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The Operator Inequality?* < A*P?*A

B. P. DuGgGgAL

1. Introduction

Let B(H ) denote the algebra of operators (i.e., bounded linear transformations) on
an infinite-dimensional separable Hilbert spatnto itself. Given a (nontrivial)
operatorP > 0, contraction operatord satisfying the positivity condition

A*P?*A — P >0, 0<k <1, 1)

occur quite naturally. Thus, if' is ak-hyponormal operatof0 < k& < 1) with
polar decompositiom = UP, thenUP?*U* < P2k < U*P?*U [1; 6]. Again, if

A is a contraction such that— lim,, A*"A" = P2, then P2 = A*P2?A and P =
(A*P?A)* < A*P?FA for all 0 < k. Operator inequality (1) has been considered
by Douglas for the case= 1in [7], where it is shown that iP is a compact op-
erator thenP = A*PA, ranP reducesA, and A|— is unitary [7, Thm. 8, and
Cor. 6.5].

Let T € B(H). ThenT is said to be of the clag$, (p > 0) if there exists a
unitary U on a Hilbert spack > H suchthatl'” = pPyU" |y forn =12, ...,
where Py denotes the orthogonal projection &fonto H (see [12, p. 45]). Op-
eratorsT € C are contractions and, i > 1, then operatord” € C, are similar
to a contraction [5]. In this note we consider operatérghich are similar to a
contraction and which satisfy inequality (1) for soie> 0. We also prove the
following theorem (and some of its consequences).

ranP

THEOREM 1. LetA e B(H)besuchthateithedA eC, (p > 1) or A™ is a contrac-
tion for some integem > 1, and letP be a positive operator such that inequality
(1) is satisfied. Then there exists a positive invertible operatand a positive
operator Q such that
(i) 1A"P#*A — PH|| < ML [[ ) o 14y r®*tdr d6, whereM = (2p — 1 f
AeC,andM = |L||?|L7Y|?if A™ is a contraction
(i) the operatorsA and QLAL are not supercyclic.
Now suppose further that is compact and has dense range. Then

(iif) Aisunitary andA*PA — P =0= APA* — Pif Ae(C,;
(iv) A is similar to a unitary andd*P%*A — P2k = Qif A™ is a contraction.
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Before going on to prove the theorem, we explain our terminology and introduce
some complementary results.

LetT € B(H), and let OriyT, x) = {x, Tx, T?x, ...} denote the orbit aof € H
underT. We say thafl" is supercyclic with supercyclic vectarif the set of scalar
multiples of elements in O«7, x) is dense irH. It has been known for some time
that a normal operator cannot be supercyclic. Recently, Bourdon [4] has shown
that a hyponormal operator cannot be supercyclic. Indeed, more is true.

Lemma 2. If T € B(H) satisfies the growth condition
IT"x|1> < 17" x| 7" |
forxe Handn =1 2,..., thenT cannot be supercyclic.

Proof. See [4, p. 352]. O

The operatofT is said to begpower boundedf there exists anv > 0 such that
sup,lI7"|| < M. Note thatC, operators are power bounded.

LemMma 3. LetT € B(H) be power bounded. If is supercyclic, the"x — 0
asn — oo foreachx € H.

Proof. See [3, Thm. 2.2]. O

LetAe B(H). ThenL = {Z:":‘OlA*’A’}l/2 is a positive invertible operator. As-
sume now that™ is a contraction for some integer > 1. ThenA*”A™ < 1 and
m—1
LflA*LZALfl — L1< Z A*rAr + A*mAm _ 1>L1 5 L*l(LZ)Lfl — :L
r=0
that is, LAL~1 is a contractionC. A similar result holds for the case in which
AeC,.

LeEmMaA 4 (see [5, Thm.5]). If Ae B(H)NC, (p > 1), then there exists a pos-
itive invertible operatorL such that||L|||| L~ < (20 — 1) andA = L~CL for
some contractiort.

Recall from [1] that the operatdf is said to bek-hyponormal 0 < &k < 1, if
(TT*)* < (T*T)*. (Thus a 1-hyponormal operator is hyponormal.) It is known
thatk-hyponormal operators satisfy a Putnam area inequality similar to that satis-
fied by hyponormal operators. LetT) denote the spectrum @f. One then has

the following.

LeEmMmAa 5 [6, Thm. 5]. If T € B(H) is k-hyponormal for som8 < k£ < 1, then
k
[(T*T) — (TT*)¥| < —// r?=Ldr de.
T JJo(T)

Let P be a compact injection, let € C,, and letU be a unitary such thakA =
UP. ThenA is power bounded, and it follows from an application of [2, Thm. 2]
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thatU is singular unitary (i.e., the spectral measur&a$ singular with respect to
the linear Lebesgue measure on the unit circle). Applying [2, Thm. 1(iifjAo=
UP yields the following lemma.

