschenburg spaces are strongly
inhomogeneous. We now proceed to generalize the congruence conditions of
Theorem 3.2.

A Little Number Theory

For an Eschenburg spage’ with H*(M7,Z) = Z,,, to be homotopy equivalent

to an Aloff-Wallach spac#, , it is at least necessary that= |H 4(N,,A,q, 2)| =
2?44+ pq. Recallthatp andg are relatively prime. Let = ¢2/3 be a primitive
cube root of unity. Then in the ring[¢] we have the factorizatiop? + ¢+ pg =

(p — q0)(p — q¢?). We are interested in knowing when the integés properly
representable by the quadratic fop + g2 + pg. Here “properly” means that
gcd(p, g) = L The following theorem indicates when this is possible. The case
n = 1yields just one solution (up to equivalence), so we may assume thdt

ProrosITION 3.4. A positive integer is properly representable by the quadratic
form p? 4 g2 + pq if and only if the following conditions hold

(i) if 3" |n,thenr <1

(i) if r is a prime dividingz, thenr = 1 (mod 3.

Moreover, given any such the number of distinct proper representations dify
the quadratic form i2"~% wherem is the number of distinct prime factors of
congruent tdl (mod 3.

Proof. A positive integem is properly representable by some quadratic form of
discriminantd if and only if d is a quadratic residue modulo:4see e.g. [8,
Chap. VI]). Note thatp? + ¢2 + pq is the unique quadratic form of discrimi-
nant—3.

If —3is a quadratic residue modula 4then it is a quadratic residue modulo
and hence a quadratic residue modufor any primer that divides:. The prime
r = 3 is allowed, but if 9] n then—3 is a quadratic residue modulo 9, which is
patently untrue. Hence, if'3lividesn thent < 1. Now suppose: > 3 is any
prime dividingn (note that: is necessarily odd). By quadratic reciprocity8 is a
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quadratic residue moduloif and only if r is a quadratic residue modulo 3, which
is equivalent to saying = 1 (mod 3.

Conversely, suppose = 3' - ry - rp-- -1, IS @ positive integer, where < 1
andr; = 1 (mod 3. Every integer prime congruent to 1 modulo 3 splitZift]
(only the integer primes congruent to 2 modulo 3 remain primg[if]). This
implies that every prime dividing can be properly represented by the quadratic
form (i.e., 3= (1 - (1 - ¢?), and we may write; = p? + g? + piqi =
(pi — q:O)(pi — qit?) =: v;t;. We now have a factorization afin Z[¢]:

n=(A-0a-[]ri —a:0)(pi — q:% = (DA = 0> [ [ it
i=1 i=1

SinceZ[¢]is a principal ideal domain, showing thats properly representable by
the quadratic form is equivalent to findiage Z[¢] such thawve = n anda ¢ Z.
Note that multiplication by the six units ia[¢] yields six “equivalent” solutions.
Equating these solutions is the same as saying that we only care about the ideal
(). From each prime factot, choose eithet; or t; and multiply these out along
with (1— ¢) (discard this factor if 3 n). After multiplying, this will yield a factor-
ization ofn intoa = (p —q¢) anda = (p — g¢?), whencep andg are the desired
solutions. By unique factorization of prime idealsdfi], this is the only way to
obtainp andg. Itis now a simple exercise to show that the number of distinct so-
lutions is 2"~ if n hasm distinct prime factors congruent to 1 modulo 3. [

The six equivalent solutions just discussed reflect the fact that the circle action
corresponding t@p, q) yields N, ,, which is diffeomorphic to any of the spaces

N*Pﬁw Np,fp*q’ qupﬂr N*p,pﬂi qu,pw-

Some Examples

We now proceed to prove Theorem 4. Given the spdce- M; ; with ) a =
Y b=0andH*(M, ;,Z) = Z,, we define

s(M) = s(Mj ;) = 03(a) — o3(b),
q(a) == —302(a)(02(a) +1),

q(M) :=q(@) +q(b) (mod 2,

whereg; are the elementary symmetric functions. In [18] Kriiggel showed that
{s(M) € (Z,)*/{£1}, q(M), |H*(M, Z)|} is a complete set of homotopy invari-
ants within the class of Eschenburg spaces. The invasrigu) is determined up
to sign, since it is an invariant in the oriented category like the invariaht)
computed earlier. Hence, iiM) = +s(M’) then, all else being equal/ and
M’ are homotopy equivalent, possibly by an orientation-reversing map.

