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An Analog of the Classical Invariant Theory
for Lie Superalgebras, II

Alexander Sergeev

This paper is a detailed exposition of [S3] with several new results added. It also
complements and refines the results of [S2]. Meanwhile there has appeared a
paper [J1] where a particular case is considered but in more detail and where other
references are offered; see also [J2] and [Y].

1. Preliminaries

In what follows,Sk stands for the symmetric group onk elements. Letλ be a par-
tition of the numberk and lett be aλ-tableau. Recall thatt is calledstandardif
the numbers in its rows and columns grow from left to right and downward. De-
note byCt the column stabilizer oft, and letRt be its row stabilizer. We further
set

et =
∑

τ∈Ct ; σ∈Rt
ε(τ )στ, ẽt =

∑
τ∈Ct ; σ∈Rt

ε(τ )τσ. (0.1)

Let N be the set of positive integers, letN̄ be another, “odd”, copy ofN, and
letM = N∐ N̄ be ordered so that each element of the “even” copy(N) is smaller
than any element from the “odd” copy; inside of each copy, the order is the natu-
ral one. We will call the elements fromN “even” and those from̄N “odd”, so we
can encounter an “even” odd element and so forth.

Let I be the sequence of elements fromM of lengthk. We fill in the tableau
t with elements fromI, replacing elementα with iα. The sequenceI is called
t-semistandardif the elements oft do not decrease from left to right and down-
ward, the “even” elements strictly increase along columns, and the “odd” elements
strictly increase along rows.

The groupSk naturally acts on sequencesI. Let A be the free supercommuta-
tive superalgebra with unit generated by{xi}i∈I . For anyσ ∈Sk, definec(I, σ) =
±1 from the equation

c(I, σ)xI = xσ−1I , where xI = xi1 . . . xik . (0.2)

Clearly,c(I, σ) is a cocycle, that is,

c(I, στ) = c(σ−1I, τ )c(I, σ).

With the help of this cocycle, a representation ofSk in T k(V ) = V ⊗k for any
superspaceV may be defined as
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σvI = c(I, σ−1)vσI , where

vI = vi1⊗ · · · ⊗ vik and viα ∈V for eachα.
(0.3)

Let {v1, . . . , vn; v1̄, . . . , vm̄} be a basis ofV in the standard format (the even ele-
ments come first, followed by the odd ones). Then the elementsvI for all possible
sequencesI of lengthk and with elements from

RV = {1, . . . , n; 1̄, . . . , m̄} (0.4)

form a basis ofT k(V ).
The following theorem describes the decomposition ofT k(V ) into irreducible

(Sk × gl(V ))-modules.

1.1. Theorem (cf. [S1]). The commutant of the naturalgl(V )-action onT k(V )
is isomorphic toC[Sk] and

T k(V ) =
⊕

λ:λn+1≤m
Sλ ⊗V λ,

whereSλ is an irreducibleSk-module andV λ is an irreduciblegl(V )-module.

The following refinement of Theorem 1.1 holds.

1.2. Theorem. If t runs over the standard tableaux of typeλ and if I runs over
semistandardt-sequences, then the family{et(vI )} (resp.,{ẽt(vI )}) is a basis in
Sλ ⊗V λ. Moreover, for a fixedt the families{et(vI )} and {ẽt(vI )} spanV λ.

The proof follows from results of [S1].
LetU andW be two superspaces with basesui andwj for i ∈RU andj ∈RW

and where

RU = {1, . . . , k; 1̄, . . . , l̄ }, RW = {1, . . . , p; 1̄, . . . , q̄}.
The symmetric algebraS •(U ⊗W) is generated byzij = ui ⊗ wj for i ∈ RU
andj ∈ RW. Let I be a sequence of lengthN with elements fromRU and letJ
be a sequence of the same length with elements fromRW. Let p(iα) andp(jβ)
be the parities of the corresponding elements of the sequence. Setα(I, J ) =∑

α>β p(iα)p(jβ) and define an element ofS •(U ⊗W) by setting

Z(I, J ) = (−1)α(I,J )
N∏
α=1

Ziαjβ . (1.1)

For a given tableaut of orderN, we define polynomials

Pt(I, J ) =
∑

σ∈Rt, τ∈Ct
ε(τ )c(I, (στ)−1)Z(στI, J ),

P̃t(I, J ) =
∑

σ∈Rt, τ∈Ct
ε(τ )c(I, (τσ)−1)Z(τσI, J ).

The Lie superalgebrasgl(U) andgl(W ) act naturally onS •(U ⊗W), and their
actions commute.
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1.3. Theorem. S •(U ⊗W) =⊕λ U
λ⊗Wλ, whereUλ andWλ are irreducible

gl(U)- and gl(W )-modules(respectively) corresponding to the partitionλ and
where the sum runs over partitions such thatλα+1 ≤ β for α = min(k, p) and
β = min(l, q).

Proof. By Theorem1.1,

W ⊗N =⊕Wλ ⊗ Sλ and U ⊗N =⊕ Uµ ⊗ Sµ.
Hence,

SN(U ⊗W) = ((U ⊗W)⊗N)SN = (U ⊗N ⊗W ⊗N)SN

=
⊕
λ,µ

(Uλ ⊗Wµ ⊗ Sλ ⊗ Sµ)SN

=
⊕
λ,µ

(Uλ ⊗Wµ)⊗ (Sλ ⊗ Sµ)SN .

Since(Sλ)∗ ' Sλ and sinceSλ andSµ are irreducible, we have

(Sλ ⊗ Sµ)SN = HomSN
(Sλ, Sµ) =

{
0 if λ 6= µ,
C otherwise.

The theorem is proved.

1.4. Theorem. Let t be a standard tableau of typeλ and let I and J be t-
semistandard sequences. Then the familyPt(I, J ), as well as the similar family
P̃t(I, J ), forms a basis in the moduleUλ ⊗Wλ.

Proof. The natural homomorphism

φN : U ⊗N ⊗W ⊗N → SN(U ⊗W)
is clearly a homomorphism of(gl(U)⊕ gl(W ))-modules. It is not difficult to ver-
ify that

φN(et(vI )⊗ ẽt(wJ )) = c · Pt(I, J ) for a constantc.

Let t be a fixedλ-tableau and letI, J be two t-semistandard sequences with
elements fromRU andRW, respectively. Then, by Theorem 1.2, the vectors
et(vI ) ⊗ ẽt(wJ ) form a basis of a subspaceL ⊂ U⊗N ⊗W ⊗N which is also a
(gl(U)⊕gl(W ))-submodule. By the same theorem,L ' Uλ⊗Wλ and it remains
to establishφN(L) 6= 0. For this it suffices to show that there exists anl ∈L such
thatφ(l) 6= 0. SinceφN(σvi ⊗ σwJ ) = φN(vI ⊗ wJ ), it follows that

φN(et(vI )⊗ ẽt(wJ )) = cφN(et(vI )⊗ wJ )
= cφN(σet(vI )⊗ σwJ ) = cφN(eσt(σvI )⊗ σwJ )
= ±cφN(eσt(vσI )⊗ wσJ ).

