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The Operator InequalityP 2k ≤ A∗P 2kA

B. P. Duggal

1. Introduction

LetB(H ) denote the algebra of operators (i.e., bounded linear transformations) on
an infinite-dimensional separable Hilbert spaceH into itself. Given a (nontrivial)
operatorP ≥ 0, contraction operatorsA satisfying the positivity condition

A∗P 2kA− P 2k ≥ 0, 0< k ≤ 1, (1)

occur quite naturally. Thus, ifT is a k-hyponormal operator(0 < k ≤ 1) with
polar decompositionT = UP, thenUP 2kU ∗ ≤ P 2k ≤ U ∗P 2kU [1; 6]. Again, if
A is a contraction such thats − lim n A

∗nAn = P 2, thenP 2 = A∗P 2A andP 2k =
(A∗P 2A)k ≤ A∗P 2kA for all 0 < k. Operator inequality (1) has been considered
by Douglas for the casek = 1 in [7], where it is shown that ifP is a compact op-
erator thenP = A∗PA, ranP reducesA, andA|ranP is unitary [7, Thm. 8, and
Cor. 6.5].

Let T ∈ B(H ). ThenT is said to be of the classCρ (ρ > 0) if there exists a
unitaryU on a Hilbert spaceK ⊃ H such thatT n = ρPHUn|H for n = 1,2, . . . ,
wherePH denotes the orthogonal projection ofK ontoH (see [12, p. 45]). Op-
eratorsT ∈ C1 are contractions and, ifρ > 1, then operatorsT ∈ Cρ are similar
to a contraction [5]. In this note we consider operatorsA which are similar to a
contraction and which satisfy inequality (1) for someP ≥ 0. We also prove the
following theorem (and some of its consequences).

Theorem1. LetA∈B(H ) be such that eitherA∈ Cρ (ρ > 1) orAm is a contrac-
tion for some integerm > 1, and letP be a positive operator such that inequality
(1) is satisfied. Then there exists a positive invertible operatorL and a positive
operatorQ such that:

(i) ‖A∗P 2kA − P 2k‖ ≤ M k
π

∫∫
σ(LQL−1A)

r2k−1dr dθ, whereM = (2ρ − 1)2 if

A∈ Cρ andM = ‖L‖2‖L−1‖2 if Am is a contraction;
(ii) the operatorsA andQL−1AL are not supercyclic.

Now suppose further thatP is compact and has dense range. Then

(iii) A is unitary andA∗PA− P = 0= APA∗ − P if A∈ Cρ;
(iv) A is similar to a unitary andA∗P 2kA− P 2k = 0 if Am is a contraction.
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Before going on to prove the theorem, we explain our terminology and introduce
some complementary results.

LetT ∈B(H ), and let Orb(T, x) = {x, Tx, T 2x, . . .} denote the orbit ofx ∈H
underT . We say thatT is supercyclic with supercyclic vectorx if the set of scalar
multiples of elements in Orb(T, x) is dense inH. It has been known for some time
that a normal operator cannot be supercyclic. Recently, Bourdon [4] has shown
that a hyponormal operator cannot be supercyclic. Indeed, more is true.

Lemma 2. If T ∈B(H ) satisfies the growth condition

‖T nx‖2 ≤ ‖T n+1x‖‖T n−1x‖
for x ∈H andn = 1,2, . . . , thenT cannot be supercyclic.

Proof. See [4, p. 352].

The operatorT is said to bepower boundedif there exists anM > 0 such that
supn‖T n‖ ≤ M. Note thatCρ operators are power bounded.

Lemma 3. LetT ∈B(H ) be power bounded. IfT is supercyclic, thenT nx → 0
asn→∞ for eachx ∈H.
Proof. See [3, Thm. 2.2].

LetA∈B(H ). ThenL = {∑m−1
r=0A

∗rAr
}1/2

is a positive invertible operator. As-
sume now thatAm is a contraction for some integerm > 1. ThenA∗mAm ≤ 1 and

L−1A∗L2AL−1= L−1

( m−1∑
r=0

A∗rAr + A∗mAm −1

)
L−1 ≤ L−1(L2)L−1= 1;

that is,LAL−1 is a contractionC. A similar result holds for the case in which
A∈ Cρ.
Lemma 4 (see [5, Thm. 5]). If A∈B(H ) ∩ Cρ (ρ > 1), then there exists a pos-
itive invertible operatorL such that‖L‖‖L−1‖ ≤ (2ρ − 1) andA = L−1CL for
some contractionC.

