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Almost Periodicity and the Remainder
in the Ellipsoid Problem

Manfred Peter

1. Introduction

Let S∈Rm×m (m ≥ 2) be a positive definite real matrix, letQ[ x] := txSx be the
associated quadratic form, and letQ−1[ x] := txS−1x. Fora∈Rm, define

Na(x) := #{x∈Zm | Q[ x− a] ≤ x}, x ≥ 1,

which is the number of lattice points in the ellipsoida + √xE, whereE :=
{x∈Rm |Q[ x] ≤ 1}. A simple lattice point argument shows that

1a(x) := Na(x)− vol(E)xm/2� x(m−1)/2,

where

vol(E) = πm/2

(detS)1/20(m/2+1)

is the Euclidean volume ofE. Landau [18] improved this estimate to

1a(x)� xm/2−1+1/(m+1) (m ≥ 2)

using the functional equation of the Epstein zeta function forQ. Krätzel and Nowak
[17] derived (in the more general case of a convex body with smooth boundary of
strictly positive Gaussian curvature) the better estimate1a(x)� xm/2−1+λ with

λ = 5

6m+ 2
for m ≥ 8, λ = 12

14m+ 8
for 3≤ m ≤ 7.

They used exponential sum estimates. In the special case of a rational ellipsoid (i.e.,
when there is somea > 0 with aS∈Qm×m), Landau [19] proved the estimate

1a(x)� xm/2−1 (m ≥ 5).

In this case the theory of theta series can be applied, giving better results. Re-
cently the same estimate was proved by Bentkus and Götze [1] for an arbitrary real
ellipsoidE andm ≥ 9. For rational ellipsoids, the boundO(xm/2−1) is optimal.
For irrational ellipsoids andm ≥ 9, Bentkus and Götze [2] showed that1a(x) =
o(xm/2−1), which has important applications to conjectures of Davenport and
Lewis and of Oppenheim. In [2] the authors used techniques from probability
theory that they originally invented to obtain optimal rates of convergence in cen-
tral limit theorems.
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For small values ofm (i.e.,m ≤ 8), no optimal remainder estimates are known.
Hardy’s conjecture10(x) �ε x

1/4+ε for m = 2 andE the unit circle is still
unproved, and the best result in this direction is10(x)�ε x

23/73+ε, due to Hux-
ley [15]. For numerical results on the oscillatory behavior of10(x), see [12]
and [7].

Heath-Brown [14] was the first to ask for limit distributions of error terms. For
m = 2, a = 0, andE the unit disc he proved thatF(t) := t−1/210(t

2) has a limit
distributionν0 on the Borel sets ofR in the sense that, for all continuous bounded
functionsφ : R→ C,

lim
X→∞

1

X

∫ X

1
φ(F(t)) dt =

∫
R
φ(x) dν0(x).

Hereν0 is absolutely continuous with respect to the Lebesque measure and de-
creases at infinity faster than polynomially. A key step is to show thatF(t) is
B2-almost periodic in the sense of Besicovitch. A functionf : [0,∞) → C is
calledB q-almost periodic(1≤ q <∞) if, for everyε > 0, there is a trigonomet-
ric polynomialp(x) =∑J

j=1 cj e
iαj x (cj ∈C, αj ∈R, 1≤ j ≤ J ) such that

‖f − p‖q :=
(

lim sup
X→∞

1

X

∫ X

0
|f(x)− p(x)|q dx

)1/q

≤ ε.

For the theory of these functions, see Besicovitch [3] or Maak [20]. Bleher and
colleagues [9] extended Heath-Brown’s result to generala and proved that the den-
sity of the limit distributionνa with respect to the Lebesque measure decreases at
infinity roughly as exp(−|x|4). Bleher and Dyson [10] showed that the variance
of νa as a function ofa is continuous but otherwise very irregularly behaved (see
also [11]). Bleher [4] generalized parts of these results to the case where the circle
is replaced by a smooth convex curve with positive curvature. In [5] he general-
ized the tail asymptotics of the density function to this general situation under a
suitable condition of linear independency of frequencies. If the curvature of the
boundary vanishes at isolated points, the asymptotics of the remainder depends on
the arithmetical nature of the slope of the boundary at these points. This situation
was investigated in [6].

Results about the limit distribution of the error term in lattice point asymptotics
are of interest in mathematical physics because the spectral function of certain
integrable quantum mechanical systems can be related to lattice point counting
problems (for an overview, see [7]).

In the present paper, the function

1λ,a(x) := 0(λ+1)−1
∑

x∈Zm :Q[x−a]≤x

(
1− Q[ x− a]

x

)λ

− πm/2xm/2

(detS)1/20(m/2+ λ+1)
, x ≥ 1,
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is investigated, whereλ ≥ 0 is an additional parameter. Ifλ = 0, then10,a(x)

is just the error in the ellipsoid problem. The introduction of the weighta 7→
(1−a/x)λ smoothes the behavior of1λ,a(x) so that almost periodicity results can
be obtained. Of course, one is interested in takingλ as small as possible.

Theorem 1.1. LetE be rational,m ≥ 3, anda arbitrary. Assume(m− 3)/2<
λ < (m−1)/2. ThenFλ,a(t) := t λ−(m−1)/21λ,a(t

2), t ≥ 1, isB1-almost periodic.

Theorem 1.2. LetE anda be rational andm ≥ 3 or letE be real,a arbitrary,
andm ≥ 8. Assume(m−3)/2< λ < (m−1)/2. ThenFλ,a isB2-almost periodic.

In the proof for arbitraryE andm ≥ 8, the results of [1] play an essential part.
Since almost periodic functions have limit distributions [4, Thm. 4.1], the exis-

tence of a limit distribution forFλ,a follows immediately under the assumptions
of Theorem 1.1 or Theorem 1.2.

Let 0< µ1< µ2 < · · · be the values taken byQ−1 onZm \ {0}, and let

bn :=
∑

x∈Zm :Q−1[x]=µn
e(tax), n∈N (1.1)

(e(x) := e2πix). The next theorem gives the Fourier coefficients ofFλ,a in a weak
sense (whether or notFλ,a is almost periodic).