We may therefore assume that the tableaut is consecutively filled in along the
rows with the numbers 1,2, . . . . Observe that the sequencesσI andσJ remain
σt-semistandard.
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Let I = J be the sequence

1. . .1︸ ︷︷ ︸
λ1

2 . . . 2︸ ︷︷ ︸
λ2

. . . α . . . α︸ ︷︷ ︸
λα

1̄. . . λ̄α+11̄. . . λ̄α+2 . . . 1̄. . . λ̄γ ,

where (λ1, λ2, . . . , λα, . . . , λγ ) is the partition corresponding tot with α =
min(dimU0̄,dimW0̄) andβ = min(dimU1̄,dimW1̄). It is not difficult to ver-
ify that φN(et(vI )⊗ wI ) 6= 0.

SinceφN is a homomorphism of(gl(U)⊕ gl(W ))-modules, its restriction onto
L is an isomorphism. This implies the statement of Theorem 1.4 for the family
Pt(I, J ); for the familyP̃t(I, J ), the proof is similar.

Let us elucidate how the results obtained can be applied to invariant theory.
Let g ⊂ gl(V ) be a Lie superalgebra. By “the invariant theory ofg” we mean

the description ofg-invariants in the superalgebra

A
p,q

k,l = S((U ⊗V )⊕ (V ∗ ⊗W)).
OnA

p,q

k,l , the Lie superalgebrasgl(U) andgl(W ) act naturally. By Theorem 1.3
we have

A
p,q

k,l =
⊕
λ,µ

Uλ ⊗V λ ⊗V ∗µ ⊗Wµ.

Therefore, to describeg-invariant elements, it suffices to describe theg-invariants
in V λ ⊗V ∗µ = Hom(V µ, V λ). But (V λ ⊗V ∗µ)g = Homg(V

µ, V λ); that is, the
description ofg-invariants is equivalent to the description ofg-homomorphisms
of g-modulesV µ.

Let us consider how the method works in the simplest example:g = gl(V ).
Let {ei : i ∈RV } be a basis ofV in a standard format, with{e∗i } the left dual basis.
Set

θ =
∑
i∈T

ei ⊗ e∗i , θ̂ =
∑
i∈T
(−1)p(i)e∗i ⊗ ei .

It is not difficult to verify thatθ andθ̂ areg-invariants.
Set

T p,q(V ) = V ⊗p ⊗V ∗⊗q, T̂ p,q(V ) = V ∗⊗p ⊗V ⊗q .
OnT p,q(V ) andT̂ p,q(V ), the groupSp ×Sq acts and its action commutes with
that of gl(V ). Hence,Sp × Sq also acts on the space ofgl(V )-invariants in
T p,q(V ) andT̂ p,q(V ).

2. Invariants of gl(V )

Setvr∗ = (xr1, . . . , xrn; xr1̄, . . . , xrm̄) andvs = (x1s
∗, . . . , xns∗; x1̄s

∗, . . . , xm̄s∗)t ,
wherexri = ur ⊗ ei andxis = ei∗ ⊗ ws. That is,vr∗ is a row vector andvs is a
column vector, so their scalar product is equal to(vr

∗, vs) =∑ i xri xis
∗.

2.1. Theorem. The algebra ofgl(V )-invariant elements inAp,q

k,l is generated
by the elements(vr∗, vs) for all r ∈RU ands ∈RW.
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Proof. Let A be a supercommutative superalgebra andL a g-module. LetLA =
(L⊗ A)0̄ andgA = (g⊗ A)0̄.

The elements ofS •(L∗)may be considered as functions onLA with values inA.
Let l ∈ LA = (L ⊗ A)0̄ = (Hom(L∗, A))0̄. Thenl determines a homomorphism
φl : S(L∗)→ A. Set

f(l) = φl(f ) for any f ∈ S •(L∗).

Observe thatgA acts naturally onLA and on the algebra of functions onLA.
LetV p denoteV ⊕· · ·⊕V (p summands), and setL = V p⊕5(V )q⊕(V ∗)k⊕

5(V ∗)l . ThenS(L∗) = A
p,q

k,l and we can considerLA as the set of collections

L = (v1, . . . , vp, v1̄, . . . , vq̄ , v
∗
1, . . . , v

∗
k, v
∗
1̄, . . . , v

∗
l̄
),

wherevs ∈ V ⊗ A andv∗t ∈ HomA(V ⊗ A,A) and where the parities of these
vectors coincide with the parities of their indices.

Let us write the vectors with right coordinates and the covectors with left ones:

vs =
∑
i

eia
∗
is , v∗t =

∑
i

atie
∗
i .

Consider now the elements ofA
p,q

k,l as functions onL by setting

x∗is(L) = a∗is , x∗t i(L) = ati .
Therefore, thanks to Statement 2.3 from [S2], it suffices to describe the functions
onL contained in the subalgebra generated by the coordinate functionsx∗is andx∗t i
and by invariants with respect to GL(V ⊗ A). Because the scalar products turn
into scalar products under the(gl(U) ⊕ gl(W ))-action, it is sufficient to confine
ourselves to the invariants inAn,m

n,m.

Denote byM the set of collections(v1, . . . , vn, v1̄, . . . , vm̄) that form bases of
V ⊗A. In Zariski topology, the setM is dense in the space of all collections. Iff
is an invariant andL∈M then there exists ag ∈GL(V ⊗A) such thatgvi = ei for
eachi ∈ T . Therefore,f(L) = f(gL) = f(e1, . . . , en, gv

∗
1̄
, . . . , gv∗m̄) andf(L)

is a polynomial in coordinates of thegvt̄ . But (gv∗
t̄
, ei) = (v∗t̄ , g−1ei) = (v∗t̄ , vi),

which proves the theorem.

Corollary. The nonzerogl(V )-invariants inT p,q exist only ifp = q. In this
case the(Sp×Sp)-module of invariants is generated by the images of the canon-
ical elementsθ⊗p in T p,p and θ̂ in T̂ p,p.

Consider now the algebra homomorphism

S •(U ⊗W)→ (A
p,q

k,l )
gl(V ), ur ⊗ ws 7→ (v∗r, vs). (2.1)

The kernel of this homomorphism is the ideal of relations between the scalar
products.
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2.2. Theorem. The ideal of relations between scalar products(v∗r, vs) is gener-
ated by the polynomialsPt(I, J ),wheret is a fixed standard rectangular(n+1)×
(m+ 1) tableau and whereI andJ are t-semistandard sequences with elements
fromRU andRW, respectively.

Proof. By Theorem 1.3,S •(U ⊗W) =⊕λ U
λ ⊗Wλ and

A
p,q

k,l = S •(U ⊗V ⊕ V ∗ ⊗W) = S •(U ⊗V )⊗ S •(V ∗ ⊗W)
=
(⊕

µ

Uµ ⊗V µ
)
⊗
(⊕

ν

(V ∗)ν ⊗Wν

)
;

hence
(A

p,q

k,l )
gl(V ) =

⊕
µ:µn+1≤m

Uµ ⊗Wµ.

Since homomorphism (2.1) is a homomorphism of(gl(V )⊕ gl(W ))-modules, its
kernel coincides with

⊕
λ:λn+1≥m+1U

λ ⊗Wλ.

Let ν be a(n + 1) × (m + 1) rectangle. The conditionλn+1 ≥ m + 1 means
thatλ ⊃ ν and so by Theorem 1.3 it suffices to demonstrate thatPt(I, J ), wheret
is a fixed standard rectangular tableau of sizeλ, belongs to the ideal generated by
Uν ⊗Wν.

