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Categories of Topological Spaces
and Scattered Theories

R. W. Knight

Abstract We offer a topological treatment of scattered theories intended to
help to explain the parallelism between, on the one hand, the theorems provable
using Descriptive Set Theory by analysis of the space of countable models and,
on the other, those provable by studying a tree of theories in a hierarchy of frag-
ments of infinintary logic. We state some theorems which are, we hope, a step
on the road to fully understanding counterexamples to Vaught’s Conjecture. This
framework is in the early stages of development, and one area for future explo-
ration is the possibility of extending it to a setting in which the spaces of types
of a theory are uncountable.

1 Introduction

1.1 Overview One usually expects that if different methods are applied to a prob-
lem, then the theorems that they generate will be different in kind, and perhaps
complementary. This arguably applies to the model-theoretic, and set-theoretic, ap-
proaches to Vaught’s Conjecture. The former approach has, inter alia, yielded theo-
rems about circumstances under which Vaught’s Conjecture is true, for example, for
superstable theories of finite rank as proved by Buechler in [3] or for ω-stable the-
ories as proved by Harrington, Makkai, and Shelah in [9]. The latter approach has,
in contrast, yielded a variety of theorems giving properties of any counterexample,
such as the existence of many saturated models.

One might therefore be struck by the similarity of content and even of “feel” be-
tween the theorems obtained by Sacks, as described in [8], using analysis of a certain
tree of theories, the “Vaughtian tree,” and those obtained by Steel, Becker, and oth-
ers using descriptive set theory; see [10], [1], and [2]. Using the Vaughtian trees,
one proves the existence of many saturated models and of an elementary chain of
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atomic models; using descriptive set theory, one again proves the existence of satu-
rated models and shows that those too can be arranged in an elementary chain. And
there are many other interesting results proved by these two techniques exhibiting
similar parallelism.

What accounts for this similarity? After all, the Sacks analysis of a theory T is
quite constructive in flavor and can be carried out in L(T ); in contrast, the theorems
in the descriptive set theory approach often presuppose a determinacy axiom and are
obtained by applying topological ideas to a space of countable models of T .

In this paper, we would like to propose an idea linking these two approaches.
That idea is a type category of a scattered theory T , whose objects are the spaces
of n-ary types for each n, with appropriate arrows. From this category both the
Vaughtian tree and the space of models of T can be obtained. We begin by defining
these type categories and then show how to obtain the spaces of models from them;
then we define a set of trees, one of which will be the Vaughtian tree mentioned
earlier; then we will use these to prove a theorem about embeddings of atomic and
saturated models; and then we prove some structure theorems about models of a
counterexample to Vaught’s Conjecture.

It is worth emphasizing that the ideas described in this paper were developed
with counterexamples to Vaught’s Conjecture in mind. We therefore do not consider
theories with uncountably many n-ary types, in the appropriate languages; this is a
topic for further exploration.

1.2 Terminology and conventions For results and (most of our) terminology
about infinitary logic, we refer to [5]. We define a fragment of Lω1,ω to be a subset
closed under Boolean operations, first-order quantification, the taking of subfor-
mulas, and permutation of the set of variable letters. If A is a set, then SetA is
the category whose objects are all elements of A and the arrows are all functions
between elements of A. If m ≤ n ≤ ω, we use the notation ιm,n to refer to the
inclusion map from m to n. If n ∈ ω, and i < n, then we use the notation dn

i to refer
to the map from n − 1 to n given by

dn
i : j 7→

{
j if j < i
j + 1 otherwise.

If n ∈ ω \ {0, 1}, and i < n − 1, then we use the notation sn
i to refer to the map from

n to n − 1 given by

sn
i : j 7→

{
j if j ≤ i
j − 1 otherwise.

If n ∈ ω and A is a subset of n, then we use the notation eA to refer to the func-
tion enumerating A; that is, eA is the unique one-to-one increasing function whose
domain is |A| and whose range is A.

One can write down a large number of identities connecting these; for instance,
en\{i} = dn

i , ιn,m = en , and dn
n−1 = ιn,n+1. Any topological notions needed in the

text may be found (except where otherwise indicated) in standard works such as [4].

2 Categories of Types

2.1 The definition of a type category We now define the central concept of this
paper.
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Definition 2.1 A weak type category is a contravariant functor S from Setω to the
category of topological spaces such that

1. for each n, Sn is a nonempty, zero-dimensional Hausdorff space;
2. whenever f : n → m, S f : Sm → Sn is continuous; and
3. we say that p ∈ Sm has the weak amalgamation property in S iff whenever

(a)

m
f1

−→ n1

f2

y yg1

n2
g2

−→ l

commutes,
(b) f1, f2, g1, and g2 are one-to-one,
(c) ran g1 ∩ ran g2 = ran g1 ◦ f1,
(d) U , V are nonempty and open, respectively, in (S f1)

−1
{p} and

(S f2)
−1

{p},
then there exists q ∈ Sl such that S f1 ◦ Sg1(q) = p, (Sg1)(q) ∈ U , and
(Sg2)(q) ∈ V . Then for every m ∈ ω, for every p ∈ Sm, p has the weak
amalgamation property in Sm.

If in addition all maps S f are open, then S is a type category.

Condition 3 implies directly that if f : m → n is one-to-one, then S f : Sn → Sm
is onto. (This is provable indirectly as follows: if f : m → n is one-to-one, find
g : n → m such that g ◦ f is the identity on m. Then since S is a functor, Sιm,m ,
which is the identity on Sm, is equal to (S f ) ◦ (Sg), so S f is onto.)

The connection with logic is as follows.

Definition 2.2 Let L be a countable fragment of Lω1,ω, and let T be a countable
theory in L. The type category of T over L is the type category SL

T such that, for
each n, SL

T n is the space of complete n-ary L-types from models of T with the usual
topology (that is, that generated by sets of the form {p ∈ Sn | ϕ(x0, . . . , xn−1) ∈ p},
for n ∈ ω and ϕ ∈ L), and such that if f : m → n, then for each p ∈ SL

T n,

(SL
T f )(p)(x0, . . . , xm−1) = {ϕ(x0, . . . , xm−1) | ϕ(x f (0), . . . , x f (m−1)) ∈ p}.

We should check that the maps SL
T f are well-defined.