LeEmMA 6. If A € C, is such thatPA = UP for some unitaryU and compact
injection P, thenA is unitary.

In the sequel we shall denote the closure of the range (resp., the orthogonal com-
plement of the kernel) of ad € B(H) by ranA (resp., ket- A). The restriction

of A to an invariant subspage€ will be denoted byA|y. Recall that the operator

X is said to be @uasi-affinityif X is injective and has dense range.

2. Proof of Theorem 1

Let A € B(H) be such that eitheA € C, or A is a contraction for some in-
tegerm > 1. Then, by Lemma 4 (and the argument preceding the statement of
Lemma 4), there exists an invertible positive operdt@nd a contractiod such
thatA = LCL~Y(with || L|[[| L7} < (20—1)if A€ C,). By hypothesisA*P?A >
P?*; henceC*LP?LC > LP?L.LetL,= L/|L|;thenL;is acontraction and
C*L1P?L1C > L1P?*L,. The operatof.1P?*L is positive and thus has a unique
positive th root. Denote this root b@; thenC*Q%*C > Q% > (QCC*Q).
Recall now from Hansen'’s inequality [10] that,df is a positive (semi-definite)
operator andC is a contraction, the@*Q%C < (C*Q?C)Fforall0 < k < 1.
Hence(QCC*Q)* < (C*Q?C)*, that is, the operato@ C is k-hyponormal. Us-
ing Lemma 5, we have that

|A*P%*A — P2 || = |L7X(C*LP?*LC — LP?L)L7Y|
< IL7HPIILIP(C** C — 0%
= [LIPIL7YPIC*Q* C — Q|
< ILIPILTHPIC* @ C — (@CCc @)™ |
< ILIPIL7YPI(C*Q%C)F — (CC* )™ ||

k
< ILIZIL7H2= f/ r#*drde
7 JJo(oo)

k
< ILIZILYPE f / 214y 46,
T JJo(LOL™1A)

sincec(QC) = o(QLAL™) = o(LQL™*A). This proves (i) of the theorem.
Postponing the proof of part (ii) momentarily, we next prove parts (iii) and (iv).
Thus, letP be compact with dense range. The, as also the unique positive
2kth rootQ of L, P?¥L4, is a compact quasi-affinity. Consequent( is a com-
pact operator ana(QC) has planar Lebesgue measure zero. It follows that

A*PZkA _ sz — 0 — C*QZkC _ sz — C*QZkC _ (QCC*Q)k
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In particular,0? = QCC*Q; that is,C is a co-isometry that satisfig3C = CQ
andC*CQ?f = Q2. ThusC is a unitary that commutes wit2, andA is similar
to a unitary. This proves (iv). Now i € C,, then an application of Lemma 6 im-
plies thatA is unitary. SinceA*P?A = P?*, A commutes withP andA*PA— P =

0 = APA* — P. This completes the proof of (iii).

To prove part (i), we start by proving that the operafoe= QL™ YAL = QC
satisfies the growth condition of Lemma 2. Toward this end we recall the Holder—
McCarthy inequality [11], which states that if the operagr> 0 then, for all
xeH,

(Z'x, %) < Ix?*"(Zx, x)", 0<r<1,
and
(Zx,x,)" < |x|2"P(Z"x,x), 1<r

Let T (= QC) have the polar decompositidh= U|T|. Then, since O< k <1
and|T*|%* < |T|%,

I Tx|[?H0 = (1T %, x) M

< lxP*(T P+ Px, x)
= ||x||?"(U|T |2 U* Tx, Tx)
= | xII**(U T [PU*)*Tx, Tx)
= || xI**(|T*[**Tx, Tx)
< [IxI®*(T P*Tx, Tx)
< I PN TIPS PAT P Tx, Tx)*
= [[x [P | Tx |20 T2 2

for all x € H. Hence|| Tx||? < ||T2x]||| x| and

17752 = | T(T" 0P < I T2@"OIIT" %l = [T x| 17" |

for all x € H and natural numbers. Applying Lemma 2, we conclude that

is not supercyclic. To prove that is not supercyclic, we argue by contradiction.
Thus, suppose thatis supercyclic. Thed has a supercyclic vectdd #) x € H.
SinceA is power bounded, Lemma 3 implies that |Jim"x = 0 (i.e., A is of the
classCo. [13]). But thenP?* < A*P?*A implies that

| PEx||? < (A*"P?*A"x, x)
< |P?||||A"x||?> — 0 asn — oo

and hence that € ker P. Since the collection of supercyclic vectors of a super-
cyclic operator inB(H ) is dense inH (recall thatcA"x is a supercyclic vector for

A for every supercyclic vector of A [3; 4]), we must have thaP = 0—a con-
tradiction. HenceA is not supercyclic, and the proof is complete. O
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REMARK. Itis clear from the foregoing proof that a power bounded operator
satisfying inequality (1) can not be supercyclic. The proof also implies PAat
cannot be supercyclic whetis a contraction.

