The Operator Inequality $P^{2k} \leq A^*P^{2k}A$

B. P. DUGGAL

1. Introduction

Let B(H) denote the algebra of operators (i.e., bounded linear transformations) on an infinite-dimensional separable Hilbert space H into itself. Given a (nontrivial) operator $P \ge 0$, contraction operators A satisfying the positivity condition

$$A^*P^{2k}A - P^{2k} > 0, \quad 0 < k < 1, \tag{1}$$

occur quite naturally. Thus, if T is a k-hyponormal operator ($0 < k \le 1$) with polar decomposition T = UP, then $UP^{2k}U^* \le P^{2k} \le U^*P^{2k}U$ [1; 6]. Again, if A is a contraction such that $s - \lim_n A^{*n}A^n = P^2$, then $P^2 = A^*P^2A$ and $P^{2k} = (A^*P^2A)^k \le A^*P^{2k}A$ for all 0 < k. Operator inequality (1) has been considered by Douglas for the case k = 1 in [7], where it is shown that if P is a compact operator then $P = A^*PA$, ran P reduces A, and $A|_{\overline{\operatorname{ran}P}}$ is unitary [7, Thm. 8, and Cor. 6.5].

Let $T \in B(H)$. Then T is said to be of the class \mathcal{C}_{ρ} ($\rho > 0$) if there exists a unitary U on a Hilbert space $K \supset H$ such that $T^n = \rho P_H U^n|_H$ for $n = 1, 2, \ldots$, where P_H denotes the orthogonal projection of K onto H (see [12, p. 45]). Operators $T \in \mathcal{C}_1$ are contractions and, if $\rho > 1$, then operators $T \in \mathcal{C}_{\rho}$ are similar to a contraction [5]. In this note we consider operators A which are similar to a contraction and which satisfy inequality (1) for some $P \geq 0$. We also prove the following theorem (and some of its consequences).

THEOREM 1. Let $A \in B(H)$ be such that either $A \in \mathcal{C}_{\rho}$ $(\rho > 1)$ or A^m is a contraction for some integer m > 1, and let P be a positive operator such that inequality (1) is satisfied. Then there exists a positive invertible operator L and a positive operator Q such that:

- (i) $||A^*P^{2k}A P^{2k}|| \le M \frac{k}{\pi} \iint_{\sigma(LQL^{-1}A)} r^{2k-1} dr d\theta$, where $M = (2\rho 1)^2$ if $A \in \mathcal{C}_{\rho}$ and $M = ||L||^2 ||L^{-1}||^2$ if A^m is a contraction;
- (ii) the operators A and $QL^{-1}AL$ are not supercyclic.

Now suppose further that P is compact and has dense range. Then

- (iii) A is unitary and $A^*PA P = 0 = APA^* P$ if $A \in \mathcal{C}_{\rho}$;
- (iv) A is similar to a unitary and $A^*P^{2k}A P^{2k} = 0$ if A^m is a contraction.

Before going on to prove the theorem, we explain our terminology and introduce some complementary results.

Let $T \in B(H)$, and let $Orb(T, x) = \{x, Tx, T^2x, ...\}$ denote the orbit of $x \in H$ under T. We say that T is supercyclic with supercyclic vector x if the set of scalar multiples of elements in Orb(T, x) is dense in H. It has been known for some time that a normal operator cannot be supercyclic. Recently, Bourdon [4] has shown that a hyponormal operator cannot be supercyclic. Indeed, more is true.

LEMMA 2. If $T \in B(H)$ satisfies the growth condition

$$||T^n x||^2 \le ||T^{n+1} x|| ||T^{n-1} x||$$

for $x \in H$ and n = 1, 2, ..., then T cannot be supercyclic.

The operator T is said to be *power bounded* if there exists an M > 0 such that $\sup_n ||T^n|| \le M$. Note that C_ρ operators are power bounded.

LEMMA 3. Let $T \in B(H)$ be power bounded. If T is supercyclic, then $T^n x \to 0$ as $n \to \infty$ for each $x \in H$.

Proof. See
$$[3, Thm. 2.2]$$
.