Proposition 2.3 Suppose p(x0, . . . , xn−1) is an n-ary type in L from a model of T ;
say M |H T and p is the type in M of a tuple 〈a0, . . . , an−1〉. Suppose f : m → n.
Then (SL

T f )(p)(x0, . . . , xm−1) is the type in M of 〈a f (0), . . . , a f (m−1)〉 and is, in
particular, an m-ary type.

Proof We show that (SL
T f )(p)(x0, . . . , xm−1) is the set of L-formulas satis-

fied by 〈a f (0), . . . , a f (m−1)〉. For ϕ(x0, . . . , xm−1) ∈ (SL
T f )(p) if and only if

ϕ(x f (0), . . . , x f (m−1)) ∈ p, and, since p is the type of 〈a0, . . . , an−1〉, this is
equivalent to the statement that M |H ϕ(a f (0), . . . , a f (m−1)), as required. �

We do also need to know that the type category of a theory is a type category.

Theorem 2.4 The type category SL
T of a countable theory T in a fragment L of

Lω1,ω is a type category.
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Proof We check the conditions of Definition 2.1.

1 Each SL
T n is zero-dimensional, because L is closed under negation. It is T0

because distinct points of SL
T n correspond to distinct types, and if p and q are distinct

n-ary types, then there must be some formula ϕ which is contained in one and not
the other; so there is an open set containing one of p and q and not the other. SL

T n is
then a zero-dimensional T0 space and, so, is Hausdorff.

2 If f : n → m, and ϕ(x0, . . . , xn−1) is an n-ary formula, then

(SL
T f )−1(

{p ∈ SL
T n | ϕ(x0, . . . , xn−1) ∈ p}

)
= {q ∈ SL

T m | ϕ(x f (0), . . . , x f (n−1)) ∈ q},

and so the inverse image under SL
T f of every basic open set is open, so SL

T f is con-
tinuous.

3 Suppose m, n1, n2, l, f1, f2, g1, g2, p, U , and V satisfy the conditions given in
clause 3 of Definition 2.1. Then by definition of the topology, there exist formulas
ϕ1(x0, . . . , xn1−1) and ϕ2(x0, . . . , xn2−1) such that

(SL
T f1)

−1
{p} ∩ {r ∈ SL

T n1 | ϕ1 ∈ r} ⊆ U

and

(SL
T f2)

−1
{p} ∩ {r ∈ SL

T n2 | ϕ2 ∈ r} ⊆ V,

and such that

∃xm, . . . , xni −1 ϕi (xhi (0), . . . , xhi (ni −1)) ∈ p,

for i = 1, 2, where hi : ni → ni is a permutation such that hi ◦ fi is the identity on
m. But then,

(∃xm, . . . , xn1+n2−m−1)
(
ϕ1(xh1(0), . . . , xh1(n1−1))

∧ ϕ2(xh3(0), . . . , , xh3(n1+n2−m−1))
)

∈ p

also, where h3 = em∪[n1,n2−m)◦h2. This fact implies the existence of a type q ∈ SL
T l

such that (SL
T ( f1 ◦ g1))(q) = p, and

ϕi (xgi (0), . . . , xgi (ni −1)) ∈ q

for i = 1, 2 as required.

Hence SL
T is a weak type category.

We now prove that all maps SL
T f are open; the essential reason for this being that

the language L is closed under existential quantification.
If f : n → m, and ψ(x0, . . . , xm−1) is an m-ary formula, k ≥ n, and if

h = em\ran f , and j =
∣∣m \ ran f

∣∣, then

(SL
T f ){p ∈ SL

T m | ψ(x0, . . . , xm−1) ∈ p}

= (SL
T f ){p ∈ SL

T m | ∃xh(0), . . . , xh( j−1) ψ(x0, . . . , xm−1) ∈ p},
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for the inclusion of the left-hand side in the right is obvious; as for the reverse
inclusion, if ∃xh(0), . . . , xh( j−1) ψ(x0, . . . , xm−1) ∈ p, then, defining a function
l : m → m + j so that

l : j 7→

{
j if j ∈ ran f
m + h−1( j) otherwise,

we may find q ∈ (Sιm,m+ j )
−1(p) such that

ψ(xl(0), . . . , xl(m−1)) ∈ q.

Now extend l to a permutation l ′ of m + j such that

l ′ : j 7→


j if j ∈ ran f
m + h−1( j) if j ∈ m \ ran f ′,

l−1( j) otherwise,

then

ψ(x0, . . . , xm−1) ∈ (SL
T l ′)(q),

and so

(SL
T f )(SL

T ιm,m+ j )(SL
T l ′)(q) ∈ (SL

T f )
{
r ∈ SL

T m
∣∣ ψ(x0, . . . , xm−1) ∈ r

}
.

We wish to show (SL
T f )(p) = (SL

T f )(SL
T ιm,m+ j )(SL

T l ′)(q). But l ′ ◦ ιm,m+ j ◦ f =

ιm,m+ j ◦ f , so (SL
T f )(SL

T ιm,m+ j )(SL
T l ′)(q) = (SL

T f )(SL
T ιm,m+ j )(q) = (SL

T f )(p).
Now

(SL
T f ){p ∈ SL

T m | ∃xh(0), . . . , xh( j−1) ψ(x0, . . . , xm−1) ∈ p}

= {p ∈ SL
T n | ∃xn, . . . , xk−1 ψ(xg(0), . . . , xg(m−1)) ∈ p},

where g : m → k satisfies f ◦ g(i) = i for all i ∈ ran f and maps m \ ran f one-
to-one onto [n, k), and so the image of any basic open set is open, and so SL

T f is an
open map. Hence SL

T is a type category. �

2.2 Properties of type categories It will be useful to have a criterion for when a
weak type category is a type category.

Lemma 2.5 Suppose S is a weak type category, and for every n ∈ ω and i < n,
Sdn

i and (if n > 0 and i < n − 1) Ssn
i is an open map. Then S is a type category.

Proof Obvious, since if σ : n ↔ n, then Sσ and Sσ−1 are both continuous and
therefore open, and any function from one integer to another is a composition of
permutations and functions dn

i and sn
i . �

A type category may possess some extra properties.