To find Eschenburg spaces that are homotopy equivalent to some Aloff-Wallach
space, the strategy is to find a pair with the saiffeand then check whether their
homotopy invariants match up. A computer program written udiaghematica
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Table1 Some Examples

M=M;; |H*(M, Z)| s(M) q(M) pi(M)
M8 _10),6,7,-13) 43 42 0 19
M0,0,0,a,6,-7) 43 1 0 0
M0,-14,313-16 61 3 1 42
M0,0,0,4,5,-9 61 3 1 0
M 4,10,-14),5,13 18 103 95 0 36
M0,0,0,2,9, -1 103 8 0 0
M 4,10,-14),1317,-30) 523 317 0 303
M 0,0,0),(9,17,—26) 523 206 0 0
M 6,12,-18), 41,60, 101 7489 27 1 4465
M0,0,0),3 8589 7489 27 1 0

helped perform the search; the results were then checked by hand. From Table 1
we see that the spaces listed pairwise are homotopy equivalent, where the sec-
ond space listed is an Aloff-Wallach space. Moreover, the first integral Pontrjagin
class for an Eschenburg space is given by

p1= (201(a)? — 602(a))u?

(cf. [18]), whereH?(M7,Z) = (u) = Z. Because the first integral Pontrjagin
class,pi(M) € H*(M, Z), is a homeomorphism invariant (this result is due to
Kirby and Siebenmann; see e.g. [15]), the spaces listed in Table 1 are pairwise not
homeomorphic. Each of the spaces in the last two pairs admits a metric of pos-
itive sectional curvature (see Section 1). These are the first known examples of
simply connected, positively curved manifolds that are homotopy equivalent but
not homeomorphic to each other.

Cohomogeneity One Eschenburg Spaces

Recall that it has been shown [13] that the cohomogeneity one Eschenburg spaces
are parameterized ag, := M@14),0,0k+2- If k is congruent to 0 or 2 ma@),

then M, is strongly inhomogeneous by Proposition 3.3.kl&= 3d + 1, then
|H*(M3441,Z)| = 6d + 3 (cf. [10]). Note that, by Proposition 3.4, infinitely
many of the familyMs,1 are strongly inhomogeneous. Using the previous for-
mula, we see that; for the Aloff-Wallach spaces is trivial and that, for the spaces
Ma3g.1, p1 = 3(d + 2) - u?. This is trivial in precisely four casesl = +1, d =

0, andd = 2. In the casesl = 1 andd = —2, we have|H* = 9 and hence

these spaces must be strongly inhomogeneous, by Theorem 1. Thel cases

andd = —1 both yield the Aloff-Wallach spac¥; ;. Thus, except for these two
cases, the cohomogeneity one Eschenburg spaces are never homeomorphic to any
homogeneous space.
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Principal Eschenburg Spaces

These are the Eschenburg spaces that fiber as pringtgaindles over the in-
homogeneous Eschenburg fldg, (cf. [11]). They can be described &%, ; :=

M (.1 k+1),(0,0,2(k+1)) with |H4(Mkyl)| = k2 + 12 + 3kI. By Proposition 3-3Mk,l is
strongly inhomogeneous wheneve# [ # 0 (mod 3. Moreover, it is shown in

[2] that any Eschenburg space is stably parallelizable if and only if its first Pontrja-
gin class is trivial. The authors also show that a principal Eschenburg 8fade

stably parallelizable if and only i *(M; ;, Z) = 0 (see [2, Apx.]). Hence, a prin-

cipal Eschenburg space can never be homeomorphic to any homogeneous space
unlessH *(M,;, Z) = 0. This last observation is also proved in [2, Thm. 4.2].