Let $A \in B(H)$. Then $L = \left\{ \sum_{r=0}^{m-1} A^{*r} A^r \right\}^{1/2}$ is a positive invertible operator. Assume now that A^m is a contraction for some integer m > 1. Then $A^{*m} A^m \le 1$ and

$$L^{-1}A^*L^2AL^{-1} = L^{-1}\left(\sum_{r=0}^{m-1}A^{*r}A^r + A^{*m}A^m - 1\right)L^{-1} \le L^{-1}(L^2)L^{-1} = 1;$$

that is, LAL^{-1} is a contraction C. A similar result holds for the case in which $A \in \mathcal{C}_{\varrho}$.

LEMMA 4 (see [5, Thm. 5]). If $A \in B(H) \cap \mathcal{C}_{\rho}$ ($\rho > 1$), then there exists a positive invertible operator L such that $||L|| ||L^{-1}|| \le (2\rho - 1)$ and $A = L^{-1}CL$ for some contraction C.

Recall from [1] that the operator T is said to be k-hyponormal, $0 < k \le 1$, if $(TT^*)^k \le (T^*T)^k$. (Thus a 1-hyponormal operator is hyponormal.) It is known that k-hyponormal operators satisfy a Putnam area inequality similar to that satisfied by hyponormal operators. Let $\sigma(T)$ denote the spectrum of T. One then has the following.

Lemma 5 [6, Thm. 5]. If $T \in B(H)$ is k-hyponormal for some $0 < k \le 1$, then

$$\|(T^*T)^k - (TT^*)^k\| \le \frac{k}{\pi} \iint_{\sigma(T)} r^{2k-1} dr d\theta.$$

Let P be a compact injection, let $A \in \mathcal{C}_{\rho}$, and let U be a unitary such that PA = UP. Then A is power bounded, and it follows from an application of [2, Thm. 2]

that U is singular unitary (i.e., the spectral measure of U is singular with respect to the linear Lebesgue measure on the unit circle). Applying [2, Thm. 1(ii)] to PA = UP yields the following lemma.

Lemma 6. If $A \in C_{\rho}$ is such that PA = UP for some unitary U and compact injection P, then A is unitary.

In the sequel we shall denote the closure of the range (resp., the orthogonal complement of the kernel) of an $A \in B(H)$ by $\overline{\operatorname{ran} A}$ (resp., $\ker^{\perp} A$). The restriction of A to an invariant subspace N will be denoted by $A|_{N}$. Recall that the operator X is said to be a *quasi-affinity* if X is injective and has dense range.

2. Proof of Theorem 1

Let $A \in B(H)$ be such that either $A \in \mathcal{C}_\rho$ or A^m is a contraction for some integer m>1. Then, by Lemma 4 (and the argument preceding the statement of Lemma 4), there exists an invertible positive operator L and a contraction C such that $A=LCL^{-1}$ (with $\|L\|\|L^{-1}\|\leq (2\rho-1)$ if $A\in\mathcal{C}_\rho$). By hypothesis, $A^*P^{2k}A\geq P^{2k}$; hence $C^*LP^{2k}LC\geq LP^{2k}L$. Let $L_1=L/\|L\|$; then L_1 is a contraction and $C^*L_1P^{2k}L_1C\geq L_1P^{2k}L_1$. The operator $L_1P^{2k}L_1$ is positive and thus has a unique positive 2kth root. Denote this root by Q; then $C^*Q^{2k}C\geq Q^{2k}\geq (QCC^*Q)^k$. Recall now from Hansen's inequality [10] that, if Q is a positive (semi-definite) operator and C is a contraction, then $C^*Q^{2k}C\leq (C^*Q^2C)^k$ for all $0< k\leq 1$. Hence $(QCC^*Q)^k\leq (C^*Q^2C)^k$, that is, the operator QC is k-hyponormal. Using Lemma 5, we have that

$$\begin{split} \|A^*P^{2k}A - P^{2k}\| &= \|L^{-1}(C^*LP^{2k}LC - LP^{2k}L)L^{-1}\| \\ &\leq \|L^{-1}\|^2 \|\|L\|^2 (C^*Q^{2k}C - Q^{2k})\| \\ &= \|L\|^2 \|L^{-1}\|^2 \|C^*Q^{2k}C - Q^{2k}\| \\ &\leq \|L\|^2 \|L^{-1}\|^2 \|C^*Q^{2k}C - (QCC^*Q)^{2k}\| \\ &\leq \|L\|^2 \|L^{-1}\|^2 \|(C^*Q^{2}C)^k - (QCC^*Q)^{2k}\| \\ &\leq \|L\|^2 \|L^{-1}\|^2 \frac{k}{\pi} \iint_{\sigma(QC)} r^{2k-1} dr \, d\theta \\ &\leq \|L\|^2 \|L^{-1}\|^2 \frac{k}{\pi} \iint_{\sigma(LOL^{-1}A)} r^{2k-1} \, dr \, d\theta, \end{split}$$

since $\sigma(QC) = \sigma(QLAL^{-1}) = \sigma(LQL^{-1}A)$. This proves (i) of the theorem.