Theorem 1.3. If m ≥ 2, E anda arbitrary, φ ∈C∞c (R+), 0 ≤ λ < (m−1)/2,
andγ ∈R, then

c(γ, φ) := lim
X→∞

1

X

∫ ∞
1

Fλ,a(t)e(γ t)φ

(
t

X

)
dt

exists. Ifγ = ±√µn for somen∈N, then

c(γ, φ) = bn

2πλ+1(detS)1/2µ
(m+1+2λ)/4
n

e±πi(m+1+2λ)/4
∫ ∞

0
φ(x) dx.

For all other values ofγ, c(γ, φ) = 0.

For rationalE, Theorems 1.2 and 1.3 give a characterization of those values ofλ

for whichFλ,0 isB2-almost periodic.

Corollary 1.4.

(1) LetE be rational andm ≥ 3.
(a) If 0 ≤ λ ≤ (m− 3)/2 then‖Fλ,0‖2 = ∞. In particular,Fλ,0 is notB2-

almost periodic.
(b) If (m− 3)/2< λ < (m− 1)/2 thenFλ,0 is B2-almost periodic.

(2) LetE be real andm ≥ 3. If λ ≥ (m− 1)/2 then1λ,0(x)� logx.

Corollary 1.4(1)(a) hinges upon the fact that, for rationalE anda = 0, |bn|2 can
be sufficiently well estimated in the mean from below such that
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n≥1

∣∣c(√µn, φ)∣∣2 = ∞
follows. On the other hand, Bleher and Bourgain [8] announced that they could
prove theB1-almost periodicity ofF0,a under certain diophantine conditions fora.

ForE rational andm ≥ 3, F00 is notB2-almost periodic because‖F00‖2 =
∞. One could imagine that multiplying it by a decreasing functionρ could render
F00 almost periodic. The following result shows that, for reasonably well-behaved
functionsρ, the only almost periodic functionsρF00 that can be obtained in this
way are zero functions.

Corollary 1.5. Letm ≥ 2, E and a arbitrary, and 0 ≤ λ < (m − 1)/2. Let
ρ : [1,∞)→ R+ be continuously differentiable and decreasing, and lett |ρ ′(t)| �
ρ(t) ast →∞ and lim t→∞ ρ(t) = 0. Assume thatρFλ,a is B q-almost periodic.
Then‖ρFλ,a‖q = 0.

Examples forρ aret−α and(log t)−α (α > 0).
Assume thatS ∈Zm×m, m ≥ 2. From Corollary 1.4(1)(a) and the result of [4]

it follows thatF00 isB2-almost periodic if and only ifm = 2. One should mention
that the opposite is true for the function

G(n) := #{x∈Zm |Q[ x] = n} · n1−m/2, n∈N.
Form ≥ 3, G ∈D q for all q ≥ 1; for m = 2, G /∈D q for all q ≥ 1 (see [21]; for
the definition of the spacesD q of q-limit periodic functions onN, see Schwarz
and Spilker [22]). On the other hand, ifE is irrational andm ≥ 9, then it follows
from [2] that

H(n) := #{x∈Zm | Q[ x] ∈ [n, n+1)} · n1−m/2, n∈N,
is asymptotically constant, namely,

H(n) = (detS)−1/2πm/20

(
m

2

)−1

+ o(1)
asn→∞.

Hereafter,ε > 0 will denote an arbitrarily small positive real.

Acknowledgment. I would like to thank the referee for suggestions that im-
proved the presentation of the paper.

2. A Voronoi Formula

First a truncated Voronoi formula with Riesz mean is derived. LetS ∈ Rm×m
(m ≥ 3) be positive definite and letλ > 0. The Dirichlet series

Z(s) :=
∑

x∈Zm, 6=a

1

Q[ x− a] s
and Z̃(s) :=

∑
x∈Zm\{0}

e(tax)

Q−1[ x] s
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are absolutely convergent for Re(s) > m/2 and can be continued to meromorphic
functions onC. These Epstein zeta functions have poles at most atm/2 that are
simple and have residues

(detS)−1/2πm/20

(
m

2

)−1

and (resp.) δ(a)(detS)1/2πm/20

(
m

2

)−1

,

whereδ(a) = 1 for a ∈ Zm andδ(a) = 0 otherwise. They are connected by the
functional equation

Z(s) = (detS)−1/2π2s−m/20(m/2− s)
0(s)

Z̃(m/2− s) (2.1)

(see [13, pp. 625ff.]). Write

Z(s) =
∑
n≥1

an

λsn
, Z̃(s) =

∑
n≥1

bn

µsn
, Re(s) >

m

2

(see(1.1)). Letc = m/2+ ε. A generalization of Perron’s formula states that

1

2πi

∫ c+iT

c−iT
Z(s)

x s0(s)

0(s + λ+1)
ds

= 0(λ+1)−1
∑
λn<x

an

(
1− λn

x

)λ

+O
(
xcT −(λ+1) + T −λ

∑
x/2<λn<2x

|an|min

{
x

T |λn − x| ,1
})

(2.2)

for x, T ≥ 1. This can be proved along the same lines as the formula forλ = 0
(see [16, Apx. A.3], where a formula forT = ∞ is proved). Assumec1x ≤ T ≤
c2x. The followingO-constants may depend onc1, c2 > 0. From the functional
equation (2.1) and Stirling’s formula it follows that

|Z(s)| �ε

{
1 for Re(s) = c,
(1+ |Im(s)|)m/2+2ε for Re(s) = −ε.