Let et be the corresponding minimal idempotent and letes be the minimal idem-
potent for a standard tableaus of sizeν. DecomposingRt into the right cosets
relative toRs and decomposingCt into the left cosets relative toCs, we obtain a
representation ofet in the form

∑
τiesσj . This implies thatPt(I, J ) is the sum of

polynomials of the formfiPti (Ii, Jj )φj, that is, it belongs to the ideal generated
by thePt(I, J ).

3. Invariants of sl(V )

First, let us describe certain tensor invariants. Obviously, allgl(V )-invariants are
alsosl(V )-invariants; we will thus describe only thesl(V )-invariants that are not
gl(V )-invariants. Denote byθk = θ⊗k the invariant inT k,k and byθ̂k = θ̂⊗k the
invariant inT̂ k,k, and for a given sequenceI with elements fromRV set

vI = ei1⊗ · · · ⊗ eik , v∗I = e∗i1⊗ · · · ⊗ e∗ik .
Let us representsl(V ) in the formg = g− ⊕ g0⊕ g+, whereg0 = g0̄ and where
g± are theg0-modules generated by the positive and negative root vectors.

Let {Xα}α∈R− and{Xβ}β∈R+ ,whereR± are the sets of positive (negative) roots,
be some bases ofg− andg+, respectively; setX− =∏Xα andX+ =∏Xβ. The
elementsX± are uniquely determined up to a constant factor because the subalge-
brasg± are commutative.

3.1. Lemma. LetM be ag0-module and letM̃ = indg
g0(M) be the inducedg-

module. Then each of the correspondencesm 7→ X+X−m andm 7→ X−X+m is
a bijection ofMg0 ontoM̃g.
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Proof. As follows from Lemma 4.2, dimMg0 = dim M̃g. Hence, it suffices to
show that the correspondencem 7→ n = X+X−m is an injective map ofMg0

to M̃g. The injectivity is manifest, so we need only check that the image isg-
invariant. Clearly,g+n = g0n = 0. It therefore suffices to verify thatX−αn = 0
for every simple rootα. This is subject to a direct check with the help of the mul-
tiplication table ingl(V ).

3.2. Lemma. Let V1 and V2 be finite-dimensionalg0-modules. Setg+V1 =
g−V2 = 0. Then

indg
g0⊕g+V1⊗ indg

g0⊕g−(V2) ' indg
g0
(V1⊗V2). (3.2.1)

is an isomorphism ofg-modules.

Proof. Since the dimensions of both modules are equal, it suffices to show that
the natural homomorphism

indg
g0
(V1⊗V2)→ indg

g0⊕g+(V1)⊗ indg
g0⊕g−(V2) (3.2.2)

is surjective—in other words, that the module generated byV1⊗V2 coincides with
the whole module.

The module on the right-hand side has a natural filtration induced by filtrations
of the modules indgg0⊕g+(V1) and indgg0⊕g−(V2). Let theXα be a basis ofg+ and
theX−α a basis ofg−. Consider the moduleW generated byV1⊗V2, that is, by
the elements of filtration zero and the element

w = X−α1 . . . X−αkv1⊗Xβ1 . . . Xβlv2.

We have

w = X−α1(X−α2 . . . X−αkv1⊗Xβ1 . . . Xβlv2)

±X−α2 . . . X−αkv1⊗X−α1Xβ1 . . . Xβlv2

= X−α1(X−α2 . . . X−αkv1⊗Xβ1 . . . Xβlv2)

±X−α2 . . . X−αkv1⊗
(∑

i

Xβ1 . . . Xβi−1[X−α1, Xβi ]Xβi+1 . . . Xβlv2

)
.

Since each summand is of filtration< k + l, they all belong (by the inductive
hypothesis) toW ; hence, so isw ∈W.
Let t be a tableau consisting ofm columns andn+k rows, filled in as follows: first
we fill in the tableaut1 that occupies the firstn rows and next the tableaut2 that
occupies the remaining rows; both tableaux are filled in consecutively columnwise.

Let s be a tableau consisting ofn rows andk+m columns, filled in as follows:
first we fill in the tableaus1 that occupies the firstk columns and next the tableau
t2 that occupies the remaining columns; both tableaux are filled in consecutively
columnwise.
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Let Ik be the sequence obtained byk-fold repetition of the sequence 1,2, . . . , n.
Let Jk be the sequence consisting ofk copies of1̄ in a row,k copies of2̄ in a row,
. . . , k copies ofm̄ in a row.

3.3. Theorem. In T̂ (m+k)n,(n+k)m(V ), the element

es × ẽt(v∗Ik ⊗ θ̂nm ⊗ vJk )
is ansl(V )-invariant.

Proof. Let N be any positive integer, and consider the mapφ : T N,N(V ) →
T N,N(V0̄) such thatφ(V1̄) = φ(V ∗̄1 ) = 0. Clearly,φ is an(SN × SN)-module
homomorphism because it is induced by projections ofV andV ∗ onto their even
parts.

TakeX+ andX− from Lemma 3.1 and consider the map

ψ : T N,N(V0̄)→ T N,N(V ), v0 7→ X+X−v0.

Clearly,ψ is an(SN ×SN)-module homomorphism.
Let us now consider the restrictions of the mapsφ andψ ontoT N,N(V )gl(V )

andT N,N(V0̄)
gl(V0̄), respectively. It is evident thatφ sends the first of these spaces

into the second one, whereas (by Lemma 3.1)ψ sends the second of these spaces
into the first one. Theorem 1.1 implies that, as(SN × SN)-modules, the spaces
T N,N(V )gl(V ) andT N,N(V0̄)

gl(V0̄) have simple spectra.
Let Sλ ⊗ Sλ ⊂ T N,N(V )gl(V ) andSλ0 ⊗ Sλ0 ⊂ T N,N(V0̄)

gl(V0̄) correspond to a
typical diagramλ (both are nonzero; i.e.,λn ≥ m andλn+1 = 0). Then the sim-
plicity of the spectrum, together with Lemma 3.1, implies thatφ andψ are (up
to a constant factor) mutually inverse isomorphisms of the modulesSλ ⊗ Sλ and
Sλ0 ⊗ Sλ0 .

Let
Ct =

⋃
τ

τ (Ct1 × Ct2) and Rs =
⋃
σ

σ(Rs1 × Rs2)

be the decomposition of the column stabilizerCt of the tableaut into the left cosets
relative to the product of the column stabilizers oft1 andt2, and likewise for the
row stabilizerRs. Then

ẽt =
∑
τ

ε(τ )τẽt1 ẽt2, es =
∑
σ

σes1es2.

