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F-Rational Rings and the
Integral Closures of Ideals

IaN M. ABERBACH & CRAIG HUNEKE

1. Introduction

The history of the Briangon—Skoda theorem and its ensuing avatars in commuta-
tive algebra have been well documented in many papers (see e.g. [AHL; LS]). We
will therefore only briefly review the relevant concepts and theorems. First recall
the definitions of the integral closure of an ideal.

DerFiNITION 1.1.  LetR be aring and lef be an ideal of®. An elementx € R is
integral over! if x satisfies an equation of the formi + ayx"*+ ... 44, =0,
wherea; € I/ for 1 < j < n. Theintegral closureof 7, denoted by, is the set of
all elements integral over. This setis an ideal.

Let R? be the set of all elements &fnot in a minimal prime. An equivalentthough
less standard (but for our purposes a more useful) definition of integral closure is
the following.

EqQuivaLENT DEFINITION 1.1. LetR be a Noetherian ring and Iétbe an ideal
of R. An elementx € R is integral over] if there exists an elemente R° such
thatex” € 1" for all n > 0.

A theorem proved by Briancon and Skoda [BS] for convergent power series over
the complex numbers and generalized to arbitrary regular local rings by Lipman
and Sathaye states as follows.

THeorREM 1.2 [BS; LS]. LetR be aregular local ring and lef be an ideal gen-
erated by¢ elements. Then, for all > ¢,

I_n cC Iﬂf@#’l

This was partially extended to the class of pseudo-rational rings by Lipman and
Teissier [LT]. However, they were unable to recover the full strength of Theo-
rem1.2.

THeoreM 1.3 [LT, (2.2)]. LetR be a Noetherian local ring and assume that the
localizationRp is pseudo-rational for every prime ide&l in R. Suppose that
has a reductiory such thatdim Rp < § for every associated prime of /. Then
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Itl+5—l g Jﬂ_

In particular, if J can be generated by a regular sequence of ledgtthen the
above containment holds for all> 1.

The present two authors, as well as Lipman, have pushed the original theorem fur-
ther by introducing “coefficients”; see [AH1; AH2; AHT,; L]. The methods used
by the present authors have relied on the theory of tight closure. These improve-
ments, however, have been valid only in regular rings, and the question of whether
the statement of Theorem 1.2 remains valid in arbitrary pseudo-rational rings has
remained open since 1981. Recent progress was made by Hyry and Villamayor
[HyV], who proved (among other things) that&fis local Gorenstein and essen-
tially of finite type over a field of characteristic 0, thent¢-1 C [" for an arbitrary
ideal I with ¢ generators. In this paper we will use tight closure methods to prove
that Theorem 1.2 is valid for F-rational rings (the definition is in Section 2). In
characteristigp, Smith [Sm] proved that F-rational implies pseudo-rational, but
it can be stronger in general. However, for affine algebras in equicharacteristic
0, the concepts of rational singularity, pseudo-rational singularity, and F-rational
type all agree, owing to work of Lipman and Teissier [LT] for the equivalence of
rational singularity and pseudo-rational singularity, and of Smith [Sm] and Hara
[Ha] and independently Mehta and Srinivas [MS] for the equivalence of rational
singularity and F-rational type (Smith proved that rational implies F-rational type
and the other authors have just recently proved the converse). It follows from these
equivalences that, in equicharacteristic 0, we are able to prove Theorem 1.2 for
rational singularities.

The basic idea of this paper is inspired by the proof of a cancellation theorem
(see [Hul]). The key idea is to relate an arbitrary ide&d a system of parame-
ters in a manner that closely approximates the structure of the power§\af do
this by using first a basic construction and then a theorem that relates the integral
closure of powers of with the tight closure of the system of parameters. In the
next section we briefly discuss tight closure; see [HHL1; Hu2] for more references
and information.

2. Tight Closure
We begin with the definition.

DeriniTION 2.1.  LetR be a Noetherian ring of characteristic> 0. Let I be an
ideal of R. An elementx € R is said to be in théight closureof I if there exists
an element € R° such thatx? e 119 for all largeq = p¢, wherel !9 is the ideal
generated by theth powers of all elements df

Every ideal in a regular ring is tightly closed. We say that elemepts ., x, in

R are parametersf the height of the ideal generated by them is at leagive

allow them to be the whole ring, in which case the height is said tsobelf the

ideal they generate is proper, then the Krull height theorem says that the height is
exactlyn.
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DErFINITION 2.2. A Noetherian ringR of characteristipp > 0 is said to be~-
rational if the ideals generated by parameters are tightly closed.