SinceZ(s) grows exponentially in|Im(s)| in vertical strips of finite width, the
Phragmen–Lindelöf principle gives

|Z(s)| � |Im(s)|c−σ for −ε ≤ σ := Re(s) ≤ c, |Im(s)| ≥ 1. (2.3)

Equation (2.2) and the residue theorem give

1λ,a(x) = 1

2πi

(∫ −ε−iT
c−iT

+
∫ −ε+iT
−ε−iT

+
∫ c+iT

−ε+iT

)
Z(s)

x s0(s)

0(s + λ+1)
ds

+O(xc−λ−1+1+ x−λR1(x)), (2.4)

where

R1(x) :=
∑

x/2<λn<2x

|an|min

{
1

|λn − x| ,1
}
. (2.5)
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Now (2.3) and Stirling’s formula give∫ c±iT

−ε±iT
�
∫ c

−ε
T c−σxσT −(λ+1) dσ � xc−λ−1. (2.6)

From the functional equation it follows that

J := 1

2πi

∫ −ε+iT
−ε−iT

Z(s)
x s0(s)

0(s + λ+1)
ds

= (detS)−1/2π−m/2
∑
n≥1

bn

µ
m/2
n

I(π2µnx, T ), (2.7)

where

I(y, T ) := 1

2πi

∫ −ε+iT
−ε−iT

y s
0(m/2− s)
0(s + λ+1)

ds, y > 0, T ≥ 1.

For−ε ≤ Re(s) = σ ≤ m/2− ε and|Im(s)| = |t | ≥ 1, Stirling’s formula gives

0(m/2− s)
0(s + λ+1)

= e−iπ(m/2+λ)(signt)/2|t |m/2−2σ−λ−1e2i(t−t log|t |)
(

1+O
(

1

|t |
))
. (2.8)

Lety > T 2. DefineF(t) := t logy+2t−2t log|t | andG(t) := |t |m/2+2ε−λ−1.

Then

I(y, T ) =
∑
±
± 1

2π
e∓iπ(m/2+λ)/2y−ε

∫ ±T
±1

G(t)e iF(t) dt

+O
(
y−ε + y−ε

∫ T

1
t m/2+2ε−λ−2 dt

)
.

Define

H(t) := F ′(t)
G(t)

= |t |λ+1−m/2−2ε log

(
y

|t |2
)
.

Then

H ′(t) = (signt)|t |λ−m/2−2ε

(
−2+

(
λ+1− m

2
− 2ε

)
log

(
y

|t |2
))

has at most one zero in [1, T ] and [−T,−1]. Each of these intervals can therefore
be divided into two subintervals on whichH(t) is monotonic. Furthermore,

H(t) ≥ log

(
y

T 2

)
min{1, T λ+1−m/2−2ε} > 0 for 1≤ |t | ≤ T .

From [23, Lemma 4.3], it follows that

I(y, T )� y−ε log−1

(
y

T 2

)
max{1, T m/2+2ε−λ−1}

+ y−ε max{1, T m/2+2ε−λ−1 logT }
for y > T 2. Therefore,
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µn>T 2/(π2x)+1

bn

µ
m/2
n

I(π2µnx, T )

� 1+ xm/2+2ε−λ−1+ x1−m/2−2ε(1+ xm/2+3ε−λ−1)R2

(
T 2

π2x

)
, (2.9)

where
R2(y) :=

∑
y+1<µn≤2y

|bn|
µn − y . (2.10)

Choosem/4< d < m/2. Let 0< y < T 2. From (2.8) it follows that∫ d±iT

−ε±iT
y s
0(m/2− s)
0(s + λ+1)

ds �
∫ d

−ε

(
y

T 2

)σ
T m/2−λ−1dσ

�
(
y

T 2

)−ε
T m/2−λ−1. (2.11)

DefineG̃(t) := |t |m/2−2d−λ−1 and

H̃(t) := F ′(t)
G̃(t)

= |t |2d−m/2+λ+1 log

(
y

T 2

)
.

Then

H̃ ′(t) = (signt)|t |2d−m/2+λ
(
−2+

(
2d − m

2
+ λ+1

)
log

(
y

T 2

))
has at most one zero in(−∞,−T ] and [T,∞). Each of these intervals can there-
fore be divided into two subintervals on which̃H(t) is monotonic. Furthermore,

H̃(t) ≤ −T 2d−m/2+λ+1 log

(
T 2

y

)
< 0

for |t | ≥ T . From [23, Lemma 4.3] and (2.8), it follows that∫ d±i∞

d±iT
y s
0(m/2− s)
0(s + λ+1)

ds = iy de∓iπ(m/2+λ)/2
∫ ±∞
±T

G̃(t)e iF(t) dt

+O
(
y d
∫ ∞
T

t m/2−2d−λ−2 dt

)
� y dT m/2−2d−λ−1

(
log−1

(
T 2

y

)
+1

)
. (2.12)

From the integral representation of the Bessel function (see [24, 6·5(7)]), it fol-
lows that

1

2πi

∫ d+i∞

d−i∞
y s
0(m/2− s)
0(s + λ+1)

ds = y(m−2λ)/4Jm/2+λ
(
2
√
y
)
, y > 0. (2.13)

Using (2.11), (2.12), and Cauchy’s theorem, for 0< y < T 2 we now have

I(y, T ) = y(m−2λ)/4Jm/2+λ
(
2
√
y
)+O(y−εT m/2+2ε−λ−1)

+O
(
y dT m/2−2d−λ−1

(
1+ log−1

(
T 2

y

)))
.
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This gives∑
µn<T 2/(π2x)−1

bn

µ
m/2
n

I(π2µnx, T )

= πm/2−λx(m−2λ)/4
∑

µn<T 2/(π2x)−1

bn

µ
(m+2λ)/4
n

Jm/2+λ
(
2π
√
µnx

)
+O

(
xm/2+ε−λ−1+ x−λR3

(
T 2

π2x

))
, (2.14)

where
R3(y) :=

∑
y/2<µn<y−1

|bn|
y − µn . (2.15)

Equation (2.8) gives the trivial estimate

I(y, T )�
∫ T

−T
y−ε(|t | +1)m/2+2ε−λ−1dt � y−ε(1+ T m/2+3ε−λ)

and consequently∑
T 2/(π2x)−1≤µn≤T 2/(π2x)+1

bn

µ
m/2
n

I(π2µnx, T )

� (x−m/2−2ε + xε−λ)R4

(
T 2

π2x

)
, (2.16)

where
R4(y) :=

∑
y−1≤µn≤y+1

|bn|. (2.17)