It is easy to verify that

g+(V0̄) = g−(V ∗̄0 ) = g+(V ∗̄1 ) = g−(V1̄) = 0. (3.3)

The vectorX+es(v∗Ik ⊗ v∗Im) is nonzero, belongs to a typical module, and is a
highest one with respect tog+ ⊕ (g0)+, where(g0)+ is the set of strictly upper
triangular matrices with respect to the fixed basis ofV0̄. But (3.3) implies that
es(v

∗
Ik
⊗ v∗Jn) is also highest with respect tog+ ⊕ (g0)+ and lies in the same mod-

ule. This shows that

X+es(v∗Ik ⊗ v∗Im) = c · es(v∗Ik ⊗ v∗Jn), where c 6= 0.
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Further, from Lemmas 3.1 and 3.2 it follows that the vector

X−X+[es(v
∗
Ik
⊗ v∗Im)⊗ ẽt(vIm ⊗ vJk )]

is g-invariant becausees(v∗Ik ⊗ v∗Im)⊗ ẽt(vIm ⊗ vJk ) is g0̄-invariant. We make use
of the fact thatX+ẽt(v∗Im ⊗ v∗Jk ) = 0 to deduce that

w = X−X+[es(v
∗
Ik
⊗ v∗Im)⊗ ẽt(vIm ⊗ vJk )]

= X−
[
[X+es(v∗Ik ⊗ v∗Im)] ⊗ ẽt(vIm ⊗ vJk )

]
= const·X−[es(v

∗
Ik
⊗ v∗Jn)⊗ ẽt(vIm ⊗ vJk )]

= const·
∑
σ,τ

ε(τ )σ × τ(X−[es1es2(v
∗
Ik
⊗ v∗Im)⊗ ẽt1 ẽt2(vIm ⊗ vJk )]

)
= const·

∑
σ,τ

ε(τ )σ × τ(es1(v∗Ik )⊗X−[es2(v
∗
Im
)⊗ ẽt1(vIm)]ẽt2(vJk )

)
= const·

∑
σ,τ

ε(τ )σ × τ(es1(v∗Ik )⊗X−X+[es2(v
∗
Im
)⊗ ẽt1(vIm)]ẽt2(vJk )

)
.

Moreover,

φ(es2 × ẽt1(θ̂nm)) = es2 × ẽt1(φ(θ̂nm)) = es2 × ẽt1
(∑

v∗L ⊗ vL
)
,

whereL runs over all the sequences of lengthnm composed from the integers 1
to n. But, as is not difficult to see,

es2 × ẽt1
(∑

v∗L ⊗ vL
)
= const· es2(v∗Im)⊗ ẽt1(vIm)

and hence
X−X+es2(v

∗
Im
)⊗ ẽt1(vIm) = const· es2 × es1(θ̂nm).

Therefore,

w = const·
∑
σ,τ

ε(τ )σ × τ(es1(v∗Ik )⊗ es2 × ẽt1(θ̂nm)⊗ et2(vJ ))
= es × ẽt(v∗Ik ⊗ θ̂nm ⊗ vJ ),

which proves the theorem.

Proof of the following theorem is similar.

3.4. Theorem. The elementes × ẽt(vIk ⊗ θnm ⊗ v∗Jk ) in T nm+kn,nm+km(V ) is
sl(V )-invariant.

3.5. Corollary. LetL be the sequence with elements fromM. Set

p(L) =
∑

p(li) and α(L,L) =
∑
i<j

p(li)p(lj ).

In the notation of Theorems 3.3 and 3.4, the invariant elements can be expressed
in the form

es× ẽt(v∗Ik⊗ θnm⊗vJk ) =
∑
L

(−1)p(L)+α(L,L)es(v∗Ik ⊗v∗L)⊗ ẽt(vL⊗vJk ) (3.5.1)

and
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es × ẽt(vIk ⊗ θ∗nm ⊗ v∗Jk ) =
∑
L

(−1)α(L,L)es(vIk ⊗ vL)⊗ ẽt(v∗L ⊗ v∗Jk ), (3.5.2)

where the sums run over all the sequencesL of lengthnm with elements fromRV .

Proof. It is easy to verify that̂θnm =∑L(−1)α(L,L)+p(L)v∗L⊗ vL, which immedi-
ately implies (3.5.1). Formula (3.5.2) is similarly proved.

Recall from (0.4) and (0.5) the definition ofRU,RV ,RW . For any sequencesI
andJ, denote byI ∗ J the sequence obtained by appendingJ to the end ofI. Let
now I be the sequence of length(k +m)n with elements fromRU andJ the se-
quence of length(k+n)mwith elements fromRW ; let Î be the sequence of length
(k + n)m with elements fromRU and Ĵ the sequence of length(k + m)n with
elements fromRW. For any sequenceL of lengthnm with elements fromRV , we
define:

P̃s(I, Ik ∗ L)∈ S •(U ⊗V ), P̃t(L ∗ Jk, J )∈ S •(V ∗ ⊗W);
Pt(Î , L ∗ Jk)∈ S •(U ⊗V ), Ps(Ik ∗ L, Ĵ )∈ S •(V ∗ ⊗W).

3.6. Theorem. The algebra ofsl(V )-invariant elements inAp,q

k,l is generated
by the elements

(i) (v∗r, vs), wherer ∈RU ands ∈RW ;
(ii) Fk(I, J ) =∑L(−1)α(L,L)P̃s(I, Ik ∗ L)P̃t(L ∗ Jk, J ), whereI is ans-semi-

standard sequence,J is a t-semistandard one, andL runs over all the se-
quences of lengthnm with elements fromRV ; and

(iii) F−k(Î , Ĵ ) =∑L(−1)α(L,L)+p(L)(p(Î )+p(Ĵ ))Ps(Ik ∗L, Ĵ )Pt(Î , L∗Jk),where
Î is ans-semistandard sequence,Ĵ is a t-semistandard one, andL runs over
all the sequences of lengthnm with elements fromRV .

Proof. For Young tableauxλ andµ, we have

(V λ ⊗ V ∗µ)sl(V ) = Homsl(V )(V
µ, V λ).

The dimension of this space is equal to either 0 or 1. It is equal to 1 only if (a)λ =
µ or (b) bothλ andµ contain an×m rectangle and, for anyk ∈Z, λi = µi + k
for i = 1, . . . , n andλ′j = µ′j + k for j = 1, . . . , m.

To prove the theorem it suffices to show that, for theseλ andµ, the module
V λ⊗V ∗µ contains an invariant that can be expressed via the invariants listed in the
theorem. By [S2], such an invariant exists. Under the canonical homomorphism
of the tensor algebra onto the symmetric one, the invariants of the form(i)–(iii)
turn into a system of generators. The theorem is proved.

To the invariant element inT n(m+k),m(n+k)(V ) there corresponds an invariant op-
eratorT m(n+k)(V )→ T n(m+k)(V ). To describe it, observe thatCt can be repre-
sented asCt = ∐π∈Z(Ct1 × Ct2)π, the decomposition into right cosets relative
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to the product of the column stabilizers of tableauxt1 andt2; letZ be a collection
of their representatives. Define

DJk : T m(n+k)(V )→ T nm(V ), DJk (v1⊗ v2) = (−1)p(Jk)p(v1)v1 · v∗Jk (v2).