This definition arose from the work of Fedder and Watanabe [FW] because of the
apparent connection to the concept of rational singularities.

The concept of pseudo-rationality was introduced in [LT], partly as a substitute
for the notion of rational singularities in positive and mixed characteristic, where
desingularizations are not known to exist in general. Their definition is as follows
(see [LT, Sec. 2)]).

DEerFINITION 2.3.  Let(R, m) be ad-dimensional local Noetherian ring. The ring
R is said to bgseudo-rationalf it is normal, Cohen—Macaulay, and analytically
unramified and if, for every proper birational map W — X = SpegR) with
W normal and closed fibef = 7 ~1(m), the canonical map

Hi(.(Ow)) = Hy(R) — Hg (Ow)
is injective.
In [LT] it is proved that, for a local ring essentially of finite type over a field of
characteristic 0, the notions of pseudo-rational and rational singularity agree. In
[Sm]itis shown that, in positive characteristic, F-rational implies pseudo-rational.
Smith uses this to prove that rings of finite type over a field of characteristic 0 that
are F-rational type have rational singularities. Here “F-rational type” essentially
means that characteristicmodels of the variety are F-rational. More precisely,
we next introduce the idea of a model.

Let R be aring that is finitely generated over a field of characteristic ORsay
k[Xa, ..., X,]/1. Then we can choose generators for the idesid, by collecting
coefficients of those generators, find a finitely generaeagebraAd C k such
that definingR4 = A[Xy, ..., X, ]/U NA[Xy, ..., X,]) yieldSR = k ®4 R4. We
call the mapA — R, a family of modelsof R. We sometimes insist that the map
A — R, be flat, which one can always obtain by expandinyy localizing at
a single element. A typical closed fiber Bf, over A is a characteristig- model
of R.

DerFNITION 2.5. LetR be a finitely generated algebra over a field of charac-
teristic 0. Thenr is said to havd--rational typeif R admits a family of models

A — R, in which a Zariski dense set of closed fibers are F-rational. (This does
not depend on the choice of models.)

The theorem in [Sm] states that, Xf is a scheme of finite type over a field of
characteristic 0, then X has F-rational type it has only rational singularities. Re-
cently, the converse has been proved by Hara [Ha] and independently by Mehta
and Srinivas [MS].

3. F-Rational Rings and Tight Closure

In this section we first discuss a basic construction that will play a crucial role in
the paper. Given an idedlin a Noetherian local ringR, m), a minimal reduction
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J of I—say,J = (ay, ..., ap)—and an integeN, we wish to construct an ide@l
generated by parameters such that 20 modulom” and such tha@l is closely
related to/ and its powers. For example, one would likec 2, but this is in
general not possible sinéganay not be contained in any ideal generated by param-
eters. We record what we need in Proposition 3.2. We need the following lemma
from [AHT].

LemMA 3.1. Let (R, m) be a local ring with infinite residue field and 16tC R
be an ideal of analytic spread. LetJ C I be a minimal reduction of. Then
there exists a “basic” generating set, ..., a, for J such that

(1) if P is a prime ideal containind andhtP =i < ¢ then(ay,...,a;)p iS a
reduction of I, and

(2) ht((ay, ...,a)I" . "1 4+ 1) > i+ 1foralln > 0.

(3) If ¢; = a; modulo/?, then(1) and (2) hold with¢; replacinga; .