From [24, 7·21(1)] it follows that

Jm/2+λ(y)

=
√

2

πy
cos

(
y − π

2

(
m

2
+ λ

)
− π

4

)
+Oδ(y−3/2), y ≥ δ > 0. (2.18)

Putting together (2.4), (2.6), (2.7), (2.9), (2.14), and (2.16) now yields, forT, x ≥
1 andc1x ≤ T ≤ c2x,

1λ,a(x)

= (detS)−1/2π−λ−1x(m−2λ−1)/4

×
∑

µn≤T 2/(π2x)

bn

µ
(m+2λ+1)/4
n

cos

(
2π
√
µnx − π m+ 2λ+1

4

)

+O
(
xm/2−λ−1+2ε +1+ x−λR1(x)+ (x1−m/2−2ε + xε−λ)R2

(
T 2

π2x

)
+ x−λR3

(
T 2

π2x

)
+ (x−m/2−2ε + xε−λ)R4

(
T 2

π2x

)
+ x(m−2λ−3)/4

)
.

(2.19)
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In order to estimate theRj(y), we need an estimate for

r1(y) :=
∑

y≤λn≤y+1

|an|, r2(y) :=
∑

y≤µn≤y+1

|bn|, y ≥ 1.

Sincer1(y) = #{x 6= a | y ≤ Q[ x − a] ≤ y + 1}, a simple geometric argument
givesr1(y) � y(m−1)/2. The same holds forr2(y). But these estimates are too
weak for our purposes; we needrj(y) �ε y

m/2−1+ε. Form ≥ 5 andE anda ra-
tional, this follows from the circle method or the theory of modular forms. For
m = 3,4 andE anda rational, it is much more costly to prove this estimate; fortu-
nately it is only needed in the mean. Form ≥ 8 andE anda arbitrary, the estimate
follows from [1].

From (2.5) it follows that

R1(x)� r1(x)+
∑

1≤l≤x

r1(x + l )
l

+ r1(x −1)+
∑

1≤l≤x/2

r1(x − l −1)

l
. (2.20)

The Cauchy–Schwarz inequality gives, forX � 1,∫ 2X

X

|R1(x)|2 dx

�
∫ 2X

X

[
|r1(x)|2 +

( ∑
1≤l≤x

1

l

)( ∑
1≤l≤x

|r1(x + l )|2
l

)
+ |r1(x −1)|2

+
( ∑

2≤l≤x/2+1

1

l −1

)( ∑
2≤l≤x/2+1

|r1(x − l )|2
l −1

)]
dx

� log2X

∫ 4X

X/2−1
|r1(x)|2 dx. (2.21)

It follows analogously from (2.10), (2.15), and (2.17) that, forX � 1,∫ 2X

X

|Rj(x)|2 dx � log2X

∫ 4X

X/2−1
|r2(x)|2 dx, j = 2,3,4. (2.22)

Furthermore,∫ 2X

X

|R1(x)| dx � logX
∫ 4X

X/2−1
|r1(x)| dx,∫ 2X

X

|Rj(x)| dx � logX
∫ 4X

X/2−1
|r2(x)| dx, j = 2,3,4.

(2.23)

3. Almost Periodicity of Fλ,a

The estimate ofRj(x) in the 1-norm is connected with no cost at all. ForE real
andm ≥ 3 (which will be called condition I in the sequel),
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X

|r1(x)| dx =
∫ 2X

X

( ∑
x6=a:x≤Q[x−a]≤x+1

1

)
dx

=
∑

x6=a:X≤Q[x−a]≤2X+1

∫
[X,2X]∩ [Q[x−a]−1,Q[x−a]]

dx

≤
∑

x6=a:Q[x−a]≤2X+1

1� Xm/2. (3.1)

Analogously, ∫ 2X

X

|r2(x)| dx � Xm/2. (3.2)

If E anda are rational andm ≥ 3 (which will be called condition II), then there
is somea > 0 with aS∈Zm×m andb ∈N with ba∈Zm. Let

r(n) := #{x∈Zm | aQ[ x] = n}, n∈N.
Then

r1(x) = #{x 6= a | ab2x ≤ aQ[bx− ba] ≤ ab2(x +1)} ≤
∑

ab2x≤n≤ab2(x+1)

r(n).

For allx, the sum on the right-hand side has at mostab2 +1 terms. Therefore,∫ 2X

X

|r1(x)|2 dx �a,b

∫ 2X

X

( ∑
ab2x≤n≤ab2(x+1)

|r(n)|2
)
dx

�
∑

ab2X≤n≤ab2(2X+1)

|r(n)|2
∫

[X,2X]∩ [n/(ab2)−1,n/(ab2)]
dx

�
∑

n≤ab2(2X+1)

|r(n)|2.

The classical circle method can be applied to show that the functionn 7→
n1−m/2r(n) is almost periodic onN (see [21] for the most interesting casem = 3).
In particular, its square has a mean value and therefore∑

n≤y
|r(n)|2� ym−1.

Consequently, ∫ 2X

X

|r1(x)|2 dx � Xm−1. (3.3)

The same estimate holds forr2 (herea∈Qm is not needed):∫ 2X

X

|r2(x)|2 dx � Xm−1. (3.4)

If E is real andm ≥ 8 (which will be called conditionIII), it follows from [1]
that
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x:Q[x−a]≤y

1= vol(E)ym/2 +O(ym/2−1 log2 y).

Consequently,r1(y)� ym/2−1+ε and∫ 2X

X

|r1(x)|2 dx � Xm−1+2ε; (3.5)

analogously, ∫ 2X

X

|r2(x)|2 dx � Xm−1+2ε. (3.6)

Assume that(m − 3)/2 < λ < (m − 1)/2. Let M be sufficiently large. From
(2.23) and (3.2), it follows that

4∑
j=2

∫ 4M 2

M 2
|Rj(x)| dx � Mm+ε.

ChooseM ≤ M ∗ ≤ 2M with
4∑

j=2

|Rj((M ∗)2)| � Mm−2+ε.