Postponing the proof of part (ii) momentarily, we next prove parts (iii) and (iv). Thus, let P be compact with dense range. Then P^{2k} , as also the unique positive 2kth root Q of $L_1P^{2k}L_1$, is a compact quasi-affinity. Consequently, QC is a compact operator and $\sigma(QC)$ has planar Lebesgue measure zero. It follows that

$$A^*P^{2k}A - P^{2k} = 0 = C^*Q^{2k}C - Q^{2k} = C^*Q^{2k}C - (QCC^*Q)^k.$$

In particular, $Q^2 = QCC^*Q$; that is, C is a co-isometry that satisfies QC = CQ and $C^*CQ^{2k} = Q^{2k}$. Thus C is a unitary that commutes with Q, and A is similar to a unitary. This proves (iv). Now if $A \in \mathcal{C}_\rho$, then an application of Lemma 6 implies that A is unitary. Since $A^*P^{2k}A = P^{2k}$, A commutes with P and $A^*PA - P = 0 = APA^* - P$. This completes the proof of (iii).

To prove part (ii), we start by proving that the operator $T = QL^{-1}AL = QC$ satisfies the growth condition of Lemma 2. Toward this end we recall the Hölder–McCarthy inequality [11], which states that if the operator $Z \ge 0$ then, for all $x \in H$,

$$(Z^r x, x) \le ||x||^{2(1-r)} (Zx, x)^r, \quad 0 < r \le 1,$$

and

$$(Zx, x,)^r \le ||x||^{2(r-1)}(Z^r x, x), \quad 1 \le r.$$

Let T = QC have the polar decomposition T = U|T|. Then, since $0 < k \le 1$ and $|T^*|^{2k} \le |T|^{2k}$,

$$||Tx||^{2(1+k)} = (|T|^2 x, x)^{1+k}$$

$$\leq ||x||^{2k} (|T|^{2(1+k)} x, x)$$

$$= ||x||^{2k} (U|T|^{2k} U^* Tx, Tx)$$

$$= ||x||^{2k} ((U|T|^2 U^*)^k Tx, Tx)$$

$$= ||x||^{2k} (|T^*|^{2k} Tx, Tx)$$

$$\leq ||x||^{2k} (|T|^{2k} Tx, Tx)$$

$$\leq ||x||^{2k} ||Tx||^{2(1-k)} (|T|^2 Tx, Tx)^k$$

$$= ||x||^{2k} ||Tx||^{2(1-k)} ||T^2 x||^{2k}$$

for all $x \in H$. Hence $||Tx||^2 \le ||T^2x|| ||x||$ and

$$||T^n x||^2 = ||T(T^{n-1}x)||^2 < ||T^2(T^{n-1}x)|||T^{n-1}x|| = ||T^{n+1}x|||T^{n-1}x||$$

for all $x \in H$ and natural numbers n. Applying Lemma 2, we conclude that T is not supercyclic. To prove that A is not supercyclic, we argue by contradiction. Thus, suppose that A is supercyclic. Then A has a supercyclic vector $(0 \neq) x \in H$. Since A is power bounded, Lemma 3 implies that $\lim_n A^n x = 0$ (i.e., A is of the class C_0 . [13]). But then $P^{2k} \leq A^* P^{2k} A$ implies that

$$||P^k x||^2 \le (A^{*n} P^{2k} A^n x, x)$$

 $\le ||P^{2k}|| ||A^n x||^2 \to 0 \text{ as } n \to \infty$

and hence that $x \in \ker P$. Since the collection of supercyclic vectors of a supercyclic operator in B(H) is dense in H (recall that cA^nx is a supercyclic vector for A for every supercyclic vector x of A [3; 4]), we must have that P = 0—a contradiction. Hence A is not supercyclic, and the proof is complete.

REMARK. It is clear from the foregoing proof that a power bounded operator A satisfying inequality (1) can not be supercyclic. The proof also implies that PA cannot be supercyclic when A is a contraction.