Proof. The first two statements are found in [AHT, Lemma 7.2]. The last state-
ment follows from the proof of Lemma 7.2 in [AHT]. The choice of a basic gen-
erating set depends only on the images otthia the associated graded rigg=

R/I ® I/I? @ - - -. In particular, since; anda; have the same leading forms in
G, (3) follows. O

ProrosiTioN 3.2. Let (R, m) be an equidimensional and catenary local ring
with infinite residue field and lgt € R be an ideal of analytic spreaél LetJ C

I be a minimal reduction of. We assume thdit/ = g andJ = (ay, ..., a;), a
basic generating set faf as in Lemma 3.1. LeV andw be fixed integers, and
suppose that fog +1 < i < £ we are given finite sets of primes = {Q;;} all
containing/ and of height. Then there exist elemenis ..., a, andz,.1, ..., t
such that the following hol@we set; = 0 for i < g for convenience

(1) a; = a] modulo/?;

(2 forg+1<i<¢t,t;emV;

(3) b1, ..., by, bgt1, ..., by are parameters, whels = a; + ¢t;;

(4) if R/I is equidimensional then the imagestgfy, ..., #, in R/I are parame-
ters

(5) there is an integeM such that; 1 € (J/IM : M) forall 0 <t < w + ¢,
whereJ; = (aq, ..., a;);

(6) tiy1¢ U,,' Qji, where the union is over the primes .

Proof. We choose the; ands; inductively. We first modify:;, ...,ag toay, ..., a,

in such a way that these elements form parameters. We can do this;vetha
modulo/?forl<i < g. Suppose we have chosey) ..., a; andr, ..., t; So that

all six of the listed statements are true for these elements. Fix the minimal primes
P, ..., P, (all necessarily of height) aboveB; = (b4, ..., b;). Divide them into

two sets: letPy, ..., P, be the ones that contaii) and letP, 1, ..., P; be those

that don’t contairn/. We first change:/, , to an element; 1 = a/_, modulo J?

such that; ;1 ¢ Ujk=n+1 P;. This choice is possible because the nilradical a$
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the same as the nilradical bf Next choosé; such that the height df+ (J; 1" :
IMi+1) is at least + 1, and choos@/ to be the maximum of thaz;. (This is pos-
sible by Lemma 3.1.) This choice forces @lf 1™ : 1"+ + I to be of height at
leasti + 1 for all 7 > 0. For suppose that//I™ : IM*") + I € Q, whereQ is
a prime of height at most Sincel/ < Q, this forces(J;1" : 1"*1) ¢ Q, and
after localization ap we have(1M*+Y), = (J;1M),. But this force( /M *"), =
(JIIM), for all integerst, and so(J/1M : 1M*") ¢ Q, a contradiction. Using
prime avoidance, choose

i € Vg M - 1) om0 (o, 00 )
and

g (U ) U (U Qi)

This is possible becauges contained in each of the primes in the second line
and all these primes have heightvhile the height off + (J/1™ : [M*') is at least
i+1 We seth; ;1 = a; 11+ t;11. We claim this choice proves (1)—(6) for these new
elements. Our choice af,; andt;; make statements (1), (2), (5), and (6) triv-
ial. To prove (3) we need only proveg,; ¢ Ujkzle. If j <n,thena;;1el C
P; whilet; 11 ¢ P;. Henceb; 11 ¢ P;. If j > n+ 1 thena;;1 ¢ P; whilet; 1€ P;.
Againb; 1 ¢ P;, proving (3). Statement (4) follows from (3). Clearly the height
of (I, bgy1, ..., biy1) is at least that oby, ..., b1 and hence at least+ 1. But
(I,bgi1, ..., bix1) = (I, tg4, ..., tix1). Sincer is equidimensional and catenary,
it follows that the images of the in R/I form parameters. O

THeEoOREM 3.3. Let (R, m) be an equidimensional and catenary local ring of
characteristicp having infinite residue field. Ldtbe an ideal of analytic spread
¢ and positive heighg. LetJ be a minimal reduction of. Fix w, N > 0. Choose

a; andt; as in Proposition 3.2. S&l = By = (b1, ..., be, ..., by). Then

16w C (AU Hh*,

Proof. Our choice of elements means that. .., ag, agy1+to41, ..., Giy1+ tipa
is part of a system of parameters. Fix the notation as in Proposition 3.2. By our
choice of ther; we have that; 1Y+ C Jj’illM foralll < k < w + £. We first
claim that this implies
M+nk k M
M g T

for all n > 1. Assume this is true for a fixed, and multiply byz; 7*. We obtain
that (¢ 1) (1] 1M+ < (1 Ik)Jj"_"llM. Sincer; I1M+k ij_llM, we now have

n+lyM+(n+Dk k 1k M

Al A e N (VY
as required. Fix e I N R°. Note that the above containment shows that, for all
n>1

Dk
Ct;1+ll(n+l)k c Jj(fir) ) (34)
SetB; = (b1, ....b). Letg <i < ¢ andw > r > 0. We show by induction

thate'=¢J*"% C (B/*Y)l4]. The base case is whénr= g andr < w is arbitrary.
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In this case/ ¢4 < (J; THlal = (B;Hl4]. The first inclusion in the above line
follows at once from [HH1, proof of (5.4)].