3.7. Lemma. Let L correspond toes × ẽt(vIk ⊗ θnm ⊗ v∗Jk ) as an invariant op-
erator. Then

L(et(vL)) = const· L(vL) = es
(
vIk ⊗D∗Jk et2

∑
π∈Z

ε(π)πvL

)
. (3.7)

Proof. Toθnm there corresponds the identity operator id :V ⊗nm→ V ⊗nm. Hence,
to θnm⊗ v∗Jk there corresponds the operatorDJk : V ⊗m(n+k)→ V ⊗nm and tovIk⊗
θnm⊗v∗Jk there corresponds the operatorvIk⊗DJk ; finally, toes×ẽt(vIk⊗θnm⊗v∗Jk )
there corresponds the operatores(vIk ⊗DJk )et . Therefore,

L(et(vL))
= es(vIk ⊗DJk )e2

t (vL) = c1es(vIk ⊗DJk )et(vL) = c1 · L(vL)

= c1es

(
vIk ⊗DJk

∑
π

et1et2ε(π)πvL

)
= c1es

(
vIk ⊗ et1DJket2

∑
π

ε(π)πvL

)

= c1eset1

(
vIk ⊗DJket2

∑
π

ε(π)πvL

)
= c1c2es

(
vIk ⊗DJket2

∑
π

ε(π)πvL

)
.

The last equality follows fromeset1 = c2es.

Let us consider the casek = 1 in more detail. LetL be a sequence of length
nm+m with elements fromRV , considered as at-tableau.

In each columnL,mark an “odd” element so that all the elements marked—say,
l = (l1, . . . , lm)—are distinct. The pair(L, l)will be called amarkedtableau. We
introduce the following notation:ci for the parity of theith column;di for the par-
ity of the last element in theith column;bi for the parity of the column under the
ith marked element;|bi | for the number of elements in theith column under the
ith marked element; andε(l) for the sign of the permutationl = (l1, . . . , lm). Set
ε(L, l) = (−1)q(L)ε(l ) and set

ε(L) = c2+ c4+ · · · + d2+ d4+ · · ·, q(L) = b1+ |b1| + b2+ |b2| + · · · .
3.8. Theorem. The invariant operator is of the form

L(et(vL)) = const· L(vL) = const· ε(L)
∑
(L,l )

ε(L, l)es(vI1 ⊗ vL\l), (3.8)

where the constant factor does not depend onL.

Proof. Since for the representatives of the cosets ofSn+1/Sn we can take a col-
lection of cycles, we may assume in (3.7) that
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π = π1 . . . πm, πiπj = πjπi for any i, j.

Hence,π2 = 1. Furthermore,DJ1et2
∑
ε(π)πvL 6= 0 if and only if the last row of

πL for someπ is, up to a permutation, a permutation of{1̄, . . . , m̄}.
The set of marked tableau(L, l) is in one-to-one correspondence with the set

of pairs(L, π) such that the last row ofπL is, up to a permutation,{1̄, . . . , m̄}.
Indeed, from the pair(L, l) determineπ = π1 . . . πm, whereπi is the cycle that
shifts the elements under theith marked element one cell up along the column and
places the marked one at the bottom. If the marked element lies in the last row,
we setπi = 1.

Conversely, givenπ we markπ(k1), . . . , π(km), where(k1, . . . , km) is the last
row ofL. Hence, (3.7) implies that

L(vL) =
∑
(L,l )

δ(L, l)es(vI1 ⊗ vL\l),

whereδ(L, l) is a sign depending on(L, l). Direct calculation of this sign leads
us to (3.8), proving the theorem.

4. Absolute Invariants of osp(V )

LetA = U(osp(V ))[ε] be the central extension with the only extra relationε2 =
1. Then, introduce onA the co-algebra structure onU(osp(V )) and settingε 7→
ε ⊗ ε. Assuming thatε acts onV as the scalar operator of multiplication by−1,
we may considerV as anA-module. Using the co-algebra structure onA, one can
determine a naturalA-action inT p,q(V ) andA

p,q

k,l . We can therefore speak about
A-invariants in these modules.

4.1. Lemma. Let gl(V ) = g = g− ⊕ g0 ⊕ g+ (as in Section 3) and letM be a
g0-module. Setg+M = 0. Then there is an isomorphism ofosp(V )-modules

indgl(V )
g0⊕g+(M) ' indosp(V )

osp(V )0̄
(M). (4.1)

Proof. See [S2, Lemma 5.1].

4.2. Lemma. Letg be a Lie superalgebra, and let the representation ofg0̄ in the
maximal exterior power ofg1̄ be trivial. Then there is an isomorphism of vector
spaces

indg
g 0̄
(M)g ' Mg 0̄. (4.2)

Proof. See [S2, Lemma 5.2].

Remark. Statements similar to Lemmas 4.1and 4.2 hold also forU(osp(V ))[ε]-
modules. One can refine Lemma 4.2 and prove that, ifv0 ∈M isg0̄-invariant, then
the correspondingg-invariant vector is of the formξ1 . . . ξnv0 + terms of lesser
degree.
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The presence of an evenosp(V )- andA-invariant form onV determines an isomor-
phism ofA-modules and algebrasAp,q

k,l = Ap+k,q+l . Therefore, we may assume
thatk = l = 0. By definition, the Lie superalgebraosp(V ) preserves the vector

n∑
i=1

e∗i ⊗ e∗n−i+1+
r∑
j=1

(
e∗
m−j+1

⊗ e∗
j̄
− e∗

j̄
⊗ e∗

m−j+1

)
,

where dimV = (n|2r). Therefore, the scalar products

(vs, vt ) =
n∑
i=1

x∗is x
∗
n−i+1,t + (−1)p(s)

r∑
j=1

(
x∗
m−j+1,s

x∗
j̄,t
− x∗

j̄,s
x∗
m−j+1,t

)
, (4.3)

wheres, t ∈RW areosp(V )- andA-invariants.

4.3. Theorem. The algebra ofA-invariant elements inAp,q = S •(V ∗ ⊗W) is
generated by the elements(vs, vt ) for s, t ∈RW.
Proof. See [S2, Thm. 5.3].

Let I be a sequence of length 2k with elements fromRW. Determine an element
X(I )∈ S •(S2(W )) by setting

X(I ) = xi1i2 . . . xi2k−1i2k ,

wherexij is the canonical image of the elementwi ⊗ wj ∈ S2(W ).

Let t be a tableau of order 2k with rows of even lengths. Then theeven Pfaffian
is defined:

Pft(I ) =
∑

τ∈Ct, σ∈Rt
ε(τ )c(I, (στ)−1)X(στI ). (4.4)

4.4. Theorem. (a) S •(S2(W )) = ⊕Wλ, where the length of each row ofλ is
even.

(b) Let t be aλ-tableau filled in along rows with the numbers1,2, . . . . Then the
family Pft(I ) for thet-standard sequencesI is a basis ofWλ.

Proof. (a) OnT 2k(W ) = W ⊗2k, the groupS2k and its subgroupGk = Sk B Zk2
act naturally; that is,Sk permutes pairs(2i − 1,2i) whereasZk2 permutes inside
each pair. Clearly,S k(S2(W )) = T 2k(W )Gk .

On the other hand,T 2k(W ) =⊕ Sλ ⊗Wλ, soT 2k(W )Gk =⊕(Sλ)Gk ⊗Wλ.