3. Applications

Theorem 1 has a number of consequences, amongst them the following. The operator T is said to be *completely polynomially bounded* if there exists a constant c such that, for all natural numbers n and $n \times n$ matrices (p_{ij}) with polynomial entries, $\|p_{ij}(T)\|_{B(l_2^n(H))} \le c \sup_{z \in \mathcal{T}} \|p_{ij}(z)\|_{M_n}$. Here \mathcal{T} denotes the unit circle in the complex plane, $(p_{ij}(T))$ is identified in a natural way with an operator in $l_2^n(H)$, and M_n is identified with $l_2^n(H)$. Paulsen [12] has shown that a completely polynomially bounded operator is similar to a contraction. Again, if T is power bounded and spectraloid (i.e., the spectral radius r(T) of T equals the numerical radius w(T) of T [9, p. 117]), then $w(T) = r(T) \le 1$. This implies that $T \in \mathcal{C}_2$ [12, Prop. 11.2, p. 48] and hence that T is similar to a contraction. Thus Theorem 1 applies to operators A that are either completely polynomially bounded or power bounded and spectraloid. The following corollary generalizes [7, Cor. 6.5]. (We note here that if A is similar to a contraction D then there exists a positive invertible operator D and a contraction D, unitarily equivalent to D, such that D is D and D and D are the D and a contraction D then there exists a positive invertible operator D and a contraction D, unitarily equivalent to D, such that D and D is a contraction D then there exists a positive invertible operator D and a contraction D then there exists a positive invertible operator D and a contraction D then there exists a positive invertible operator D and a contraction D then there exists a positive invertible operator D and a contraction D then there exists a positive invertible operator D and D are the D are the D and D are the D and D are the D are the D and D are the D ar

COROLLARY 7. Let $A = L_1^{-1}C_1L_1$ and $B = L_2C_2L_2^{-1}$ for some positive invertible operators L_1 , L_2 and contractions C_1 , C_2 . If AXB = X for some compact quasi-affinity X, then C_1 and C_2^* are unitarily equivalent unitaries. If also A and B are spectraloid, then A and B^* are unitarily equivalent unitaries.

Proof. Let $L_1XL_2 = Y$. Then Y is a compact quasi-affinity such that $C_1YC_2 = Y$, $|Y^*|^2 \le C_1|Y^*|^2C_1^*$, and $|Y|^2 \le C_2^*|Y|^2C_2$. Applying Theorem 1 it follows that C_1 , C_2 are unitaries, $C_1^*YC_2^* = Y$, and C_1 , C_2^* are unitarily equivalent. Now, if A is spectraloid then $r(A) = w(A) \le 1$ and $A \in C_2$ (see [12, p. 48]). Applying Lemma 6 to $L_1A = C_1L$, it follows that A is unitary. Since a similar argument applies when B is spectraloid, B^* is unitary and unitarily equivalent to A.

The hypothesis that A and B are spectraloid in Corollary 7 is not required if A and B are \mathcal{C}_{ρ} . Furthermore, if A and B are in \mathcal{C}_{ρ} and X is (simply) compact, then AXB = X implies that $A_1X_1B_1 = X_1$, where $A_1 = A|_{\overline{\operatorname{ran}}X}$, $B_1^* = B^*|_{\ker^{\perp}X}$ (are \mathcal{C}_{ρ}), and X_1 : $\ker^{\perp}X \to \overline{\operatorname{ran}}X$ is the compact quasi-affinity defined by setting $X_1x = Xx$ for each $x \in H$. This in turn implies that A_1 , B_1^* are unitarily equivalent unitaries and that $A^*XB^* - X = 0$. A better result is possible for the case in which A and B are contractions.

COROLLARY 8. Let A, B be contractions. If AXB = X for some operator X such that either X is compact or $\sigma(A|X^*|)$ is countable, then $A^*XB^* = X$, $\overline{\operatorname{ran} X}$ reduces A, $\ker^{\perp} X$ reduces B^* , and $A|_{\overline{\operatorname{ran} X}}$ and $B^*|_{\ker^{\perp} X}$ are unitarily equivalent unitaries.