Also in [2], the authors look for exampleB, ;, E,,;» among the principal

Eschenburg spaces that are homeomorphic but not diffeomorphic and such that
kl,k’l’ > 0. This is of interest becaudg, ; admits positive curvature i/ > 0.
They note that a computer search for such pairs fails to yield exampleé for
100,000, whereN = |H*| = k? + 1% + 3kI. We want to point out that such pairs
are never homeomorphic.

Consider the Kreck—Stolz invariasi(E, ;) € Q/Z given by

k+1 1
~25.3.7-N 25.7
wheredW = E;; and sigiW) = -2 if N, k,l > 0 (we may assume without
loss of generality that, I are both positive). In [2] the authors show thatEif
is homeomorphic t&; -, then 281(Ey ;) = 28s1(Ey,;r) modulo 1. For any pair
(k, 1), note that—24 - 28s; is congruent to 4& + [)/N modulo 1. Butk + [ is
different for every choicék, /), andk + [ must be smaller thanvZN since both
k? < N andI? < N. Hence O< 48(k+1)/N < 96/+/N and, if N > 962, then no
two values of 48k + /) can be congruent modulo 1. One now easily checks that
the same is true for alV < 96%. Hence, two positively curved, principal Eschen-
burg spaces are never homeomorphic to each other.

(N(2k? + kI + 2m®) — 16N — 48) —

s1 sign(w),

4. Strong Inhomogeneity of F’ = SU(3)// T?2

We now apply Eschenburg’s methods to show that the inhomogeneous example
in dimension 6 is strongly inhomogeneous as well. We outline the construction
briefly.

Let G = SU3) andU = S x §* ¢ U(3) x U(3), where

z 1
U= (( Zw ),( 1 )):Z,weU(l)
w w?

Then U acts onG by a two-sided action that is free and isometric for a left-
invariant, Ady)-invariant metric on S{B). The quotient spacg&’ = SU(3)//U

is a 6-dimensional manifold that has positive sectional curvature for the submersed
metric (cf. [10]).
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By looking at the long exact sequencé ¥ SU(3) — F/, itis a simple matter
to compute the homotopy groups Bf:

mo(F') = m(F') =0,
m(F) =282,
7;(F') = m:(SUB)) for i > 3.
Its cohomology was also computed by Eschenburg [10]:
H¥(F';Z) = Z[x, y]/(x® % + 3xy + y?),

where de@x) = deqy) = 2. Using the cohomology ring, Eschenburg showed
that this space is not homotopy equivalent to its “cousin”, the homogeneous flag
manifold SU3)/T?2.

Homogeneous Spaces with Similar Homotopy

We now assume that’ = SU(3)//U is homotopy equivalent to some compact
homogeneous spadd = G/H. ThenM has the same homotopy groupsmis
The following proposition almost follows from [9, Sec. 4].

ProrosiTioN 4.1. Let g andh denote the Lie algebras of the grou@sand H,
respectively. Then we may assume ifias simply connected and semi-simple.
Furthermoreh = i’ x R?, wherel’ is semi-simple.

Proof. We already remarked thM has the same homotopy groups/sin par-
ticular, M is simply connected and we haxe(M) = Z andm4(M) = 0.

For any compact Lie groug, it is well known thatr,(G) = 0 andn3(G) =
Z*, wherek is the number of simple factors in its Lie algebra. From the exact se-
guence in homotopy for the principal bunde — G — M and the homotopy
groups ofM, we have:

(i) mo(H) = mo(G);
(i) 0 >Z6Z — mi(H) > m(G) — 0
(iii) m3(H) = m3(G) x Z.