LetM ≤ t ≤ 2M. ChooseT := πM ∗t andx = t 2. Thenπ/2 ≤ T/x ≤ 2π, and
from (2.19) it follows thatFλ,a(t) = S(t)+ R(t), where

S(t) := (detS)−1/2π−λ−1
∑

µn≤(M ∗ )2

bn

µ
(m+2λ+1)/4
n

cos

(
2π
√
µnt− π

4
(m+2λ+1)

)
and

R(t)� M(m−3)/2−λ+4ε +Mλ−(m−1)/2 + t−(m−1)/2−λR1(t
2).

Under condition I, it follows from (2.23) and (3.1) that∫ 2M

M

|R(t)| dt � M(M(m−3)/2−λ+4ε +Mλ−(m−1)/2). (3.7)

Under condition II orIII, it follows from (2.21) and (3.3) or (3.5) that∫ 2M

M

|R(t)|2 dt � M(Mm−3−2λ+8ε +M 2λ−m+1). (3.8)

ForN ≥ 1, define

pN(t) := (detS)−1/2π−λ−1
∑
µn≤N

bn

µ
(m+2λ+1)/4
n

cos

(
2π
√
µnt − π

4
(m+ 2λ+1)

)
.

Let 1≤ N ≤ M 2. Then|S(t)− pN(t)|2 is expanded into a double sum and inte-
grated fromM to 2M. Using the estimate∫ 2M

M

cos(α1t + β) cos(α2t + β) dt � min
{∣∣|α1| − |α2|

∣∣−1
,M

}
gives
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M

|S(t)− pN(t)|2 dt

� M
∑

N<µn≤(M ∗ )2

|bn|2
µ
(m+2λ+1)/2
n

+
∑

N<µn1<µn2≤(M ∗ )2

|bn1bn2]

(µn1µn2)
(m+2λ+1)/4

min

{
M,

1√
µn2 −√µn1

}
=: MS1+ S2. (3.9)

For l ∈N, ∑
µn∈[l,l+1]

|bn|2 ≤
( ∑
µn∈[l,l+1]

|bn|
)2

= r2(l )
2.

Therefore

S1�
∑
l≥N−1

r2(l )
2

l (m+2λ+1)/2
. (3.10)

In the second sum, distinguish betweenµn2 ≤ 2µn1 andµn2 > 2µn1. Then
S2 = S21+ S22, where

S21� M
∑

N<µn1≤(M ∗ )2

|bn1|
µ
(m+2λ+1)/2
n1

∑
µn1<µn2≤2µn1

|bn2|min

{
1,

1

µn2 − µn1

}
=: MS ∗21, (3.11)

S22�
∑

N<µn1≤(M ∗ )2

|bn1|
µ
(m+2λ+1)/4
n1

∑
2µn1<µn2≤(M ∗ )2

|bn2|
µ
(m+2λ+3)/4
n2

. (3.12)

Since ∑
µn≤t
|bn| ≤ #{x |Q−1[ x] ≤ t} � t m/2,

the inner sum in (3.12) isO(M(m−1)/2−λµ−1/2
n1 ). Therefore,

S22� M(m−1)/2−λ ∑
µn>N

|bn|
µ
(m+2λ+3)/4
n

� M ·N((m−3)/2−λ)/2. (3.13)

The inner sum in (3.11) isO
(∑

0≤l≤µn1
min{1, l−1}r2(µn1 + l )

)
. Hence

S ∗21�
∑

N−1≤k≤(M ∗ )2

1

k(m+2λ+1)/2

∑
µn∈[k,k+1]

|bn|

×
∑

0≤l≤k+1

min

{
1,

1

l

}
(r2(k + l )+ r2(k + l +1))

�
∑

N−1≤k≤(M ∗ )2

r2(k)

k(m+2λ+1)/2

∑
0≤l≤k+2

r2(k + l )
l +1

.
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Since 2r2(k)r2(k + l ) ≤ r2(k)
2 + r2(k + l )2, it follows that

S ∗21�
∑
k≥N−1

r2(k)
2 logk

k(m+2λ+1)/2
+

∑
k≥N−1

1

k(m+2λ+1)/2

∑
0≤l≤k+2

r2(k + l )2
l +1

.

The second sum is∑
h≥N−1

r2(h)
2

∑
k≥N−1, 0≤l≤k+2:k+l=h

1

l +1

1

k(m+2λ+1)/2
.

Sincek ≤ h ≤ 2k + 2, the inner sum isO(h−(m+2λ+1)/2 logh). Therefore

S ∗21�
∑
k≥N−1

r2(k)
2 logk

k(m+2λ+1)/2
. (3.14)

Collecting (3.9), (3.10), (3.13), and (3.14) yields

1

M

∫ 2M

M

|S(t)− pN(t)|2 dt �
∑
l≥N−1

r2(l )
2 log l

l (m+2λ+1)/2
+N((m−3)/2−λ)/2.

If E is rational,m ≥ 3, anda arbitrary, then
∑

l≤y |r2(l )|2 � ym−1 (see proof of
(3.4)). IfE is real andm ≥ 8, then [1] gives

∑
l≤y |r2(l )|2 � ym−1+ε (see proof

of (3.6)). In both cases, it follows that

1

M

∫ 2M

M

|S(t)− pN(t)|2 dt � N((m−3)/2−λ)/2. (3.15)

If the assumptions of Theorem 1.1 are fulfilled then, by (3.7), (3.15), and the
Cauchy–Schwarz inequality, we have forM ≥ √N that

1

M

∫ 2M

M

|Fλ,a(t)−pN(t)| dt � N((m−3)/2−λ)/4+ε+N(λ−(m−1)/2)/2� N−δ(m,λ)+ε,

whereδ(m, λ) > 0 depends only onλ andm. If follows that

‖Fλ,a − pN‖1� N−δ(m,λ)+ε, N ≥ 1, (3.16)

and Theorem 1.1 is proved.
Similarly, under the assumptions of Theorem 1.2, (3.8) and (3.15) give

‖Fλ,a − pN‖2� N−δ(m,λ)+ε, N ≥ 1, (3.17)

thus proving Theorem 1.2.