Definition 2.6 We say a weak type category S is compact if for every n, Sn is
zero-dimensional, compact and metrizable, and we say it is Polish if Sn is zero-
dimensional and Polish for every n. The category is countable if Sn is countable for
every n. The category is amalgamative if whenever
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1.

m
f1

−→ n1

f2

y yg1

n2
g2

−→ l

commutes,
2. f1, f2, g1, and g2 are one-to-one,
3. ran g1 ∩ ran g2 = ran g1 ◦ f1,
4. p ∈ Sm, and
5. q ∈ Sn1, and r ∈ Sn2, and (S f1)(q) = (S f2)(r) = p,

then there exists s ∈ Sl such that (Sg1)(s) = q and (Sg2)(s) = r .

These properties are related to properties of the language using standard, well-known
theorems about spaces of types, as follows.

Theorem 2.7 Let S be the type category of a theory T in a language L.
1. If L is a countable first-order language, then S is compact and amalgama-

tive; and
2. if L is a countable fragment of Lω1,ω and T is either

(a) a countable theory in L or else
(b) a sentence of L,

then S is Polish.

Proof If L is a first-order language, then each Sn is compact by the Compactness
Theorem, and if L is countable, then Sn is metrizable by Urysohn’s Metrization
Theorem, since it has a countable basis, and is Hausdorff and zero-dimensional, and
hence T3. Amalgamativity of S is again a consequence of the Compactness Theorem.

If L is a countable fragment of Lω1,ω, then S is Polish because each Sn is Gδ in
a compact metrizable space, the countably many open sets in question being given
by the requirement that the set

{¬θi : i ∈ ω} ∪

{∧
i∈ω

θi

}
should not be realizable, for each of the countably many infinite conjunctions∧

i∈ω θi occurring as elements of L. �

We also have a partial converse.

Theorem 2.8 Any compact, amalgamative type category S is the type category of
some theory T in a countable language of first-order logic. Moreover, T can be
chosen to be 52.

Proof First observe that because each Sn is compact and metrizable, it has only
countably many clopen subsets, and these form a basis for the topology on Sn since
Sn is zero-dimensional. So, to each n ∈ ω and each clopen subset U of Sn, assign
an n-ary predicate letter Pn

U (x0, . . . , xn−1), and let T be the theory which includes
formulas chosen as follows:

1. ∀x0, . . . , xn−1
(
Pn

U (x0, . . . , xn−1) ↔ ¬Pn
Sn\U (x0, . . . , xn−1)

)
, whenever n ∈ ω

and U is a clopen subset of Sn;
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2. ∀x0, . . . , xn−1¬Pn
∅(x0, . . . , xn−1) for all n ∈ ω;

3. ∀x0, . . . , xn−1

(
Pn

U∩V (x0, . . . , xn−1) ↔
(
Pn

U (x0, . . . , xn−1)∧Pn
V (x0, . . . , xn−1)

))
whenever U and V are clopen subsets of Sn;

4. ∀x0, . . . , xn−1

(
Pn

U∪V (x0, . . . , xn−1) ↔
(
Pn

U (x0, . . . , xn−1)∨Pn
V (x0, . . . , xn−1)

))
whenever U and V are clopen subsets of Sn;

5. noting that, because each Sn is compact and Hausdorff, all the maps S f are
closed and thus send clopen sets to clopen sets, we also add to T a formula

∀x0, . . . , xn−1
(
Pn
(S f )(U )(x0, . . . , xn−1)

↔ ∃yg(0), . . . , yg(m−n−1)Pm
U (y0, . . . , ym−1)

)
,

where y f (i) = xi for all i , whenever U is a clopen subset of Sm, f : n
1–1

−−→ m,
and g : m − n → m is equal to em\ran f ,

6. if f : n → m is onto, U is a clopen subset of Sm, then

∀x0, . . . , xn−1

(
Pn
(S f )(U )(x0, . . . , xn−1)

↔

(( ∧
f (i)= f ( j)

xi = x j

)
∧ Pm

U (xg(0), . . . , xg(m−1))

))
,

whenever g : m → n is any one-to-one function such that f ◦ g = ιm,m .

Having defined this theory, it is straightforward to check that for each n, Sn is, in
a natural way, homeomorphic to the space of quantifier-free n-ary types over this
theory, and, by axiom scheme 5, we can eliminate quantifiers. T is clearly 52. �

2.3 Models of type categories In this section, we show how to construct the space
of models of a theory from its type category. It is natural to think of this as being an
inverse limit construction, and given this intuition, there is nothing surprising in it.

First we say what we mean by a model of a type category. This definition is
designed to correspond to the notion of a model of a logical theory.

Definition 2.9 Suppose S is a type category. A simplicial object M for S
is a function whose domain is all finite subsets of ω such that for all A ∈ dom M ,
M(A) ∈ S

(
|A|

)
, and such that if A ⊆ B and eA = eB◦g, then M(A) = (Sg)(M(B)).

The simplicial object is existentially closed if for all A ∈ dom M , if |A| = n, and
n < m, and U is open in (Sιn,m)−1

{M(A)}, then there exist g : m ↔ m and B ⊇ A
of cardinality m such that eA = eB ◦ g ◦ ιn,m , and (Sg)M(B) ∈ U . We refer to an
existentially closed simplicial object as a model of S.

Let us check that this concept makes sense.

Proposition 2.10 Suppose SL
T is the type category of a theory T in a countable

fragment L of Lω1,ω. Suppose M is a model of SL
T . Then there is a model M of T

with universe ω such that for all finite subsets A of ω, M(A) is the type satisfied by
〈eA(0), . . . , eA(|A| − 1)〉 in M. Moreover, all models of T with universe ω arise in
this way.
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Proof Define M as a structure by saying, if P(x0, . . . , xn−1) is an atomic predicate,
that

M |H P(i0, . . . , in−1)

if and only if ϕ(xσ(0), . . . , xσ(n−1)) ∈ M(A), where for all j , eA( j) = iσ( j). We
then need to verify, by induction on formulas ϕ(x0, . . . , xn−1), that

M |H ϕ(i0, . . . , in−1)

if and only if ϕ(xσ(0), . . . , xσ(n−1)) ∈ M(A), where for all j , eA( j) = iσ( j).
The only case that is nontrivial is the case where ϕ is an existential formula

∃xn ψ(x0, . . . , xn). But if M is existentially closed, we may find in such that, ap-
pealing to the inductive hypothesis for ψ ,

M |H ψ(i0, . . . , in),

and so
M |H ∃xn ψ(i0, . . . , in−1, xn)

as required.
Conversely, we may construct an existentially closed simplicial object M from

a model M of T with universe ω by defining M(A) to be the type satisfied by
〈eA(0), . . . , eA(|A| − 1)〉 in M. �

2.4 Model theory of type categories We define satisfaction and elementary em-
bedding in the obvious way.

Definition 2.11 Suppose M is a model of a type category S and 〈a0, . . . , an−1〉

is a tuple on ω. Suppose
∣∣{a0, . . . , an−1}

∣∣ = j , and g : n → j is the function
having the property that for each i , ai = e{a0,...,an−1} ◦ g(i). Then if p ∈ Sn, we say
M |H p(a0, . . . , an−1) if and only if

p = (Sg)
(
M({a0, . . . , an−1})

)
.