By (i) we may assume that botti and H are connected, sing&y/Hy is diffeo-
morphic toG/H. From (ii) it follows that ranKm1(H)) = rank(w1(G)) + 2 (as
abelian groups). So i§ = g’ x t for g’ semi-simple and T ahtorus, then we
must have) = b’ x s for b’ semi-simple and an (/ + 2)-torus. Moreover, from
(iii) we know thatg’ has one more simple factor thgh

Let G’ be the simply connected Lie group with Lie algelyaThenG :=
G’ x T! is a covering group o6. Let 7: G — G be the covering homomor-
phism and letd := 7 ~X(H). Then the induced covering map. G/H — G/H
is actually a diffeomorphism, sing&/H is simply connected. Hence we may as-
sume thatG = G’ x T/, whereG' is a simply connected, compact, semi-simple
Lie group.
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Nowh =bh' xs C g = g x t. Becausdy is semi-simple, its projection to
tis trivial. Soly’ C g’ and we defined’ = exp(h’), which is a subgroup of;".
Consider the chain of morphisms

Se>H<'>G—>T.
Let f: S — T be the composite map, whefe= po joi. By (ii), j.: mi(H) —
m1(G) is onto. Also,p,: m1(G) — m(T) is an isomorphism and.: 71(S) —
m1(T) has finite index. Hencé,: 71(S) — m1(T) has finite index. Therefore,
the subtorugf(S) c T must have the same rank as T and, sisi@nd T are con-
nected,f must be surjective. This implies that kg o, the identity component
of the kernel, is a 2-torug/ C S, which is a subgroup of the semi-simple part
Henceg'Nnh =15 x u.
Let H” := exp(h’ x u) C G'. Then the map

G'/H" — G/H,
gH"— (g,)-H

is a covering map and thus is a diffeomorphism. We may therefore now assume
that G is simply connected and semi-simple and tiat b’ x R? with '’ semi-
simple. O

We now determine all possible pairg. h’ x R?). The space$’ andG/H are as-
sumed to be closed, orientable, smooth manifolds that are homotopy equivalent.
Hence, dimF’ = dim G/H = 6. This implies that the isotropy groufd is a sub-
group of Q6). Sinceh = h’ x R?, it follows that ranky’ < 1 and so eithel’ is

trivial or ' = A;. Since dimG — dim H’ = 8 andg has one more simple factor
thanp’, the corresponding possibilities fgrareA, andA, x Aj.

Inspection of the Pairgg, b’ x R?)
For the pair(g, b’ x R?), let pr;: h — g, denote the projection of the subalgebra
b to g;, theith simple factor ofy.

1. (A2, R?). This is the homogeneous space(SlT?, the flag manifold over
CP2. As remarked earlier, this is not homotopy equivalenFtqtheir conomol-
ogy rings are not isomorphic; see [11]).

2. (A2 x A1, A1 x R?).  Up to equivalence, there are two representations;of
into A,, which correspond to the standard embeddings

f1: 50(3) — su(3),

f2: su(2) — su(3).

Also, sinceA; is simple, any representation Af into itself must be trivial or
an isomorphism (denoted by “igl” We have the following possibilities for em-
beddings ofA; into A, x Aj:

0,id), (fr,id), (f2,id), (f1,0), (f2,0).
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(@) (0, id): In this case pr(R?) = 0 andG/H = SU(3)/ T2, which is not homo-
topy equivalent taF”.

(b) (f1, 0), (f1,id): s0(3) has no centralizer igu(3), so pr(R?) = 0. ButA;
has rank 1 an@R? is abelian, so p(R?) has dimension at most 1; that R?
cannot be embedded Ay. Hence these embeddings are not possible.

(€) (f2,id): SinceR? commutes withA; in A; x R? and since id is an isomor-
phism, it follows that ps(R?) = 0. On the other hand, the centralizersof2)
in su(3) is 1-dimensional, which implies dim giR?) = 1. So this case is not
possible.

(d) (f2,0): Asinthe previous casey(2) has a1l-dimensional centralizeun(3).
For the standard embeddingy: su(2) — su(3), f2(su(2)) has centralizer
R.-Zwith Z =i - diag3, 1, —2).

As before, pr(R?) and pk(R?) are each at most and at least (and hence exactly)
1-dimensional. HencB? maps onto the 2-plane spannedbynd the maximal
toral subalgebra of\;, and this map is an algebra isomorphism. That is, up to
conjugationR? embeds as

¢: R? — su(3) x su(2),
ert— (Z,0),
e~ (0,7),

whereY =i - diag(l, —1) generates the usual maximal toral subalgebra:@?).