4. The Fourier Coefficients ofFλ,a

Letm ≥ 2, E anda real, 0≤ λ < (m−1)/2, φ : R+ → C infinitely differentiable
with compact support, andγ ∈R. From (3.16) and (3.17), the Fourier coefficients
of Fλ,a can be immediately deduced if the assumptions of Theorem 1.1 or The-
orem 1.2 are fulfilled. The problem now is to do so under weaker assumptions.
For this we employ a method from [14], which consists of proving some sort of
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Voronoi formula not forFλ,a but for an integral thereof. This formula has far bet-
ter convergence properties because the functionKU(s)0(s)0(s+λ+1)−1 against
whichZ(s) is integrated is decreasing much faster thanUs0(s)0(s + λ + 1)−1

(see (4.3)).
Let suppφ ⊆ [a, b] ⊆ (0,∞) andX ≥ 1/a. If follows from Perron’s formula

and the residue theorem that forx ∈ [(aX)2, (bX)2], x 6= λn for all n ∈ N, and
T ≥ 1,

1

2πi

∫
K(T )

Z(s)
x s0(s)

0(s + λ+1)
ds

= 1λ,a(x)− δ(a)0(λ+1)−1− 0(λ+1)−1
∑

0≤n<m/2

(−1)nZ(−n)
0(−n+ λ+1)n!

x−n

+Oa,b(min{c1(x)T
−(λ+1), c2(X)})

(see (2.2)). Herec1(x) > 0 depends only onx, C2(X) > 0 depends only onX,
andK(T ) consists of straight lines joining the pointsm/2+ 1− iT, −m/2− iT,
−m/2+ iT, andm/2+1+ iT . Therefore,

1

2πi

∫
K(T )

Z(s)
x s0(s)

0(s + λ+1)
ds

converges boundedly for almost allx ∈ [(aX)2, (bX)2] to

1λ,a(x)− δ(a)0(λ+1)−1− 0(λ+1)−1
∑

0≤n<m/2

(−1)nZ(−n)
0(−n+ λ+1)n!

x−n

asT →∞. From Lebesque’s dominated convergence theorem it follows that

I(γ,X) :=
∫ ∞

1
fλ,a(t)e(γ t)φ

(
t

X

)
dt

= 1

2

∫ (bX)2

(aX)2
x λ/2−(m+1)/41λ,a(x)e

(
γ
√
x
)
ω

(
x

U

)
dx

= lim
T→∞

1

4πi

∫
K(T )

Z(s)
0(s)

0(s + λ+1)
KU(s) ds

+Oε,φ(1+Xλ−(m−3)/2+ε), (4.1)

whereω(t) := φ(√t )∈C∞c (R+), U := X2, and

KU(s) :=
∫ ∞

0
x λ/2−(m+1)/4+se

(
γ
√
x
)
ω

(
x

U

)
dx. (4.2)

From this representation it follows thatKU(s) is entire with respect tos. Integration
by parts gives

KU(s)�φ,k,σ1,σ2,γ,λ (1+ |t |)−kU σ+(λ+k)/2−(m−3)/4 (4.3)

for s = σ + it, σ1 ≤ σ ≤ σ2, k ∈N, andU ≥ 1.



Almost Periodicity and the Remainder in the Ellipsoid Problem 345

The functional equation and the Phragmen–Lindelöf principle show that there
is someA∈N such that, for−m/2 ≤ σ ≤ m/2+1 and|t | ≥ 1, we haveZ(s)�
|t |A. Inequality (4.3) withk = A and Stirling’s formula yield∫ m/2+1±iT

−m/2±iT
Z(s)

0(s)

0(s + λ+1)
KU(s) ds �U,A T

−(λ+1), T ≥ 1.

From (4.1) it follows that

I(γ,X)

= 1

4πi

∫ −m/2+i∞

−m/2−i∞
Z(s)

0(s)

0(s + λ+1)
KU(s) ds +Oε,φ(1+Xλ−(m−3)/2+ε).

With the functional equation (2.1), this can be written as

I(γ,X) = 1

2
(detS)−1/2π−m/2

∑
n≥1

bn

µ
m/2
n

I(π2µn, γ,X)

+O(1+Xλ−(m−3)/2+ε), (4.4)

where

I(y, γ,X) := 1

2πi

∫ −m/2+i∞

−m/2−i∞
KU(s)

0(m/2− s)
0(s + λ+1)

y s ds, y > 0. (4.5)

For Re(s) = −m/2, Stirling’s formula yields

0(m/2− s)
0(s + λ+1)

� (1+ |t |)−λ−1, t ∈R.

Choosingk = 0 andk > 3m/2 in (4.3), fory > 0 we have

I(y, γ,X)�
∫
|t |≤√U

U(λ−m)/2−(m−3)/4(1+ |t |)3m/2−λ−1y−m/2 dt

+
∫
|t |≥√U

(1+ |t |)3m/2−k−λ−1U(λ+k−m)/2−(m−3)/4y−m/2 dt

� U3/4y−m/2.

From (4.4) it follows that

I(γ,X) = 1

2
(detS)−1/2π−m/2

∑
µn≤U1/m

bn

µ
m/2
n

I(π2µn, γ,X)

+O(1+Xλ−(m−3)/2+ε + U1/4). (4.6)

Choosem/4 < d < m/2. Since the integrand in (4.5) decreases faster than
polynomially as|Im(s)| → ∞ in {−m/2 ≤ Re(s) ≤ d}, for y > 0 Cauchy’s
theorem gives
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I(y, γ,X)

= 1

2πi

∫ d+i∞

d−i∞
KU(s)

0(m/2− s)
0(s + λ+1)

y s ds

= 1

2πi

∫ d+i∞

d−i∞
0(m/2− s)
0(s + λ+1)

y s
∫ b2U

a2U

x λ/2−(m+1)/4+se
(
γ
√
x
)
ω

(
x

U

)
dx ds.