Suppose M and N are models of a type category S. Then f : ω
1–1

−−→ω is an
elementary embedding from M to N if and only if, for all tuples 〈a0, . . . , an−1〉 on
ω, and for all p ∈ Sn, M |H p(a0, . . . , an−1) if and only if N |H p(a0, . . . , an−1).
We say f : ω ↔ ω is an elementary isomorphism between M and N if and only if
f is an elementary embedding from M to N and f −1 is an elementary embedding
from N to M .

Some of the standard theory carries over; in particular, we have an Omitting Types
Theorem.

Proposition 2.12 Suppose S is a Polish type category, n < m, p ∈ Sn,

f : n
1–1

−−→ m, and q is a limit point of (S f )−1
{p}. Then there is a model M

of S such that there exist a0, . . . , an−1 such that M |H p(a0, . . . , an−1), and there
do not exist an, . . . , am−1 such that M |H q(a0, . . . , am−1).

Proof Each (Sιn,m)−1
{p}, for m ≥ n, is a closed subspace of a Polish space so is

Polish and therefore Čech-complete; so let {Um
k | k ∈ ω} be a family of open covers

of (Sιn,m)−1
{p} such that whenever, for all k, Vk ∈ Um

k , Ck ⊆ Vk , Ck is closed, and
Ck+1 ⊆ Ck ,

⋂
k∈ω Ck 6= ∅; since Sn is metrizable we can assume in addition that

this intersection always has a unique point.
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Recursively construct an increasing sequence of integers nk ≥ n and an open
subset Uk of (Sιn,nk )

−1
{p} with the following properties:

1. for each k and k′
≥ k, there exists Vk′ ∈ Unk

k′ such that (Sιnk ,nk′ (Uk′)) ⊆ Vk′ ,

2. for each k, (Sιnk ,nk+1)(Uk+1) ⊆ Uk ,

3. for each k, for all one-to-one g : m → nk extending ιn,nk , q /∈ (S f )(Uk),

4. for each k, for each l > nk , for each open subset U of (Sιnk ,l)
−1(Uk), there

exists k′ > k such that either (Sιnk ,l)
−1(Sιnk ,nk′ )(Uk′) ∩ U = ∅, or there

exists g : l
1–1

−−→ nk′ which is the identity on nk such that (Sg)(Uk′) ⊆ U .
We can achieve condition 3 because in the situation described, (S f )(U ) is not
nowhere dense in (Sιn,m)−1

{p}, since S f is an open map. Now define M so that for
each k, M(nk) is the unique element of

⋂
k′≥k(Sιnk ,nk′ )(Uk′). Conditions 1–3 ensure

that M(nk) exists for each k, and condition 4 ensures existential closure of M . �

2.5 The Polish space of models Now a model of S looks like a direct limit of
types, and so it is natural to arrange models of S in a space which is an inverse limit
of the Sn.

Definition 2.13 Suppose S is a type category. Then we define the model space of
S to be a topological space X S equipped with a group action of S∞ as follows. X S
is the set of all models of S with a topology generated by all sets of the form

{M | M(A) ∈ U },

for all finite subsets A of ω and all open subsets U of S
(
|A|

)
. If σ ∈ S∞, then for all

n ∈ ω and all elements a0, . . . , an−1 of ω, and all elements p of Sn,

σ(M) |H p(a0, . . . , an−1) iff M |H p(aσ(0), . . . , aσ(n−1)).

We thus derive the usual Polish S∞-space of models.

Proposition 2.14 If S is a Polish type category, then X S is Polish and the action of
S∞ on it is continuous.

Proof We can prove that X S is Polish by embedding it as a Gδ subspace of the
inverse limit of the spaces Sn along the maps Sιn,m for n ≤ m. The action of S∞ on
it is obviously well-defined and continuous. (In fact, the action of the dense subgroup
of all finite permutations can be extracted from the inverse system.) �

It is obvious that if L is a countable fragment of Lω1,ω and T is a countable theory
or sentence in L, then X SL

T
is the usual space of countable models.

3 The Scott Hierarchy

We now explore what happens when we proceed to larger fragments of Lω1,ω.

3.1 The Scott hierarchy for languages There are many different ways of defining
a hierarchy of fragments of Lω1,ω, as was done by Morley in [7], in order to define
and reason about Scott height and Scott rank. These notions tend to give similar
values for Scott rank (i.e., the same or different by a finite quantity) on a closed un-
bounded set. We will choose a notion which is convenient as regards the topological
techniques we are using in this paper.
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Definition 3.1 Suppose L is a countable subset of Lω1,ω, T is a countable theory
in L, with only countably many types, and SL

T is the type category of T in L. We
define 6T L to be the smallest subset of Lω1,ω which includes

1. L,
2.

∧
p, ¬

∧
p, ∃x

∧
p, and ∀x ¬

∧
p for p a complete type over L realized

in a model of T .

We define 6n
T L by recursion on n in the obvious way: namely, 60

T L = L, and for
all n, 6n+1

T L = 6T (6
n
T L). Let HT L be the smallest fragment of Lω1,ω including⋃

n∈ω 6
n
T L.

It was hardly necessary to modify
⋃

n∈ω 6
n
TL to obtain a fragment, in the following

sense.

Proposition 3.2 Suppose L is a countable fragment of Lω1,ω and T is a countable
theory over L. Each complete type over

⋃
n∈ω 6

n
TL realizable in a model of T can

be extended to a unique complete type over HTL.

Proof We can characterize types in both languages by using the following game.
There are two players, O and P . The game begins with two tuples, a0

1 over a model
M1 of T and a0

2 over a model M2 of T , of equal arity. O begins by selecting an
integer n. The game then consists of n rounds.