Hence the paitA, x A1, A; x R?) splits as(Az, A; x R) x (A1, R), which
yields the homogeneous spat®? x S2. A comparison of the respective coho-
mology rings reveals that’ is not homotopy equivalent t6P? x S2.

Appendix A. Homotopy Types of Aloff-Wallach Spaces

MARK DICKINSON & KRISHNAN SHANKAR

In this note we consider the homotopy types of the Aloff-Wallach spaces (defined
in the Introduction). In particular, we address the question of whether there exist
Aloff-Wallach spaces that are homotopy equivalent but not homeomorphic. This
is a natural question to ask in view of the examples constructed in this paper as
well as the examples of Kreck and Stolz in [16] (see also [17]). The following is
the main result.

ProposiTIoNA.1.  Two Aloff-Wallach spaces, , and N, , are homotopy equiv-
alent if and only if they are homeomorphic.

This will follow immediately from the next proposition. Recall the cohomology of
the Aloff-Wallach spaces (cf. []){° = H? = H® = H' = Z, andH*(N, ,, Z)

is a cyclic group of ordep? + pq + ¢?. From [18, Thm. 0.1], the Aloff-Wallach
spacesV, , andN, ; are homotopy equivalent if and only if:

() n:=p>+pg+qg°>=r>+rs+s?

(i) pg(p+q)==xrs(r+s) (modn).
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From the main theorem of [16] we see that the conditions for homeomorphism are
very similar; condition (ii) is replaced by the apparently stronger requirement

(i") pg(p+q) = =xrs(r +s) (mod 24).

With these characterizations we can rewrite Proposition A.1in a purely arithmetic
form.

ProrosiTiIoN A.2.  Suppose thatp, ¢) and (r, s) are pairs of integers such that
gcd(p,q) = gedr,s) = 1, withn = p? + pg + g% = r> +rs + 52 If
pq(p + q) andrs(r + s) are congruent module then they are congruent mod-
ulo 24n.

Replacing(r, s) with (—r, —s), this proposition also says that (p + ¢) and
—rs(r + s) are congruent module then they are congruent modulor24so that
Proposition A.2 implies Proposition A.1. The proof of Proposition A.2 will be
given shortly.

The main result—along with the classification of simply connected, homoge-
neous, positively curved manifolds—now yields the following corollary.

CoroLLARY A.3. In the class of simply connected, homogeneous, positively
curved manifolds, two spaces are homotopy equivalent if and only if they are
homeomorphic.

Note that the corollary is sharp; omitting any of the assumptions makes it false.

Proof of Proposition A.2We will first reformulate Proposition A.2 in terms of
the arithmetic of the ring of intege&|w] of the quadratic fiel@)(w), wherew =
(1+ «/—73)/2 is a primitive sixth root of unity. An application of the law of qua-
dratic reciprocity will then yield a proof of the reformulation. For basic properties
of the ringZ[w], including the important fact that[w] is a unique factorization
domain, we refer the reader to Chapters 1 and 9 of [14].

A pair of integers(x, y) with gcd(x, y) = 1 corresponds to an element=
x + yo of Z[w] that is primitive (i.e., not divisible by any nonunit &). Writing
N& = ££ and Tré = & + & for the norm and trace of a general elemgof Q(w),
the quantitiesc? + xy + y? andxy(x + y) can be recovered from as Nx and
Tr(e®/34/=3), respectively. Now, by assumption( N+ gw) = N(r + sw). As
explained in [16, Sec. 5], it follows that+ gw = y§ andr 4+ sw = ¢y8 for some
primitive elements, ands§ of Z[w] and some unit; by exchangingy andg if
necessary, we may further arrange thae equal to 1The elementy ands$ de-
fined in this way are coprime iB[w]: if 7 is a prime element o [w] that divides
bothy andé, then Nr = 7 dividesr + sw = y§, contradicting the assumption
gcd(r, s) = 1. In the same way, the assumption ¢gedg) = 1implies thaty and
§ are mutually coprime, and by combining these results we see thatrd NS
are coprime irZ.