Recall from [1] that the operatorT is said to bek-hyponormal,0 < k ≤ 1, if
(T T ∗)k ≤ (T ∗T )k. (Thus a 1-hyponormal operator is hyponormal.) It is known
thatk-hyponormal operators satisfy a Putnam area inequality similar to that satis-
fied by hyponormal operators. Letσ(T ) denote the spectrum ofT . One then has
the following.

Lemma 5 [6, Thm. 5]. If T ∈B(H ) is k-hyponormal for some0< k ≤ 1, then

‖(T ∗T )k − (T T ∗)k‖ ≤ k

π

∫∫
σ(T )

r 2k−1dr dθ.

Let P be a compact injection, letA∈ Cρ, and letU be a unitary such thatPA =
UP. ThenA is power bounded, and it follows from an application of [2, Thm. 2]
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thatU is singular unitary (i.e., the spectral measure ofU is singular with respect to
the linear Lebesgue measure on the unit circle). Applying [2, Thm. 1(ii)] toPA =
UP yields the following lemma.

Lemma 6. If A ∈ Cρ is such thatPA = UP for some unitaryU and compact
injectionP, thenA is unitary.

In the sequel we shall denote the closure of the range (resp., the orthogonal com-
plement of the kernel) of anA ∈ B(H ) by ranA (resp., ker⊥A). The restriction
of A to an invariant subspaceN will be denoted byA|N. Recall that the operator
X is said to be aquasi-affinityif X is injective and has dense range.

2. Proof of Theorem 1

Let A ∈ B(H ) be such that eitherA ∈ Cρ or Am is a contraction for some in-
tegerm > 1. Then, by Lemma 4 (and the argument preceding the statement of
Lemma 4), there exists an invertible positive operatorL and a contractionC such
thatA = LCL−1 (with ‖L‖‖L−1‖ ≤ (2ρ−1) if A∈ Cρ). By hypothesis,A∗P 2kA ≥
P 2k; henceC∗LP 2kLC ≥ LP 2kL. LetL1= L/‖L‖; thenL1 is a contraction and
C∗L1P

2kL1C ≥ L1P
2kL1. The operatorL1P

2kL1 is positive and thus has a unique
positive 2k th root. Denote this root byQ; thenC∗Q2kC ≥ Q2k ≥ (QCC∗Q)k.
Recall now from Hansen’s inequality [10] that, ifQ is a positive (semi-definite)
operator andC is a contraction, thenC∗Q2kC ≤ (C∗Q2C)k for all 0 < k ≤ 1.
Hence(QCC∗Q)k ≤ (C∗Q2C)k, that is, the operatorQC is k-hyponormal. Us-
ing Lemma 5, we have that

‖A∗P 2kA− P 2k‖ = ‖L−1(C∗LP 2kLC − LP 2kL)L−1‖
≤ ‖L−1‖2‖‖L‖2(C∗Q2kC −Q2k)‖
= ‖L‖2‖L−1‖2‖C∗Q2kC −Q2k‖
≤ ‖L‖2‖L−1‖2‖C∗Q2kC − (QCC∗Q)2k‖
≤ ‖L‖2‖L−1‖2‖(C∗Q2C)k − (QCC∗Q)2k‖

≤ ‖L‖2‖L−1‖2 k
π

∫∫
σ(QC)

r 2k−1dr dθ

≤ ‖L‖2‖L−1‖2 k
π

∫∫
σ(LQL−1A)

r 2k−1dr dθ,

sinceσ(QC) = σ(QLAL−1) = σ(LQL−1A). This proves (i) of the theorem.
Postponing the proof of part (ii) momentarily, we next prove parts (iii) and (iv).