In the i th round (i = 1, 2, . . . , n), O selects an element εi of the set {1, 2} and an
element ai

εi
of Mεi . P then selects an element ai

3−εi
of M3−εi . Let ai

j = ai−1
j

_
ai

j
for j ∈ {1, 2}.

P wins if, at the end of the game, an
1 and an

2 satisfy the same L-type; otherwise
O wins. The two tuples a0

1 and a0
2 are equivalent if and only if P has a winning

strategy. Two tuples are easily seen to be equivalent if and only if they have the same⋃
n∈ω 6

n
TL-type and if and only if they have the same HTL-type. �

Having defined this notion of elevation in the Scott hierarchy, we can, of course, on
the assumption that T is scattered, iterate it. (For any T , it may be possible to iterate
the elevation operation to some countable ordinal λ, even if not all the way to ω1.
However, we do not, in this paper, address the topic of how λ is to be determined for
general nonscattered T , or what happens there.)

Definition 3.3 If T is a theory in a language L, define languages Hα
TL, for α ≤ ω1,

as follows. Hα+1
T L = HT Hα

TL, if Hα
TL and all the 6n

T Hα
TL are countable. If λ is a

limit, then Hλ
TL is the union of the Hα

TL for α < λ, if they are all defined.

3.2 The Scott Hierarchy for type categories Now we define the topological no-
tion corresponding to our logical notion of elevation. The details of the following
definitions may not be particularly of interest; the important thing is that such details
exist. It is also worth noting that they correspond exactly to the logical notions in the
preceding section.

It will be useful to extend some logical notions to the situation of the model theory
of type categories.
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Definition 3.4 Suppose S is a type category. We generate a language LS as fol-
lows.

1. If f : n → ω, and p ∈ Sn, then p(x f (0), . . . , x f (n−1)) ∈ LS . [Note here that
the letter p is being used simultaneously to refer to an element of the space
Sn and to a predicate letter in the language LS .]

2. If ϕ belongs to LS , so does ¬ϕ.
3. If 8 is a subset of LS , all of whose free variables are taken from some finite

set, then
∧
8 belongs to LS .

4. If ϕ ∈ LS , then ∃xi ϕ is in LS . As usual, we write ∀xi for ¬∃xi¬.
Suppose M is a model of S. Then we define a satisfaction relation as follows.

1. M |H p( f (0), . . . , f (n − 1)) under the circumstances described in Defini-
tion 2.11.

2. M |H ¬ϕ iff it is not the case that M |H ϕ.
3. M |H

∧
8 iff for all ϕ ∈ 8, M |H ϕ.

4. M |H ∃xn ϕ(a0, . . . , an−1, xn) iff for some an , M |H ϕ(a0, . . . , an).

Now we define a notion of type in a higher language.

Definition 3.5 An n-ary 60S-type over M is simply a singleton set {p}, where
p is an element of Sn such that, for some 〈a0, . . . , an−1〉, M |H p(a0, . . . , an−1).
Then 〈a0, . . . , an−1〉 is a realization of p in M . An n-ary 61S-type over M is, for
some 〈a0, . . . , an−1〉, the union of the singleton set {p}, where p is the n-ary 60S
type realized by 〈a0, . . . , an−1〉, with the set of all formulas ∃x q(a0, . . . , an−1, x) or
∀x ¬q(a0, . . . , an−1, x)which are satisfied by 〈a0, . . . , an−1〉 in M , for q an element
of S(n +1). If k > 0, then an n-ary6k+1S-type over M is, for some 〈a0, . . . , an−1〉,
the union of the n-ary 6k S type realized by 〈a0, . . . , an−1〉 with the set of all for-
mulas ∃x

∧
q(a0, . . . , an−1, x) or ∀x ¬

∧
q(a0, . . . , an−1, x)which are satisfied by

〈a0, . . . , an−1〉 in M , for q(x0, . . . , xn) an (n+1)-ary6k S-type. An n-ary6ωS-type
over M is, for some n-tuple a, the union of the 6k S-types realized by a in M .

Now we define our higher-order type category.

Definition 3.6 Suppose S is a Polish type category. We define another type cate-
gory HS, and a map hS : HS → S, as follows. HSn is the set of all n-ary 6ωS-types
over models of S. We give HSn the topology generated by the sets Bk(p′) for k ∈ ω
and p′

∈ HSn, where Bk(p′) is the set of all q ′
∈ HSn such that p′ and q ′ include

precisely the same n-ary 6 j S-types for j ≤ k. If f : n → m, p′
∈ HSm, and

〈a0, . . . , am−1〉 is a realization of p′ in M , then we define (S f )(p′) to be that ele-
ment q ′ of HSn such that 〈a f (0), . . . , a f (n−1)〉 realizes q ′. If p′

∈ HSn and a is a
realization of p′ in M , then we define hS(p′) to be the unique element p of Sn such
that M |H p(a).

We show that it is a type category.

Proposition 3.7 Suppose S is a Polish type category. Then HS is a type category.

Proof We check the conditions of Definition 2.1. It is clear that HSιm,m is, for
each m ∈ ω, the identity on HSm, and that if f : m → n and g : n → k, then
HS( f ◦ g) = (HSg) ◦ (HS f ). Now we check the numbered conditions.

1 Since S is Polish, there exist models of S, and if M is a model of S, then for each
n ∈ ω, to each n-tuple on ω there corresponds a 6ωS-type. Thus, for each n, HSn
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is nonempty. HSn is zero-dimensional because for each k ∈ ω, the sets Bk(p′), as
p′ vary over HSn, form a partition of HSn. It is Hausdorff because, if p′ and q ′ are
distinct elements of HSn, then for some k, p′ and q ′ include different 6k S-types.
Thus Bk(p′) ∩ Bk(q ′) = ∅.

2 We must now show that for all f : m → n, HS f is continuous. It is sufficient
to show this for f a permutation, or one of the maps ιn,n+1 or sn

n−1, since every
function from one natural number to another is a composition of such maps. Of
these special cases, the only nontrivial one is the map ιn,n+1. Accordingly, we argue
that if p′

∈ HSn and k ∈ ω, then (HSιn,n+1)
−1(Bk+1(p′)) is open.