The hypothesis thaiq (p + ¢) is congruent tas(r + s) modulon can be writ-
ten in terms ofy ands as
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(v% =733 +5%/3/=3=0 (mod NyNs).
Similarly, the conclusion of Proposition A.2 becomes
(v® = 738% +5%/3/=3 =0 (mod 24N/N5).
We thus arrive at the following reformulation of Proposition A.2.

ProposITIONA.2 (bis). Suppose thay and$ are primitive elements of the ring
Z[w], that Ny is prime toN$, and thatT := (y2 — 73)(83 + §%)/3/—3 is divis-
ible byn := NyNg§. ThenT is divisible by24n.

To prove this, it suffices to check divisibility locally at 2 and 3. We begin by record-
ing some elementary observations regarding primitive elemeztfgdf As noted
before, ifa = x + yw is any element oF [w], then Nx is equal tax? + xy + y2
and(a® — &%)/3/—3is equal tocy (x + y). Similarly, «® + & can be expressed
as(x — y)(x + 2y)(2x + y). By examining the possible residue classes ahd

y modulo 3 and 4, we obtain the following proposition.

ProrosiTION A.4. Suppose thatr = x + yw is a primitive element o [w].
ThenNe is congruent to eithed or 1 modulo3, and:
(i) 3dividesa®+ &2 if and only if N = 0 (mod 3;
(i) 3 divides(a® — @®)/3v/—3if and only if N = 1 (mod 3.
Similarly, Na is congruent to eithell or 3 modulo4, the integersx® + @2 and
(a® —a%)/3/—3are even, and
(ii) 4 dividesa® 4 &2 if and only if N = 3 (mod 4;
(iv) 4 divides(a® — &®)/3y/—=3ifand only if No = 1 (mod 4.

We also note thair® — &%)/3/—3 is always prime to M, while the greatest com-
mon divisor of Nx anda® + &2 is either 1 or 3.

Proposition A.4 implies that X is congruent to 1 modulo 3, since if it were di-
visible by 3 therw would be divisible by 3 but 8l and 7 would not be, which
would contradict the assumption thatividesT. The proposition now also im-
plies that if N5 is congruent to 1 modulo 3 théhis divisible by 3, and that if i
is congruent to 0 modulo 3 thehis divisible by 9, so in either caskis divisible
by the largest power of 3 dividing 24

It remains to show thaf is divisible by the largest power of 2 dividing 24
sincern is odd, this amounts to showing thatis divisible by 8. By hypothe-
sis,n = NyNSs dividesT = (y3 — 73)(8% + 6%)/34/—3. Since N/ is prime to
(y3—73%)/34/=3, itmust divides3+52. It follows that Ny divides—3(§3+5%)2 =
Tr(+/—38%)? — (2N3)?(3NSs) and so 3N is a square modulo N Similarly, N&
has highest common factor 1 or 3 with + 63, so Ns divides(y 2 — 7%)/+/=3.
Hence N divides(y 23— 7%)%2 = Tr(y %)% — (2Ny)2Ny and Ny is a square modulo
N§. Making use of the Jacobi symbol (see [14, Chap. 5]), we [iaXs/Ny) =
(Ny/Né§) = 1 and therefore

= ()55 = () ) (56)
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Applying the law of quadratic reciprocity t3/Ny) and(N§/Ny) gives
1= (_1)(NV—l)/Z(_1)(NJ/—1)(N5—1)/4 — (_1)(NV—1)(N5+1)/4’

since(Ny/3) = (1/3) = 1. Thus(Ny — 1)(Né§ + 1)/4 is even, and either Nis
congruent to 1 modulo 4 orNis congruent to 3 modulo 4. From the second half
of Proposition A.4 it follows that at least one of the factops — 73)/3+/—3 and
(83 +6%) of T is divisible by 4, sdr" is divisible by 8 as required. This completes
the proof of Proposition A.2. O
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