Assume now that we are giverandi > g and that the claim is true either for
i’ < i (with r’ < w arbitrary) or fori’ =i (with r’ < r < w). By our choice of
and of they;,

Cifgji(i‘i’r)q C Ciig.]i[q] Ji(i‘i’r*l)q

c ci—g[Jg[q] Ji<i+r—1)q + aZHJi(Hr—l)q 4ot alg Ji(i+r—l)q]

_ Ciigil[CJg[q] Ji(iJrrfl)q + Cag+lji(i+r71)q 4ot Ca;] Ji(iJrrfl)q].
Consider a typical term in this surmg! /""" "7, whereg +1 < j < i. Since
b; = aj + t;, we can write this term as
Ca;]Ji(i+l‘fl)q — Cb]q Ji(iJrrfl)q _ Cl‘j-(l.]i(i+"71)q.
Using (3.4) (noté +r —1 < w + £), we obtain
Ca;jji(i+1'—1)q c Cb]q Ji(i+r—l)q + ]j(i-ir—l)q
and so
Ciigji(lq»r)q g Cifgfl[c‘]g[q]‘]i(i+rfl)q + (Cbg+l‘]i(i+rfl)q + Jg(l'le‘fl)q)
(i+r=1 (i+r=1)
+"'+(Cbl‘q-],‘l r q+~’,‘i1 (I)]7
which by the induction hypothesis is contained in
Jg[q](Bif)[q] + bZJrl(Bir)[q] + (B’:H—g)[q] ot biq(Bl,’)[ﬂl] + (Birjll)[q]
c (B_r+1)[q]
—_— 1 .
In particular, note that
ctmeg 01 c (Bl (3.5)

forall r < w. . .

We now prove thaf¢+v < (A%*+h*, Letu e I¢+». Choose an elemedte R
such thatu? C J“ "4, Thenc!~¢du e c*=8J+wa c (By™Hldl by (3.5). It
follows thatu € (B}'™)* = (A»+1)*. O

ReMaRrk. Theorem 3.3 is still valid even if if) = 0. In this case, choosg €
IM andc, in the intersection of the minimal primes of 0 that do not confaamd
avoiding those that do contain Thusc,/¥Y =0for N > Oandc =c1+co €
R? satisfies equation (3.4).

An almost immediate consequence is one of our main theorems.
THEOREM 3.6. Let (R, m) be an F-rational local ring of positive characteristic

p, and letl C R be an ideal generated biyelements. Theh‘+» < 1*+1 for all
w > 0.
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Proof. There is no loss of generality in assuming tlRahas an infinite residue
field. We can replacé by a minimal reduction of itself; suppose thatis that
minimal reduction. The number of generatorsjofs at most¢, so without loss
of generality we may assunteis the number of generators df Fix an integer
N. We think of w as fixed and choosgy, ..., anday, ..., a; as in Proposi-
tion 3.2. In particulars; € m¥ for all i. By (3.3), I¢t» C (A¥*1)* = Qv+l C
T (thia, .., te) © T 4+ mP. The equality@*+1)* = A*+1 above fol-
lows from [A, Thm.1.1]. By theKrull intersection theorem we obtain th&tt» C
ﬂN(]w+1+ mN) — ]“"H-. 0

This characteristigr theorem allows us to prove the same result in equicharacter-
istic 0.

THEOREM 3.7. Let R be an algebra of finite type over a field of characteristic
0 and having only rational singularities. Let C R be an ideal generated b
elements. Thept+w C 1%+ forall w > 0.