Suppose that (HSιn,n+1)(q ′) = p′. We argue that Bk+1(q ′) ⊆ (HSιn,n+1)
−1

(Bk+1(p′)). For suppose r ′
∈ Bk+1(q ′) and that r ′ is the 6ωS-type of a tu-

ple 〈i0, . . . , in〉 on ω in a model M of S. Then (HSιn,n+1)(r ′) is the 6ωS-
type of the tuple 〈i0, . . . , in−1〉. Now (HSιn,n+1)(r ′) ∈ Bk+1(p′) if and only if
(HSιn,n+1)(r ′) and p′ contain the same 6k+l S-type; that is, if and only if they con-
tain the same 6k S-type, and also exactly the same formulas ∃x t ′(x0, . . . , xn−1, x)
and ∀x ¬t ′(x0, . . . , xn−1, x) for t ′ an (n + 1)-ary 6k S-type. Now the formulas
∃x t ′(x0, . . . , xn−1, x) (for t ′ a 6k S-type) contained in (HSιn,n+1)(r ′) are precisely
the 6k S-types of all tuples 〈i0, . . . , in−1, i〉 as i varies over ω. But the formulas
∃x t ′(x0, . . . , xn−1, xn, x) (for t ′ a 6k S-type) contained in r ′ are precisely the 6k S-
types of all tuples 〈i0, . . . , in−1, in, i〉 as i varies over ω. Because r ′

∈ Bk+1(q ′),
these are exactly the formulas ∃x t ′(x0, . . . , xn−1, xn, x) (for t ′ a 6k S-type) con-
tained in q ′, and so the formulas ∃x t ′(x0, . . . , xn−1, x) (for t ′ a6k S-type) contained
in (HSιn,n+1)(r ′) are precisely those in p′, as required.

3 We now check the weak amalgamation property. Suppose that m, n1, n2, l,
f1, f2, g1, g2, p, U , and V are as in clause 3 of Definition 2.1. Without loss of
generality, let us assume that for a single k ∈ ω, for some q1 ∈ HSn1 and q2 ∈ HSn2,
U = Bk(q1) and V = Bk(q2). Let M be a model of S, and 〈i0, . . . , in−1〉 a tuple,
such that p is the6ωS-type of 〈i0, . . . , in−1〉 in M . Let q ′′

1 be the6k S-type contained
in q1, and let q ′′

2 be the 6k S-type contained in q2.
For i = 1, 2, let ji be the cardinality of ni \ ran fi . Then for each i , p en-

tails ψi = ∃y0, . . . , y ji −1 q ′′

i (z0, . . . , zni −1), where for each j < m, x j = z fi ( j),
and the letters y0, . . . , y ji −1 are the letters z j for which j /∈ ran fi . We must
say what we mean by this statement. If ji = 0, it simply means that ψi is the
6k S-type included in p. If ji = 1, it means that ψi is an existentially quanti-
fied statement contained in the 6k+1S-type included in p. For other values of ji ,
it means that there is a 6k+ ji −1S-type s contained in the 6k+1S-type included in
p such that s entails ∃y1, . . . , y ji −1 q ′′

i (z0, . . . , zni −1). Thus, it follows that there
exist tuples 〈i1,0, . . . , i1,n1−1〉 and 〈i2,0, . . . , i2,n2−1〉 on ω such that if q ′

1 is the
6ωS-type of 〈i1,0, . . . , i1,n1−1〉 and q ′

2 is the 6ωS-type of 〈i2,0, . . . , i2,n2−1〉 in M ,
then q ′′

1 is contained in q ′

1 and q ′′

2 is contained in q ′

2, and also i1, f1( j) = i j and
i2, f2( j) = i j for all j . Now let 〈i3,0, . . . , i3,l−1〉 be a tuple on ω such that for each
j , i3,g1( j) = i1, j and i3,g2( j) = i2, j . Let r be the 6ωS-type of 〈i3,0, . . . , i3,l−1〉.
Then (HSg1)(r) = q ′

1 ∈ U and (HSg2)(r) = q ′

2 ∈ V . Also (HS f1)(q ′

1) = p, and
(HS f2)(q ′

2) = p. Thus the weak amalgamation property is established. �
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We pause here to make an important observation, which is crucial to understanding
the theory we are developing. It is possible that HS is not Polish. In that case, the
above definition will not “work properly,” and theorems we might wish to try to
prove will not be true. This was envisaged at the outset, since the theory in this paper
was designed with counterexamples to Vaught’s Conjecture in view. It is conceivable
that one could improve the constructions in this paper to make them more general;
the author can at the time of writing see no reason why this should not be possible
but has certainly not done it himself.

Proposition 3.8 If L is a countable fragment of Lω1,ω, T is a countable theory
in L, and S is the type category of L over T , then HS is isomorphic to the type
category of HTL over T . Also, hS is well-defined and onto, and each fiber of it is
clopen; hence hS is continuous.

Proof This is evident from the definitions. �

More compactly, we may say that HSL
T is isomorphic to SHT L

T . We will commit the
abuse of regarding these two categories as being equal. Now if S is a type category,
the definition of HS does depend on the topology of S, but only weakly; the topology
of S came in in the definition of a model of S; and there, if each Sn is scattered, the
only aspect of the topology that matters is the set of triples 〈p, q, f 〉 such that p, q
are types, f is a function, and q an isolated member of the suspace (S f )−1

{p}.
Note that hS depends for its definition on S.

Definition 3.9 If S is a type category, define operators Hα and hαS , for α ≤ ω1, as
follows. Hα+1S = HHαS, and hα+1S = hαS ◦ hHαS . If λ is a limit, then HλS is the
inverse limit of the HαS under the maps h

β,α
S , and likewise for hλS .

We require that the above definition should make sense.

Proposition 3.10 Suppose SL
T is the type category of a theory T over a language

L. Then for all α < ω1, if, for all β ≤ α, Hβ SL
T is Polish, then there is an isomor-

phism 5α from HαSL
T to S

HαT L
T such that for all n ∈ ω, and α ≤ β ∈ ω1, for all

p ∈ HαSL
T n, 5α(h

β,α

SL
T
(p)) = 5β(p) ∩ Hα

T L.