Hence, in the decomposition ofS k(S2(W ))we enter onlyWλ for which(Sλ)Gk 6=
0 and their multiplicity equals dim(Sλ)Gk . However,

(Sλ)Gk = HomGk (indSk

Gk
(id), Sλ),

so the multiplicity ofWλ in S k(S2(W )) is equal to that ofSλ in indSk

Gk
(id). By

[H] this multiplicity is equal to 1 if the lengths of all rows ofλ are even and to 0
otherwise. This proves (a).
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(b) Consider now the natural mapT 2k(W ) → S k(S2(W )). For the tableaut
from the conditions of the theorem and the sequenceI, the vectorset(wI ) form
a basis ofWλ. Hence the images of these vectors (which are exactly the Pft(I ))

form a basis ofWλ ⊂ S k(S2(W )).

Consider the algebra homomorphism

S •(S2(W ))→ S •(V ∗ ⊗W), xst 7→ (vs, vt ). (4.5)

Its kernel is the ideal of relations between scalar products.

4.5. Theorem. The ideal of relations between scalar products is generated by
polynomialsPft(I ), wheret is a (2r + 2)× (n+1) rectangle filled in along rows
andI is a t-standard sequence with elements fromRW.

Proof. By Theorem 4.3,

S(V ∗ ⊗W)A =
⊕
λ

(V ∗λ)A ⊗Wλ =
⊕

λn+1≤2r

Wλ.

The kernel of homomorphism (4.5) is therefore equal to
⊕

λn+1≥2r+2W
λ. We

show that this kernel is contained in the ideal generated byWλ, whereλ is a
(2r + 2)× (n+1) rectangle.

Let µ ⊃ λ and letes be the corresponding idempotent; thenes = ∑
τietσj .

Hence,

es(J ) =
∑

τiet(σjJ ) =
∑

eτi t(τiσjJ ).

Thus, Pfs(J ) =∑ i,j fij Pfτi t(Jij ) and we are done.

5. Relative Invariants osp(V )

The invariants ofosp(V ) are, first of all, the ones generated by scalar products.
To describe the other invariants, let us describe a certain invariant in the tensor
algebra. Let dimV = n|m. For i ∈RV , defineĩ by setting

ĩ =
{
n− i +1 if i is “even”,

m− i +1 if i is “odd”.

Let I = i1i2 . . . i2p be a sequence of even length with elements fromRV , and let
I ∗ be the set consisting of the pairs(i2α−1, i2α) for α ≤ p such that̃i2α−1 6= i2α.
Let t be a rectangularn × m tableau consecutively filled in along columns from
left to right and letI be a sequence with elements fromRV . We fill in the tableaut
with elements fromI as follows. Replaceα with iα. LetT be the set of sequences
I such that all rows oft (except the last row) are of the form

i1ĩ1 . . . ir ĩr for r = 1
2m;
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the last rowJ should be such that ifj ∈ Ĵ thenj̃ ∈ Ĵ andĴ consist of pairwise
distinct “odd” elements.

Let I ∈ T . Set r = 1
2m and letν be the total amount of marked pairs from

the last row consisting of pairwise conjugate “odd” elements that do not belong
toN(L). Let n1, . . . , nν be the multiplicities with which these pairs enter the last
row, and setN = n1+ · · · + nν. Let σl be thelth elementary symmetric function.
Set

K(I ) =
s+ν∑
q=s

(N +1)r2r−q(r − q)!Nqσq−s(n1, . . . , nν)

andd(I ) = d(I1)d(I3) . . . d(I2r−1), whered(J ) = (−1)α(J,J ) (cf. (1.1)).

5.1. Theorem. In V ⊗n(m+1) lies anosp(V )-invariant element

∇m+1 =
∑
I∈T

d(I )K(I )es(vI1⊗ vI ). (5.1.1)

Proof. Set

c(i, ĩ ) =
{

1 if p(i) = 0 or i < ĩ andp(i) = 1,

−1 if i > ĩ andp(i) = 1.
The map

V → V ∗, ei 7→ c(i, ĩ )e∗
ĩ

is an isomorphism induced by the invariant bilinear form, and

θ̃2 =
∑
i∈RV

c(i, ĩ )ei ⊗ eĩ
is anosp(V )-invariant.

Let t be a rectangular(n + 1) × m tableau as in Theorem 3.8 and letJ be a
t-sequence such that, after being filled, each rowJ is of the formj1j̃1 . . . jr j̃r .

Denote byT1 the set of such sequencesJ. Then

θ̃ = θ⊗
1
2
(n+1)m

2 =
∑
J∈T1

d(J )c(J )vJ , (5.1.2)

whereJ1, . . . , J2r−1 are the columns of the tableaut and

d(J ) = d(J1)d(J3) . . . d(J2r−1), c(J ) = c(J1)c(J3) . . . c(J2r−1)

whereasc(Jα) =∏i∈Jα c(i, ĩ ).
The element (5.1.2) is anosp(V )-invariant; applying to it the operatorL from

Theorem 3.8 yields anotherosp(V )-invariant:

L(θ̃) =
∑
J

d(J )c(J )L(vJ ) =
∑
J,l

d(J )c(J )ε(J )ε(J, l)es(vI1⊗ vJ\l), (5.1.3)

where

ε(J ) =
∏

1≤i≤r
ε(J2i−1∗ J2i ), ε(J, l) = sign(l )

∏
1≤i≤r

ε(J2i−1∗ J2i , l2i−1∗ l2i ).
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For the collection(J2i−1, J2i , l2i−1, l2i ), define the sequence(I2i−1, I2i ) as fol-
lows. If l2i−1 and l2i lie in the same row then just strike them out; ifl2i−1 and
l2i lie in distinct rows then we strike them out and place their conjugates,l̃2i−1

and l̃2i , in the last row in the same columns. The sequenceI takes the form
(I1, I2, . . . , I2r−1, I2r ). It is not difficult to verify that

es(vI1⊗ vJ\ l) = sign(l )ε(J, l)es(vI1⊗ vI ) and d(J ) = (−1)rd(I )ε(J ).

Therefore,

L(θ̃) = (−1)r
∑
J,l

sign(l )c(J )d(I )es(vI1⊗ vI ).

The constant factor (the sign) can clearly be replaced with a 1. IfI is of the above
form then, in the last row, for some values ofi the pairs(l2i−1, l2i ) are conjugate
whereas all the remaining values ofi are odd and pairwise distinct—call them
I ∗ = {k1, . . . , k2p}. Set

ĉ(I ) = sign(k1, . . . , k2p)(−1)p
∏

c(i2α−1,i2α)6=0

c(i2α−1, i2α),

where sign(k1, . . . , k2p) is the sign of the permutation. Thenc(J )ε(l) = ĉ(I ) and
hence

L(θm+1) =
∑
J,l

c(I )d(I )es(vI1⊗ vI ),

where the sum runs over pairs(J, l ) that give the sequenceI. To complete the
proof, it suffices to calculate the number of such pairs; this leads to (5.1.1).

5.2. Theorem. The algebra ofosp(V )-invariants is generated by the polyno-
mials

(i) (vs, vt ) for s, t ∈RW and
(ii) R(J ) = ∑I d(I )K(I )Pfs(I1 ∗ I, J ) for everyI ∈ T and everys-standard

sequenceJ with elements fromRW.

Proof. Letf be anosp(V )-invariant that is notA-invariant. Letf depend onn−1
even and 2r odd generic vectorsv1, . . . , v2r . Then there exists ag ∈OSp(V ⊗A)
such thatg Span(v1, . . . , v2r ) = Span(e1, . . . , e2r ).