Proof. By the work of both Hara [Ha] and Mehta and Srinivas [M&],is of
F-rational type. It is straightforward to prove in this case that, if the conclusion
holds in a dense open set of fibers in some family of modelss R, of R, it

also holds inR. Hence we may pass to positive characteristic and assume that
is finitely generated over a field of characterigiic- 0 such thatR» is F-rational

for all primesP. The conclusion will follow if we prove it locally, since the num-
ber of generators can only drop after localization. It follows that we can reduce to
the local F-rational case and apply Theorem 3.6 to finish the proof. O

4. F-Rational Gorenstein Rings

Our next theorem is new, even fBrregular, as far as we know. The proof is based
on a careful analysis of the proof of Theorem 3.5 together with the ideas behind
the cancellation theorem of [Hul] (see also [CP] for further cancellation results).
Our main theorem applies to rings that are F-rational and Gorenstein. It is known
[HH2, (3.4), (4.7)] that F-rational and F-regular are the same when the base ring
is Gorenstein. A ringR is F-regular if every ideal is tightly closed in every local-
ization of R. Of course, all regular rings are F-regular, but the class of F-regular
rings is considerably broader than that of regular rings.

THEOREM 4.1. Let (R, m) be an F-rational Gorenstein local ring of dimension
d and having positive characteristic. Suppose thas an ideal of heighg and
analytic spread? > g with R/I Cohen—Macaulay. Then, for any reductigrof

1, 1¢1c .

Proof. There is no loss of generality in assuming tiRahas an infinite residue
field and that/ is a minimal reduction. Fix an integéf and setw = 0 in the no-
tation of Proposition 3.2 and Theorem 3.3. We will prove thatt € J + m”.
An application of the Krull intersection theorem then finishes the proof.
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We choose,., ..., t; anday, ..., a, as in Proposition 3.2, witlV fixed as be-
fore. Leth; = a; +1t; for1<i <£. ChOOS& = x¢41, ..., Xz SO thatgq, ..., be, X
is a regular sequence @yl and setl = (b1, ..., by, X). We setD = J, : 1541
andK = (Jg, bgyo, ..., by, X).

Let Q = (I,bg42, ..., b, X) + K : D. We claim thatX : z,.1 € Q. Suppose
that

fopit = W + Vhgyy, (4.2)

wherew € K. Thent,1(u — v) € (Jg41, bgy2, ..., be, X) and hence

u—ve (Jg+1, bg+2, N bg, X) . bg+1 - (I, bg+2, ey bg, X) . bg+1
g (11 ngrZa "'7blvx)
sinceR/I is Cohen—Macaulay. Henee— v € Q and to prove: € Q it suffices

to show thatv € K : D. Letd € D and considet/v. Using (4.2), we obtain that
toy1du = dw + dvby, 1 and hencelvby 1 € (Jy, bgyo, ..., be, X). Thus

Dv C (Jy, bgi2s - by, X) 2 bgi1 = (g, bgya, .., by, X) = K.
This proves our claim and in particular proves tlat Q9 C A : (A :tg41).
We nextclaimthaf ‘- € 2 : Q. Firstobserve thatl, b, ..., by, X)- 171 C

I-1-1+ 2 and, by Theorem 2.G,- 7¢~1 € 2 (using thatR is F-rational). Hence
it remains only to prove thatt-1. (K : D) € 2. We use a lemma.

LEmMA 4.3. With the same notation as before,
tg+1 . Il__l g Jg

Proof. Let z € -1 and choose an elemedite R° such thatiz" € 1"“=? for all
n. Chooser € I™ nonzero as in (3.4). Using (3.4), we then obtain

4 -4 A LG 9 Jat=D+M q(t=1) [4]
dety 127 €cty gl Ctyql c J c 7,

where the last containment follows becaudse 1 > ¢ andJ, hasg generators.
Hencet, 1z € (J,)*. SinceR is F-rationalt, 1z € J,, proving the lemma. [

Lemma 4.3 proves that'—1 € D. Hencel“Y((J;, b1, ...,be, X) : D) C 2A.
We have proved thatt-1 C 2 : Q.

By local duality, we havel©1 € 2 : Q € A : (A : 1541 C (Jos1 Loy,
bei2,..csbe,X) C (J, tgg1s ooy tg, X) S J +mV, 0
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