Proof We perform induction over α. We have already noted that the successor case
works. One can establish the limit case by an application of the Model Existence
Theorem. However, here we follow the alternative route of proving it explicitly.
So, suppose that α is a countable limit ordinal. We assume that, for all γ < α,

HγSL
T is isomorphic to S

H
γ
T L

T via an isomorphism 5γ . Moreover, we assume that if
δ ≤ γ < α, then for all p ∈ HγSL

T n, 5δ(h
γ,δ

SL
T
(p)) = 5γ (p) ∩ Hδ

T L. We note first

that for every β < α, if, for every n ∈ ω, Hβ+1SL
T n is Polish, then, for every n ∈ ω,

HβSL
T n is countable. Thus,

⋃
β<α

⋃
n∈ω HβSL

T n is countable, and thus (using our
inductive hypothesis) so is Hα

T L.
It is clear how to define 5α . Suppose that 〈pγ : γ < α〉 is an element of the

inverse limit HαSL
T n for some n; that is, for all γ, pγ ∈ HγSL

T n, and for all δ ≤ γ,
pδ = h

γ,δ

SL
T
(pγ). Then we define 5α(pα : γ < α) to be

⋃
γ<α5γ (pγ). If we can

prove that5α does send the inverse limit of the S
H
γ
T L

T n to S
HαT L
T n, then it will be clear
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that 5α is an isomorphism, and that for all n ∈ ω and γ ≤ α, for all p ∈ HαSL
T n,

5γ (h
α,γ

SL
T
(p)) = 5γ (p) ∩ Hα

T L.

So, suppose that 〈pγ : γ < α〉 is an element of HαSL
T n. We must show that

5α(pγ : γ < α) is an Hα
T L-type, and to do that, we must create a countable structure

L-structure M containing an n-tuple a such that for each γ < α, interpreting M in
the natural way as an HγL-structure, 5γ (pγ ) is the type of a. We can do this by a
Henkin argument, exploiting the fact that Hα

T L is countable.
To see how witnessing of existential quantifiers works in this setting, suppose

that 〈qγ : γ < α〉 is an element of HαSL
T m. Suppose that β < α, and that

∃x ϕ(x0, x1, . . . , xm−1, x) belongs to 5β(qβ).
We must construct an element 〈rγ : γ < α〉 of (HαSL

T ιm,m+1)
−1(qγ : γ < α)

such that ϕ(x0, . . . , xm) belongs to5β(rβ). Because Hβ SL
T (m + 1) is countable and

Polish, it is scattered, so we can find an isolated point rβ in (Hβ SL
T ιn,n+1)

−1(qβ)
such that ϕ(x0, . . . , xm) ∈ 5(rβ). Let ψ(x0, . . . , xm) be a formula having the prop-
erty that rβ is the only element of (Hβ SL

T ιn,n+1)
−1(qβ) such that 5β(rβ) contains

ψ(x0, . . . , xm).
Now, let 〈αi : i ∈ ω〉 be a strictly increasing sequence of ordinals converging to

α such that α0 = β. Let rα0 = rβ , and let ψ0 = ψ . Given rαi ∈ Hαi SL
T (m + 1),

and given a formula ψi (x0, . . . , xm) of Hαi
T L such that rαi is the only element

of (S
H
αi
T L

T ιn,n+1)
−1(qαi ) such that 5αi (rαi ) contains ψi (x0, . . . , xm), choose rαi+1

as an isolated element of (Hαi+1 SL
T ιn,n+1)

−1(qαi+1) with 5αi+1(rαi+1) containing
ψi (x0, . . . , xm), and let ψi+1(x0, . . . , xm) be a formula having the property that

rαi+1 is the only element of (S
H
αi+1
T L

T ιn,n+1)
−1(qαi+1) such that5αi+1(rαi+1) contains

ψi+1(x0, . . . , xm). Then h
αi+1,αi

SL
T

(rαi+1) = rαi .

Now define rγ , for any γ < α, so that, if αi ≥ γ , then rγ = h
γ,αi

SL
T
(rαi ).

(This is clearly well-defined, since the h
γ,δ

SL
T

are a commuting family of maps.)

Then 〈rγ : γ < α〉 is an element of the inverse limit HαSL
T (m + 1), and

ψ(x0, . . . , xm) ∈ 5β(rβ).
We can now carry out the Henkin construction and build a countable structure

L-structure M containing an n-tuple a such that5β(pβ) is the H
β
T L-type of a in M,

and so 5α(pβ : β < α) is in S
HαT L
T n, as required. �

Proposition 3.11 If S is a type category, and M is a model of HS, then hS ◦ M is
a model of S. Moreover, for all α ≤ ω1, if M is a model of HαS, then hαS ◦ M is a
model of S.

Proof We must show that hS ◦ M is existentially closed. Suppose U is open
in (Sιn,n+1)

−1
{hS(p)}. Then for every model M ′ of S, and for all a such that

M ′
|H hS(p)(a), there exists q ∈ U such that for some b, M ′

|H q(a, b). Hence,
since p is a 6ωS-type, there exists q ∈ U such that ∃xnq(x0, . . . , xn) ∈ p. Hence
hS

−1(U )∩ (HSιn,n+1)
−1(p) 6= ∅; hS is continuous so hS

−1(U )∩ (HSιn,n+1)
−1(p)

is open in (HSιn,n+1)
−1(p). Hence existential closure in HS gives existential clo-

sure in S. We have now established the successor stage of the induction in the second
paragraph; the limit stage is similar. �
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Note that if S is a type category and HαS is Polish, then the models of HαS are
in a natural one-to-one correspondence with the models of S; indeed, the map
M 7→ hα,0S ◦ M is a continuous bijection from XHαS to X S .

4 The Trees of Types

4.1 Definition of the trees We have now derived the trees of types.

Definition 4.1 Suppose S is a type category. The category TS of Vaughtian
trees of S is defined as follows. TSn is a tree, whose elements are the elements
of

⋃
α<ω1

HαSn such that if p, q ∈ TSn, then p ≤ q if and only if for some α ≤ β,

p = h
β,α
S (q). If p ∈ TSn, then the level of p is the unique α such that p ∈ HαSn. If

f : n → m, then TS f is defined so that if p ∈ HαSm, then (TS f )(p) = (HαS f )(p).

We are particularly interested in counterexamples to Vaught’s Conjecture. Morley
proved in [7] that counterexamples can be identified by reference to the structure of
their Vaughtian trees, as follows.

Definition 4.2 Suppose S is a type category. We say it is slender if
1. for all α < ω1 and for all n ∈ ω, HαSn is countable, and
2. for all α < ω1, there exist n ∈ ω, β > α, and p ∈ HαSn such that
(h
β,α
S )−1

{p} has more than one element.

Morley’s theorem is the following.