Thus, letP be compact with dense range. ThenP 2k, as also the unique positive
2k th rootQ ofL1P

2kL1, is a compact quasi-affinity. Consequently,QC is a com-
pact operator andσ(QC) has planar Lebesgue measure zero. It follows that

A∗P 2kA− P 2k = 0= C∗Q2kC −Q2k = C∗Q2kC − (QCC∗Q)k.
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In particular,Q2 = QCC∗Q; that is,C is a co-isometry that satisfiesQC = CQ
andC∗CQ2k = Q2k. ThusC is a unitary that commutes withQ, andA is similar
to a unitary. This proves (iv). Now ifA∈ Cρ, then an application of Lemma 6 im-
plies thatA is unitary. SinceA∗P 2kA = P 2k, A commutes withP andA∗PA−P =
0= APA∗ − P. This completes the proof of (iii).

To prove part (ii), we start by proving that the operatorT = QL−1AL = QC
satisfies the growth condition of Lemma 2. Toward this end we recall the Hölder–
McCarthy inequality [11], which states that if the operatorZ ≥ 0 then, for all
x ∈H,

(Zrx, x) ≤ ‖x‖2(1−r)(Zx, x)r , 0< r ≤ 1,

and
(Zx, x, )r ≤ ‖x‖2(r−1)(Z rx, x), 1≤ r.

Let T (= QC) have the polar decompositionT = U |T |. Then, since 0< k ≤ 1
and|T ∗|2k ≤ |T |2k,

‖Tx‖2(1+k) = (|T |2x, x)1+k

≤ ‖x‖2k(|T |2(1+k)x, x)
= ‖x‖2k(U |T |2kU ∗Tx, Tx)
= ‖x‖2k((U |T |2U ∗)kTx, Tx)
= ‖x‖2k(|T ∗|2kTx, Tx)
≤ ‖x‖2k(|T |2kTx, Tx)
≤ ‖x‖2k‖Tx‖2(1−k)(|T |2Tx, Tx)k

= ‖x‖2k‖Tx‖2(1−k)‖T 2x‖2k

for all x ∈H. Hence‖Tx‖2 ≤ ‖T 2x‖‖x‖ and

‖T nx‖2 = ‖T(T n−1x)‖2 ≤ ‖T 2(T n−1x)‖‖T n−1x‖ = ‖T n+1x‖‖T n−1x‖
for all x ∈ H and natural numbersn. Applying Lemma 2, we conclude thatT
is not supercyclic. To prove thatA is not supercyclic, we argue by contradiction.
Thus, suppose thatA is supercyclic. ThenA has a supercyclic vector(0 6=) x ∈H.
SinceA is power bounded, Lemma 3 implies that limn Anx = 0 (i.e.,A is of the
classC0• [13]). But thenP 2k ≤ A∗P 2kA implies that

‖P kx‖2 ≤ (A∗nP 2kAnx, x)

≤ ‖P 2k‖‖Anx‖2→ 0 asn→∞
and hence thatx ∈ kerP. Since the collection of supercyclic vectors of a super-
cyclic operator inB(H ) is dense inH (recall thatcAnx is a supercyclic vector for
A for every supercyclic vectorx of A [3; 4]), we must have thatP = 0—a con-
tradiction. HenceA is not supercyclic, and the proof is complete.
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Remark. It is clear from the foregoing proof that a power bounded operatorA

satisfying inequality (1) can not be supercyclic. The proof also implies thatPA

cannot be supercyclic whenA is a contraction.

3. Applications

Theorem 1 has a number of consequences, amongst them the following. The op-
eratorT is said to becompletely polynomially boundedif there exists a constant
c such that, for all natural numbersn andn × n matrices(pij ) with polynomial
entries,‖pij(T )‖B(l n2(H )) ≤ c supz∈T ‖pij(z)‖Mn

. HereT denotes the unit circle
in the complex plane,(pij(T )) is identified in a natural way with an operator in
l n2(H ), andMn is identified withl n2(H ). Paulsen [12] has shown that a completely
polynomially bounded operator is similar to a contraction. Again, ifT is power
bounded and spectraloid (i.e., the spectral radiusr(T ) of T equals the numerical
radiusw(T ) of T [9, p. 117]), thenw(T ) = r(T ) ≤ 1. This implies thatT ∈ C2

[12, Prop. 11.2, p. 48] and hence thatT is similar to a contraction. Thus Theo-
rem 1 applies to operatorsA that are either completely polynomially bounded or
power bounded and spectraloid. The following corollary generalizes [7, Cor. 6.5].
(We note here that ifA is similar to a contractionD then there exists a positive in-
vertible operatorL and a contractionC, unitarily equivalent toD, such thatA =
L−1CL.)