For Re(s) = d anda2U ≤ x ≤ b2U, the integrand isOy,U,φ(|t |m/2−2d−λ−1). The
exponent in this last estimate is less than−1 and thus the order of the integrations
may be interchanged:

I(y, γ,X)

=
∫ b2U

a2U

x λ/2−(m+1)/4e
(
γ
√
x
)
ω

(
x

U

)
1

2πi

∫ d+i∞

d−i∞
0(m/2− s)
0(s + λ+1)

(yx)s ds dx.

From (2.13) and (2.18), it follows that fory ≥ δ > 0 we have

I(y, γ,X) = π−1/2y(m−2λ−1)/4

×
∫ b2U

a2U

x−1/2e
(
γ
√
x
)
ω

(
x

U

)
cos

(
2
√
xy − π

2

(
m+1

2
+ λ

))
dx

+O(y(m−2λ−3)/4). (4.7)

Denote the integral on the right-hand side byI ∗(y, γ,X). If γ = ±√µn, then

I ∗(π2µn, γ,X) =
∫ ∞

0
φ

(
t

X

)
dt e±πi((m+1)/2+λ)/2

+
∫ bX

aX

e±4πi
√
µntφ

(
t

X

)
dt e∓πi((m+1)/2+λ)/2. (4.8)

Integration by parts shows that the second integral isO(µ
−1/2
n ) = Oγ(1). If γ /∈{√

µn,−√µn
}
, then

I ∗(π2µn, γ,X) =
∑
±

∫ bX

aX

φ

(
t

X

)
e2πit(±√µn+γ ) dt e∓πi((m+1)/2+λ)/2

� 1∣∣√µn − |γ |∣∣ �γ 1. (4.9)

If γ = ±√µn, define

C(γ ) := 1
2(detS)−1/2π−λ−1bnµ

−(m+2λ+1)/4
n e±πi((m+1)/2+λ)/2.

Otherwise, defineC(γ ) := 0. Then (4.6), (4.7), (4.8), and (4.9) give, forX ≥
max{a−1, |γ |m},

I(γ,X) = C(γ )
∫ ∞

0
φ

(
t

X

)
dt +Oγ(X1/2 +Xλ−(m−3)/2+ε).

Therefore
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lim
X→∞

1

X
I(γ,X) = C(γ )

∫ ∞
0
φ(x) dx,

which proves Theorem 1.3.

5. Proof of Corollary 1.4

Part (1)(a) is proved by contradiction. Let 0≤ λ ≤ (m − 3)/2 and assume that
‖Fλ0‖2 <∞. Choose 06= φ ∈C∞c (R+)with φ ≥ 0. Then, forX ≥ 1 andN ≥ 1,

0 ≤ 1

X

∫ ∞
1

∣∣∣∣Fλ0(t)−
∑
n≤N

C
(√
µn
)
e
(−√µnt)∣∣∣∣2φ( tX

)
dt

≤ 1

X

∫ ∞
1
|Fλ0(t)|2φ

(
t

X

)
dt

−
∑
n≤N

2 Re

(
C
(√
µn
) 1

X

∫ ∞
1

Fλ0(t)e
(√
µnt

)
φ

(
t

X

)
dt

)

+ 1

X

∑
n≤N

∣∣C(√µn )∣∣2 ∫ ∞
1

φ

(
t

X

)
dt

+ 1

X

∑
n1,n2≤N :n1 6=n2

C
(√
µn1

)
C
(√
µn2

)
× 1

X

∫ ∞
1

e
((√

µn2 −√µn1

)
t
)
φ

(
t

X

)
dt.

From Theorem 1.3 it follows that the integrals in the second term, after division by
X, tend toC

(√
µn, φ

)
asX → ∞. Integration by parts shows that the integrals

in the last term areOn1,n2,φ(1) asX→∞. LettingX→∞ therefore gives∑
n≤N

∣∣C(√µn )∣∣2 ∫ ∞
0
φ(x) dx �φ ‖Fλ0‖22

uniformly inN. Consequently,∑
n≥1

|bn|2
µ
(m+2λ+1)/2
n

�
∑
n≥1

∣∣C(√µn )∣∣2 <∞.
In particular, ∑

x≤µn≤2x

|bn|2 = o(x(m+2λ+1)/2)

asx →∞. Let a > 0 with aS−1∈Zm×m. Then we haveaµn ∈N for n ∈N and∑
x≤µn≤2x 1� x. The Cauchy–Schwarz inequality gives∑

x≤µn≤2x

bn ≤
( ∑
x≤µn≤2x

1

)1/2( ∑
x≤µn≤2x

|bn|2
)1/2

= o(x(m+2λ+3)/4) = o(xm/2)
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asx →∞. On the other hand, a trivial lattice point estimate gives∑
x≤µn≤2x

bn =
∑

x:x≤Q−1[x]≤2x

1= cxm/2 +O(x(m−1)/2)

with somec > 0, which gives a contradiction. Thus, part (1)(a) is proved.
Part (1)(b) follows from Theorem 1.2.
In order to prove part (2), assume thatλ ≥ (m−1)/2 andE is real. Letx ≥ 2.

From (2.23) and (3.2) it follows that

4∑
j=2

∫ 2x

x

|Rj(t)| dt � xm/2 logx.

Choosex ≤ x∗ ≤ 2x with

4∑
j=2

|Rj(x∗)| � xm/2−1 logx. (5.1)

Now use (2.19) withT = π√x∗x. Thenπ ≤ T/x ≤ √2π and

1λ,a(x)�
∑
µ≤x∗

bn

µ
m/2
n

+1+ x−(m−1)/2R1(x)+ x1−m/2
4∑

j=2

Rj(x
∗). (5.2)

The trivial estimatesr1(y) � y(m−1)/2 and
∑

µn≤y bn � ym/2, together with
(2.20), yield

R1(x)� x(m−1)/2 logx,
∑
µn≤x∗

bn

µ
m/2
n

� logx. (5.3)

Now (5.1), (5.2), and (5.3) give1λ,a(x)� logx.

6. Proof of Corollary 1.5

Let the assumptions of Corollary 1.5 be fulfilled. It will be shown that all the
Fourier coefficients ofρFλ,a vanish. SinceρFλ,a is supposed to beB q-almost
periodic, it will then follow from the general theory that‖ρFλ,a‖q = 0.