3. Applications

Theorem 1 has a number of consequences, amongst them the following. The op-
erator7 is said to becompletely polynomially boundefithere exists a constant

¢ such that, for all natural numbessandn x n matrices(p;;) with polynomial
entries, || pi; ()l pazay =< ¢SURcr IIpij(2)llm,. HereT denotes the unit circle

in the complex plane(p,;(T)) is identified in a natural way with an operator in
I3(H), andM, is identified with!7(H ). Paulsen [12] has shown that a completely
polynomially bounded operator is similar to a contraction. Agair, i power
bounded and spectraloid (i.e., the spectral rad{dd of T equals the numerical
radiusw(7T) of T [9, p. 117]), therw(T) = »(T) < 1 This implies thatT € C,

[12, Prop. 11.2, p. 48] and hence tHatis similar to a contraction. Thus Theo-
rem 1 applies to operators that are either completely polynomially bounded or
power bounded and spectraloid. The following corollary generalizes [7, Cor. 6.5].
(We note here that i is similar to a contractio® then there exists a positive in-
vertible operatol. and a contractio, unitarily equivalent taD, such thatd =
L7icL.)

CoroLLARY 7. LetA = L7*CiL; and B = L,C,L5" for some positive invert-
ible operatorsL,, L, and contractiongCy, C,. If AXB = X for some compact
quasi-affinityX, thenC;, and C; are unitarily equivalent unitaries. If alsd and
B are spectraloid, themt and B* are unitarily equivalent unitaries.

Proof. Let L; XL, = Y. ThenY is a compact quasi-affinity such th@tYC, =

Y, |Y*|2 < C1|Y*|2CS, and|Y|? < C3]Y|?C2. Applying Theorem 1 it follows that
Ci1, C; are unitariesC;YC; = Y, and Cy, C; are unitarily equivalent. Now, if
A is spectraloid them(A) = w(A) < 1andA € C, (see [12, p. 48]). Applying
Lemma 6 toL1A = CiL, it follows that A is unitary. Since a similar argument
applies wherB is spectraloid B* is unitary and unitarily equivalent té. O

The hypothesis thad and B are spectraloid in Corollary 7 is not requiredAf
andB areC,. Furthermore, ifA andB are inC, andX is (simply) compact, then
AXB = X implies thatA; X1B1 = X1, whereA; = Al 5., Bf = B*|ierL x (are
C,), and X;: kert X — ranX is the compact quasi-affinity defined by setting
X1x = Xx for eachx € H. This in turn implies that,, B are unitarily equiva-
lent unitaries and that*XB* — X = 0. A better result is possible for the case in
which A and B are contractions.

CoroLLARY 8. Let A, B be contractions. IfAXB = X for some operatotX
such that eitheX is compact oro(A| X *|) is countable, them* XB* = X, ranX
reducesA, kert X reducesB*, and A| and B*|,. x are unitarily equivalent
unitaries.

ranX
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Proof. Define A1, By, and X1 as before. Thew(A|X*|) = o(A1|X]]) U {0}
and|X;|? < A1l X{[?A%. Applying Theorem 1, it follows tha#; is unitary and
A1l X[ A7 = | X{'|. Let Xy have the polar decompositidf = Uy| X4|; then| X{| =
U1| X1|U5 and it follows fromA4| X| A} = | X;| thatA; X; = X U;A1U,. Because
the operatot/;*A1U; is unitary, it follows fromX; = A1X1B1 = XU, A1U1 B, that
Bj is unitary. The rest of the proof is now obvious. O

We conclude this note with the following range-kernel orthogonality result. (Re-
call that if V is a normed linear space with norjn||, thenx € V is said to be
orthogonalto y e V if || x — ty|| > ||zy|| for all complex numbers.)

CoroLLARY 9. Let X be a compact operator such thatXB = X for some op-
eratorsA, BeC, (p > 1). Then

AYB —Y + X| = [|X||
forall Y €e B(H).

Proof. Defining A1, By, andX; as before, it follows thaanX reducesA, ker+ X
reducesB* andA,, B are unitaries such that; X,B, = X;. LetY € B(H), and
let Y: kert X @ kerX — ranX @ ranX' have the matrix representatioh =
[¥;;]7 ;- Then it follows from an application of [8, Cor. 3] that

|AY1By — Y+ Xqfl > [ Xall = | X

Recall now that the norm of the leading entry of an operator matrix is less than or
equal to the norm of the operator matrix. Since

AYuBi—Yu+ Xy *i|

AYB—Y+X=|:
* *

the proof follows. O
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