Corollary 7. LetA = L−1
1 C1L1 andB = L2C2L

−1
2 for some positive invert-

ible operatorsL1, L2 and contractionsC1, C2. If AXB = X for some compact
quasi-affinityX, thenC1 andC∗2 are unitarily equivalent unitaries. If alsoA and
B are spectraloid, thenA andB∗ are unitarily equivalent unitaries.

Proof. Let L1XL2 = Y. ThenY is a compact quasi-affinity such thatC1YC2 =
Y, |Y ∗|2 ≤ C1|Y ∗|2C∗1, and|Y |2 ≤ C∗2|Y |2C2. Applying Theorem 1 it follows that
C1, C2 are unitaries,C∗1 YC∗2 = Y, andC1, C

∗
2 are unitarily equivalent. Now, if

A is spectraloid thenr(A) = w(A) ≤ 1 andA ∈ C2 (see [12, p. 48]). Applying
Lemma 6 toL1A = C1L, it follows thatA is unitary. Since a similar argument
applies whenB is spectraloid,B∗ is unitary and unitarily equivalent toA.

The hypothesis thatA andB are spectraloid in Corollary 7 is not required ifA
andB areCρ. Furthermore, ifA andB are inCρ andX is (simply) compact, then
AXB = X implies thatA1X1B1 = X1, whereA1 = A|ranX, B

∗
1 = B∗|ker⊥ X (are

Cρ), andX1 : ker⊥X → ranX is the compact quasi-affinity defined by setting
X1x = Xx for eachx ∈H. This in turn implies thatA1, B

∗
1 are unitarily equiva-

lent unitaries and thatA∗XB∗ −X = 0. A better result is possible for the case in
whichA andB are contractions.

Corollary 8. Let A,B be contractions. IfAXB = X for some operatorX
such that eitherX is compact orσ(A|X∗|) is countable, thenA∗XB∗ = X, ranX
reducesA, ker⊥X reducesB∗, andA|ranX andB∗|ker⊥ X are unitarily equivalent
unitaries.
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Proof. DefineA1, B1, andX1 as before. Thenσ(A|X∗|) = σ(A1|X∗1 |) ∪ {0}
and |X∗1 |2 ≤ A1|X∗1 |2A∗1. Applying Theorem 1, it follows thatA1 is unitary and
A1|X∗1 |A∗1= |X∗1 |. LetX1 have the polar decompositionX1= U1|X1|; then|X∗1 | =
U1|X1|U ∗1 and it follows fromA1|X∗1 |A∗1= |X∗1 | thatA1X1= X1U

∗
1A1U1. Because

the operatorU ∗1A1U1 is unitary, it follows fromX1= A1X1B1= X1U
∗
1A1U1B1 that

B1 is unitary. The rest of the proof is now obvious.

We conclude this note with the following range-kernel orthogonality result. (Re-
call that if V is a normed linear space with norm‖·‖, thenx ∈ V is said to be
orthogonalto y ∈V if ‖x − ty‖ ≥ ‖ty‖ for all complex numberst.)

Corollary 9. LetX be a compact operator such thatAXB = X for some op-
eratorsA,B ∈ Cρ (ρ > 1). Then

‖AYB − Y +X‖ ≥ ‖X‖
for all Y ∈B(H ).
Proof. DefiningA1, B1, andX1 as before, it follows thatranX reducesA, ker⊥X
reducesB∗, andA1, B1 are unitaries such thatA1X1B1 = X1. Let Y ∈B(H ), and
let Y : ker⊥X ⊕ kerX → ranX ⊕ ranX⊥ have the matrix representationY =
[Yij ]2

i,j=1. Then it follows from an application of [8, Cor. 3] that

‖A1Y11B1− Y11+X1‖ ≥ ‖X1‖ = ‖X‖.
Recall now that the norm of the leading entry of an operator matrix is less than or
equal to the norm of the operator matrix. Since

AYB − Y +X =
[
A1Y11B1− Y11+X1 ∗

∗ ∗
]
,

the proof follows.
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