Let γ ∈R and let 0< ε < 1/2. All estimates will be uniform inε. Chooseφ ∈
C∞c (R+) such that 0≤ φ ≤ 1, φ(t) = 1 for ε ≤ t ≤ 1− ε, φ ′(t) ≥ 0 for 0≤ t ≤
ε, φ ′(t) ≤ 0 for 1− ε ≤ t ≤ 1, andφ(t) = 0 for t ≥ 1 andt ≤ 0. DefineG(t) :=
Fλ,a(t)e(γ t). From Theorem 1.3 it follows that, foru ≥ 1,∣∣∣∣∫ ∞

1
G(t)φ

(
t

u

)
dt

∣∣∣∣ ≤ d(γ, φ)u, (6.1)

whered(γ, φ) > 0 is a constant depending only onγ andφ. ChooseT0(ε) ≥ 1
such thatd(γ, φ)|ρ(T )| ≤ ε for T ≥ T0(ε). Then, forT ≥ T0(ε),
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T

∫ T

T0

∫ ∞
1

G(t)φ

(
t

u

)
dt ρ ′(u) du

∣∣∣∣ ≤ d(γ, φ)T

∫ T

T0

u|ρ ′(u)| du

� d(γ, φ)

T

∫ T

T0

ρ(u) du� ε. (6.2)

Integration by parts shows that, fort ≥ 1,∫ T

T0

φ

(
t

u

)
ρ ′(u) du = φ

(
t

T

)
ρ(T )− φ

(
t

T0

)
ρ(T0)+

∫ T

T0

t

u2
φ ′
(
t

u

)
ρ(u) du.

From (6.1) and (6.2) it follows that, forT ≥ T1(ε) ≥ T0(ε),

1

T

∫ ∞
1

G(t)

∫ T

T0

t

u2
φ ′
(
t

u

)
ρ(u) du dt

� ε + ρ(T )d(γ, φ)+ ρ(T0)
T0

T
d(γ, φ)� ε. (6.3)

Call the inner integral on the left-hand sideI(t, T ). Let t ≥ 1 andT ≥ T1(ε).

Then

I(t, T ) =
∫

[T0,T ]∩ [t,t/(1−ε)]
t

u2
φ ′
(
t

u

)
ρ(u) du+

∫
[T0,T ]∩ [t/ε,∞)

t

u2
φ ′
(
t

u

)
ρ(u) du

= I1(t, T )+ I2(t, T ). (6.4)

If T > εT thenI2(t, T ) = 0. If t ≤ εT,

|I2(t, T )| = ρ
(
t

ε

)∫ T

t/ε

t

u2
φ ′
(
t

u

)
du = ρ

(
t

ε

)(
φ(ε)−φ

(
t

T

))
≤ ρ(t). (6.5)

If t ≤ u ≤ t/(1− ε) then the mean value theorem gives, with somet ≤ ζ ≤ u,

|ρ(u)− ρ(t)| = |u− t | · |ρ ′(ζ)| ≤ tε

1− ε
ρ(ζ)

ζ
� ερ(t).

Therefore,

I1(t, T ) = ρ(t)
∫

[T0,T ]∩ [t,t/(1−ε)]
t

u2
φ ′
(
t

u

)
du

+O
(
ερ(t)

∫
[T0,T ]∩ [t,t/(1−ε)]

t

u2

∣∣∣∣φ ′( tu
)∣∣∣∣ du). (6.6)

If t > T then the second integral is 0. Ift ≤ T, it is

≤ −
∫ t/(1−ε)

t

t

u2
φ ′
(
t

u

)
du = φ(1− ε)− φ(1) = 1. (6.7)

If t > T or t < (1− ε)T0, then the first integral in (6.6) vanishes. If(1− ε)T0 ≤
t ≤ T, it equals−φ(max{t/T,1− ε})+ φ(t/T0). Define

ψ(τ) := φ(max{τ,1− ε}).
By (6.4)–(6.7) it now follows that, fort ≥ 1 andT ≥ T1(ε),
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I(t, T ) = ρ(t)
(
−ψ

(
t

T

)
+ φ

(
t

T0

))
I[(1−ε)T0,T ](t)

+O(ρ(t)I[0,εT ](t))+O(ερ(t)I[0,T ](t)).

Hence, forT ≥ T1(ε),∫ ∞
1

G(t)I(t, T ) dt

= −
∫ T

(1−ε)T0

G(t)ρ(t)ψ

(
t

T

)
dt +O

(∫ ∞
1
|Fλ,a(t)|ρ(t)φ

(
t

T0

)
dt

)

+O
(∫ εT

1
|Fλ,a(t)|ρ(t) dt

)
+O

(
ε

∫ T

1
|Fλ,a(t)|ρ(t) dt

)
. (6.8)

BecauseρFλ,a is assumed to beB q-almost periodic, it is alsoB1-almost peri-
odic and thus‖ρFλ,a‖1<∞. Hence, the last two terms in (6.8) areO(εT ). This,
together with (6.3), yields∫ ∞

1
G(t)ρ(t)ψ

(
t

T

)
dt = O(εT ) (6.9)

for T ≥ T2(ε) ≥ T1(ε). SinceρFλ,a is almost periodic, integration by parts gives

lim
T→∞

1

T

∫ T

1
G(t)ρ(t)ψ

(
t

T

)
dt = fc(ρFλ,a, γ )

∫ ∞
0
ψ(t) dt,

where

fc(ρFλ,a, γ ) := lim
T→∞

1

T

∫ T

1
ρ(t)Fλ,a(t)e(γ t) dt

is the Fourier coefficient ofρFλ,a corresponding toγ. It therefore follows from
(6.9) that

fc(ρFλ,a, γ )

∫ ∞
0
ψ(t) dt = O(ε).

Since
∫ ∞

0 ψ(t) dt ≥ 1− ε, this means thatfc(ρFλ,a, γ ) = O(ε) uniformly in
ε. Consequently,fc(ρFλ,a, γ ) = 0. According to the introductory remark, this
proves the corollary.
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