Proof. Define A_1 , B_1 , and X_1 as before. Then $\sigma(A|X^*|) = \sigma(A_1|X_1^*|) \cup \{0\}$ and $|X_1^*|^2 \le A_1|X_1^*|^2A_1^*$. Applying Theorem 1, it follows that A_1 is unitary and $A_1|X_1^*|A_1^* = |X_1^*|$. Let X_1 have the polar decomposition $X_1 = U_1|X_1|$; then $|X_1^*| = U_1|X_1|U_1^*$ and it follows from $A_1|X_1^*|A_1^* = |X_1^*|$ that $A_1X_1 = X_1U_1^*A_1U_1$. Because the operator $U_1^*A_1U_1$ is unitary, it follows from $X_1 = A_1X_1B_1 = X_1U_1^*A_1U_1B_1$ that B_1 is unitary. The rest of the proof is now obvious.

We conclude this note with the following range-kernel orthogonality result. (Recall that if \mathcal{V} is a normed linear space with norm $\|\cdot\|$, then $x \in \mathcal{V}$ is said to be *orthogonal* to $y \in \mathcal{V}$ if $\|x - ty\| \ge \|ty\|$ for all complex numbers t.)

COROLLARY 9. Let X be a compact operator such that AXB = X for some operators $A, B \in C_0$ $(\rho > 1)$. Then

$$||AYB - Y + X|| \ge ||X||$$

for all $Y \in B(H)$.

Proof. Defining A_1 , B_1 , and X_1 as before, it follows that $\overline{\operatorname{ran} X}$ reduces A, $\ker^{\perp} X$ reduces B^* , and A_1 , B_1 are unitaries such that $A_1X_1B_1 = X_1$. Let $Y \in B(H)$, and let $Y : \ker^{\perp} X \oplus \ker X \to \overline{\operatorname{ran} X} \oplus \overline{\operatorname{ran} X}^{\perp}$ have the matrix representation $Y = [Y_{ij}]_{i,j=1}^2$. Then it follows from an application of [8, Cor. 3] that

$$||A_1Y_{11}B_1 - Y_{11} + X_1|| \ge ||X_1|| = ||X||.$$

Recall now that the norm of the leading entry of an operator matrix is less than or equal to the norm of the operator matrix. Since

$$AYB - Y + X = \begin{bmatrix} A_1Y_{11}B_1 - Y_{11} + X_1 & * \\ * & * \end{bmatrix},$$

the proof follows.

ACKNOWLEDGMENTS. It is my pleasure to thank the referee for helpful comments on the original draft of the paper. I am grateful to the Department of Mathematics, University of Botswana, for supporting me during the preparation of this note.

References

- [1] A. Aluthge, On p-hyponormal operators for 0 , Integral Equations Operator Theory 13 (1990), 307–315.
- [2] T. Ando and K. Takahashi, On operators with unitary ρ-dilations, Ann. Polon. Math. 66 (1997), 11–14.
- [3] S. I. Ansari and P. S. Bourdon, Some properties of cyclic operators, Acta Sci. Math. (Szeged) 63 (1997), 195–207.
- [4] P. S. Bourdon, *Orbits of hyponormal operators*, Michigan Math. J. 44 (1997), 345–353.
- [5] G. Cassier and T. Fack, *Contractions in von Neumann algebras*, J. Funct. Anal. 135 (1996), 297–338.
- [6] M. Cho and M. Itoh, Putnam's inequality for p-hyponormal operators, Proc. Amer. Math. Soc. 123 (1995), 2435–2440.

- [7] R. G. Douglas, On the operator equation $S^*XT = X$ and related topics, Acta Sci. Math. (Szeged) 30 (1969), 19–32.
- [8] B. P. Duggal, *A remark on normal derivations*, Proc. Amer. Math. Soc. 128 (1998), 2047–2052.
- [9] P. R. Halmos, *A Hilbert space problem book*, 2nd ed., Springer-Verlag, New York, 1982.
- [10] F. Hansen, An operator inequality, Math. Ann. 246 (1980), 249-250.
- [11] C. A. McCarthy, c_{ρ} , Israel J. Math. 5 (1967), 249–271.
- [12] V. Paulsen, Every completely polynomially bounded operator is similar to a contraction, J. Funct. Anal. 55 (1984), 1–17.
- [13] B. Sz-Nagy and C. Foias, *Harmonic analysis of operators on Hilbert space*, North-Holland, Amsterdam, 1970.

Department of Mathematics College of Science United Arab Emirates University Al Ain Arab Emirates

bpduggal@uaeu.ac.ae