Let hen = −en andhei = ei for i 6= n; then ber(h) = −1 andf(hgL) =
−f(gL). On the other hand,f(hgL) = f(gL) and hencef = 0. This means that
osp(V )-invariants other than scalar products may only be of typeλ, correspond-
ing to a typical module. Thus, in the same vein as forA-invariants, we see that
dim(V ∗λ)osp(V ) = 1 if (a) λ is typical and (b) its firstn rows are of odd lengths
whereas the remaining rows are of even lengths. If we do not consider the scalar
products, then no invariants exist for the other (atypical)λ.

Under the canonical homomorphismT k(V ∗) ⊗ T k(W ) → S k(V ∗ ⊗W) the
moduleV ∗λ⊗Wλ turns into its copy, and a basis of the first copy becomes a basis
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of the second one. This shows that ifλ is ann× (2r +1) rectangle then the poly-
nomialsR(J ) from the theorem constitute a basis ofV ∗λ ⊗Wλ, a subspace of
S k(V ∗ ⊗W).

For an arbitraryλ containing ann× (2r +1) rectangle, we now apply the same
arguments as in the proof of Theorem 2.2.

6. Invariants of pe(V )

Suppose that dimV = (n|n). Let thee∗i be a basis ofV0̄, and let thee∗
ī

be the dual
basis ofV1̄ with respect to an odd nondegenerate form onV. Thenpe(V ) preserves
the tensor

∑
(e∗i ⊗ e∗ī + e∗ī ⊗ e∗i ).

Observe that the scalar products

(vs, vt ) =
∑

(−1)p(s)(x∗is ⊗ e∗ī,t + e∗ī,s ⊗ e∗it ) for any s, t ∈ S
arepe(V )-invariants. Moreover, the presence of the odd form determines an iso-
morphism of algebras andpe(V )-modulesAp,q

k,l = Ap+l,q+k; hence, as in the or-
thosymplectic case, we may assume thatk = l = 0.

The compatibleZ-grading ofgl(V ) induces compatibleZ-gradings ofpe(V )
andspe(V ):

g = g− ⊕ g0⊕ g+,

whereg− = 32(V ), g+ = S2(V ∗) andg0 = gl(V ) or sl(V ). (There is another,
isomorphic, representation that we will not use in this paper:g = g− ⊕ g0⊕ g+,
whereg− = 32(V ∗), g+ = S2(V ), andg0 = gl(V ) or sl(V ).)

LetXα, 1≤ α ≤ 1
2n(n + 1), be a basis ofg+ and letYβ, 1≤ β ≤ 1

2n(n − 1),
be a basis ofg−. Set

X+ =
∏

1≤α≤ 1
2
n(n+1)

X+α, Y− =
∏

1≤β≤ 1
2
n(n−1)

Yβ.

Observe that the weight ofX+ with respect to the Cartan subalgebra is equal to
(n+1)

∑
εi and that the weight ofY− is equal to−(n−1)

∑
εi .

6.1. Lemma. Let L = indg
g0⊕g+(M) = indg

g0⊕g−(N ) be a typical irreducible
g = gl(V )-module. Then there exists an isomorphism of vector spaces

Lspe(V ) = Mspe(V )0̄ = Nspe(V )0̄

given by the formulas

M → L, m 7→ Y−m and N → L, n 7→ X+n.

Proof. Consider the two gradings ofL,

L+k = Span(f(X+α)n : n∈N and degf = k)
and

L−k = Span(f(Yβ)m : m∈M and degf = k).
It is clear thatL+k = L−n2−k.
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If l is a spe(V )-invariant, thenXα l = 0 (for 1 ≤ α ≤ 1
2n(n + 1)) and l =

X+f(Xα)n for n ∈ N. Therefore,l = ∑r≥ 1
2
n(n+1) l

+
r , wherel+r ∈ L+r . We simi-

larly establish thatl =∑1≤s≤ 1
2
n(n−1) l

−
s ,wherel−s ∈L−s . Hence,

∑
r≥ 1

2
n(n+1) l

+
r =∑

1≤s≤ 1
2
n(n−1) l

−
s . Taking into account the equalityL+k = L−n2−k, we deduce that

l ∈ L+1
2
n(n+1)

= L−1
2
n(n−1)

and thatl = X+n = Y−m for somen ∈ N andm ∈M.
Moreover, it is clear thatm andn arespe(V )0̄ = sl(V0̄)-invariants.

Conversely, ifm andn aresl(V0̄)-invariants, then a direct check shows that
X+n andY−m arespe(V )-invariants.

6.2. Theorem. The algebra ofpe(V )-invariants is generated by the scalar prod-
ucts(vs, vt ) for s, t ∈RW.
Proof. See [S2, Sec. 6.2].

6.3. LetI be a sequence of length 2k composed of elements fromRW. Determine
the elementY(I )∈E •(S2(W )) = S •(5(S2(W ))) by setting

Y(I ) = (−1)βyi1i2 . . . yi2k−1i2k ,

whereyij is the canonical image of the elementωi ⊗ ωj and

β =
∑

1≤α≤k
(k − α)(i2α−1+ i2α).

Let λ be a partition of the form(α1, . . . , αp, α1− 1, . . . , αp − 1) in the notation
of Frobenius (see[M]). Let t be a tableau of the formλ filled in so that the un-
derdiagonal columns (including the diagonal cells) are filled in consecutively with
“odd” numbers while the rows to the right of the diagonal are consecutively oc-
cupied by “even” numbers. For a tableau of such a form and a sequenceI, the
periplectic Pfaffianis defined as

PPft(I ) =
∑

τ∈Ct, σ∈Rt
ε(τ )c(I, (στ)−1)Y(στI ). (6.3.1)

6.3.1. Theorem. For the tableaut just described, the familyPPft(I ) for the t-
standard sequencesI is a basis in the moduleWλ ⊂ E •(S2(W )).

Proof. From the theory ofλ-rings it follows thatE •(S2(W )) = ⊕
Wλ, where

the sum runs over theλ of the described form. One can easily verify that, for the
tableau as indicated in the formulation of the theorem and for at-standard sequence
I, the imageet(wI ) in E •(S2(W )) is nonzero. Hence, for a fixed tableaut, the
canonical mapT 2k(W )→ Ek(S2(W )) performs an isomorphism ofet(T 2k(W ))

with Wλ ⊂ Ek(S2(W )). This implies the theorem.

Consider now an algebra homomorphism

E •(S2(W ))→ S •(V ∗ ⊗W), yst 7→ (vs, vt ). (6.3.2)
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6.3.2. Theorem. The kernel of(6.3.2) is generated by polynomialsPPft(I ),
wheret is of the form of a(n + 1) × (n + 2) rectangle and is filled in as de-
scribed in the previous section and whereI is a t-standard sequence with ele-
ments fromRW.

Proof. Clearly,

(S k(V ∗ ⊗W))pe(V ) =
( ⊕
λ:λn+1≤n

V ∗λ ⊗W ∗λ
)pe(V )

=
⊕

λ:λn+1≤n
W ∗λ,

whereλ is of the same form as stated in the theorem. Since (6.3.2) is agl(V )-
module homomorphism, its kernel is

⊕
λ:λn+1≥n+2W

∗λ. That this kernel is gen-
erated by the elements of the least degree is proved by the same arguments as for
osp(V ).

7. Invariants of spe(V )

First, let us describe certain tensor invariants. LetT1 be the set of matricesA
whose entries are equal to either 1 or 0, with zeroes on the main diagonal and such
thataij + aji = 1 for all off-diagonal entries. SetAi = ∑

apq, where the sum
runs over all the elements strictly below theith row.

We define|A| recursively as follows: forn = 2 set|A| = 0 and forn > 2 set

|A| = |A∗| +
n−2∑
i=1

ainA
∗
i +

∑
1≤j<i<n

ainanj +
∑
i>j

aij + 1

6
n(n−1)(n− 2),

whereA∗ is obtained fromA by striking out the last row and the last column.

7.1. Lemma. The elementY− =∏i<j(Eī,j−Ej̄,i ) is equal to
∑

A∈T1
(−1)|A|EA,

where the product runs over the lexicographically ordered set of pairsi < j, EA =∏
E
ai,j

ī,j
, and the last product is taken over the rows of the matrixA from left to

right and downward.

Proof. Clearly,Y− is the product of12n(n−1) factors. In each factor, select either
Eī,j orEj̄,i . ForEī,j, setai,j = 1 andaj,i = 0; forEj̄,i , setai,j = 0 andaj,i = 1.
We thus obtain a matrix with the desired properties. The sign is established after
reordering of the sequence of theaij :

a12a21a13a31. . . a1nan1 . . . an−1,nan,n−1

7→ a12a13 . . . a1n . . . an−1,nan1an2 . . . an,n−1.

This is performed by induction. First, the pairsainani are moved to the end in
increasing order; this accrues the exponent of the sign with1

6
n(n − 1)(n − 2).

Then we reorder the elements with indices< n; this adds|A∗|. Then we re-
arrange the elements of the sequencea1nan1a2nan2 . . . an−1,nan,n−1 into the se-
quencea1n . . . an−1,nan1an2 . . . an,n−1; this adds

∑
j<i ainani to the exponent. Fi-

nally, the elementsa1n, . . . , an−1,n are placed onto the end of theith row, adding∑n−2
i=1 ainA

∗
i . Besides, ifi > j thenEī,j entersY− with a negative sign; this adds∑

i>j aij .
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The numbersi andj will be referred to asconjugateif i = j̄ , that is, if they are
equal but belong to copies ofN of distinct “parity”.

Let T2 be the set of sequences of lengthn2 considered asn× n tableaux filled
in along columns and with the following properties: the numbers symmetric with
respect to the main diagonal are conjugate; the(i, j)th position is occupied with
one of the numbersi or j̄ ; and the main diagonal is filled in with “odd” numbers
1̄, . . . , n̄.

For everyL ∈ T2, determine the matrixA = (aij ) by settingaij = p(lij ). Set
n(L) = #(“even” elements inL) andm(L) = m(A) =∑ i is “even”aij . Letε(L) =
(−1)|A|+n(L) and

mk(L) = ((n+ k)!)n
(n+ k − l1)! . . . (n+ k − ln)! , where li =

∑
j

aij .

7.2. Theorem. The elements

et

(∑
(−1)km(L)ε(L)mk(L)v

∗
L ⊗ v∗Jk

)
for L∈ T2

and
et

(∑
ε(L)m0(L)v

∗
L ⊗ v∗Ik

)
for L∈ T2

are spe(V )-invariant.

Proof. Let r be an(n + k) × n rectangle filled in along columns, and setw =
v∗Jn+k . Denote bywj1

i1
. . . w

jp
ip

the tensor obtained fromw by replacing the elements
occupying positionsi1, . . . , ip with numbersj1, . . . , jp, respectively. Then

er(En̄,jw) = (−1)i−1er(w
j

i )(n+ k),
wherei is any of the numbers of the positions occupied byn̄.

If EAn =
∏
E
αn,j
n̄,j with the product ordered by increasing indicesj, then

er(EAnw) = (−1)i1−1+···+il−1 (n+ k)!
(n+ k − l )! er(w

j1, ...,jl
i1, ...,il

),

where{j1, . . . , jl} = {j | αn,j 6= 0}, l =∑j αn,j, andi1 < · · · < il.

Assume that{i1, . . . , il} = {a + j1− 1, . . . , a + jl − 1}, wherea is the number
of the first element in thenth column of tableaur. We thus have

er(EAnw) = (−1)l·a+j1+···+jl
(n+ k)!

(n+ k − l )! er(w
j1, ...,jl
i1, ...,il

).

By continuing the process we obtain

er(EAw) = (−1)ε(A)
[(n+ k)!] n

(n+ k − l1)! . . . (n+ k − ln)! er(v
∗
IA
).

The indexε(A) = a1+ · · · + an + n(An)+ n(An−1)+ · · · + n(A1), whereai is
the number of the first element in theith column andn(Ai) is equal to the sum of
the numbers of the places occupied by the 1s;IA coincides withJn+k everywhere
unlessaij = 1, in which case the(ij)th entry ofIA is occupied byj.
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Since
I(σ−1α) = t(σ−1α) = s(α) = J(α),

we deduce that

if I andJ are two sequences and ift ands are two tableaux of the same
form such that, after fillingt with the elements fromI ands with the ele-
ments fromJ, one obtains geometrically identical pictures, thenσt = s
impliesσI = J.

Therefore, ifσt = r then we have

Y−et(v∗Jnv
∗
Jk
) = Y−eσ−1r (v

∗
σ−1(Jn+k))

= Y−σ−1erσ(σ
−1v∗Jn+k ) · c(Jn+k, σ) = c(Jn+k, σ)σ−1Y−er(v∗Jn+k ),

becausec(Jn+k, σ) = sign(σ)—thanks to the fact thatJn+k contains only “odd”
elements. Hence,

Y−et(v∗Jnv
∗
Jk
)

= sign(σ)σ−1er

(∑
A

(−1)ε(A)
[(n+ k)!] n

(n+ k − l1)! . . . (n+ k − ln)! v
∗
IA

)

= sign(σ)et

(∑
A

(−1)ε(A)
[(n+ k)!] n

(n+ k − l1)! . . . (n+ k − ln)! σ
−1v∗IA

)

= sign(σ)et

(∑
A

(−1)ε(A)
[(n+ k)!] n

(n+ k − l1)! . . . (n+ k − ln)! c(IA, σ)v
∗
JA
⊗ v∗Jk

)
,

where
c(IA, σ) = |A2| · k + |A4| · k · · · = k

∑
i is “even”

aij

and whereJA coincides withJn everywhere unlessaij = 1, in which case the
(i, j)th position is occupied byj. This completes the proof of Theorem 7.2.

7.3. Theorem. The algebra ofspe(V )-invariant polynomials is generated by
the following elements:

(i) (vα, vβ) for α, β ∈RW ; and, fork ≥ 1 and sums that run overL∈ T2,

(ii) PPfk(J ) = ∑L(−1)(k−1)m(L)ε(L)mk−1(L)Pt(L ∗ Jk, J ) for any t-standard
sequenceJ ;

(iii) PPf−k(J ) =∑L ε(L)m0(L)Pt(L ∗ Ik+1, J ) for anys-standard sequenceJ.

The proof is similar to that of Theorem 5.2.
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