Theorem 4.3 Suppose the Continuum Hypothesis to be false. Suppose L is a count-
able fragment of Lω1,ω and T is a countable theory in L. Then T is a counterexam-
ple to Vaught’s Conjecture if and only if SL

T is slender if and only if T has ℵ1-many
countable models.

The term “slender” for such type categories is due to Becker.

4.2 Branching structure of the trees This section contains joint work with
N. Ackerman. The Vaughtian trees have the following properties.

Proposition 4.4 TSn is upward-closed; that is, every countable ascending chain
in TSn has an upper bound.

Proof Trivially, by definition of HλS for limit λ. �

We give a fine-grained measure of how closely two elements of a Vaughtian tree
resemble each other.

Definition 4.5 Suppose p, p′ are distinct elements of HβSn. We say they are
equal to accuracy ωα + k (where α < β) if ωα + k is (if it exists) the smallest
ordinal such that h

β,α
S (p) = h

β,α
S (p′), while the 6k+1S-types included in h

β,α+1
S (p)

and h
β,α+1
S (p′) are different. If no such ordinal exists, we say p and p′ are equal to

accuracy −∞.

When we extend types to types of larger arity, this resemblance deteriorates.

Theorem 4.6 Suppose p, p′ are distinct elements of HβSn which are equal to
accuracy ωα + k. Then either there exists q ∈ (HβSιn,n+1)

−1(p) such that there
does not exist q ′

∈ (HβSιn,n+1)
−1(p′) such that q and q ′ are equal to accuracy
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≥ ωα + k, or there exists q ′
∈ (HβSιn,n+1)

−1(p′) such that there does not exist
q ∈ (HβSιn,n+1)

−1(p) such that q and q ′ are equal to accuracy ≥ ωα + k.

Proof Each of h
β,α+1
S (p) and h

β,α+1
S (p′) includes a unique6k+1HαS-type; let p̃ be

that included in h
β,α+1
S (p), and p̃′ be that included in h

β,α+1
S (p′). Now p̃ and p̃′ are

different; however, the6kHαS-types included in them are the same. Therefore, there
exists some n+1-ary6kHαS-type q̃ such that either ∃x

∧
q̃ ∈ p̃ and ∀x ¬

∧
q̃ ∈ p̃′,

or ∃x
∧

q̃ ∈ p̃′ and ∀x ¬
∧

q̃ ∈ p̃.
Suppose the former. Now, for every model M of HβS and a0, . . . , an−1 ∈ ω such

that M |H p(a0, . . . , an−1), there exists an ∈ ω such that h
β,α
S ◦ M |H q̃(a0, . . . , an).

Select some such M and an and let q be the 6ωHαS-type realized by 〈a0, . . . , an〉,
and let q be the 6ωHβS-type realized by 〈a0, . . . , an〉. Then h

β,α+1
S (q) = q, and

HβSιn,n+1(q) = p. However, there does not exist q ′ such that HβSιn,n+1(q ′) = p′

and q and q ′ are equal to accuracy ωα + k, or else q ′ would entail q̃ and so ∃x
∧

q̃
would belong to p′, giving a contradiction. �

However, it does not deteriorate very fast.

Theorem 4.7 Suppose p, p′ are distinct elements of HβSn which are equal to
accuracy ωα + k. Suppose γ < ωα + k. Then for all q ∈ HβS(n + 1) with
HβSιn,n+1(q) = p, there exists q ′

∈ HβS(n + 1) with HβSιn,n+1(q ′) = p′ such that
q and q ′ are equal to accuracy at least γ.

We may phrase this by saying that information about differences between types is
concealed above slant lines, that is to say, decreasing functions from ω to ω1. This
is the motivating idea behind the counterexample to Vaught’s Conjecture described
in [6].

There are some results about slender theories in this paper and many in the litera-
ture. However, all of these fall short of a constructive characterization.

Question 4.8 Find a characterization of slender type categories which is suffi-
ciently explicit that (a) it can easily be used to construct slender type categories, and
(b) it is easy to use it to tell whether a type category is slender or not.

We now address the question of the branching structure of the Vaughtian trees. The
next theorem tells us that any given branch either has no side branches or has very
many of them.

Theorem 4.9 Suppose that S is a type category, and p ∈ Sn. Then (S f )−1
{p} is

topologically discrete for all m ≥ n and f : n
1–1

−−→ m if and only if (hS)
−1

{p} has
exactly one element. Moreover, suppose (S f )−1

{p} is topologically discrete for all

m ≥ n and f : n
1–1

−−→ m, and suppose that p′ is unique such that hS(p′) = p. Then

(HS f )−1
{p′

} is topologically discrete for all m ≥ n and f : n
1–1

−−→ m.

Proof Suppose first that (S f )−1
{p} is topologically discrete for all m ≥ n and

f : n
1–1

−−→ m. We argue that all realizations of p realize the same 6ωS-types by
showing that for each k they realize the same 6kS-types. Indeed, we prove that for
all k ∈ ω, all m ≥ n, and all q ∈ (Sιn,m)−1

{p}, all realizations of q realize the same
6kS-types.
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We argue by induction on k. Suppose q̃ is a 6k+1S-type such that q ∈ q̃. Then
because (Sιn,n+1)

−1
{q} is a discrete topological space, for every r ∈ (Sιn,n+1)

−1
{q},

there must be a 6kS-type r̃ such that r ∈ r̃ and ∃x
∧

r̃ ∈ q̃, by the definition of

existential closure of models of S. But now for all m ≥ n + 1 and f : n + 1
1–1

−−→ m,
(S f )−1

{r} is discrete. Hence by the inductive hypothesis for k, as applied to r , r̃ is
determined by r . Hence, if q̂ is the 6kS-type included in q̃ , we may write q̃ as

q̃ = q̂ ∪

{
∃x

∧
r̃

∣∣∣ r ∈ (Sιn,n+1)
−1

{q}

}
∪

{
∀x ¬

∧
r̃

∣∣∣ r /∈ (Sιn,n+1)
−1

{q}

}
.

Thus q̃ is determined by q, and the inductive hypothesis is preserved at k +1. Hence
all realizations of p realize the same6k S-types for all k, and it follows from this that
hS

−1
{p} has a unique element.

Now suppose that m ≥ n, f : n
1–1

−−→ m, (S f )(q) = p, and q is a limit point of
(S f )−1

{p}. Then, by Proposition 2.12, we may find models M and M ′ of S such that
there exist tuples 〈a0, . . . , an−1〉 and 〈a′

0, . . . , a′

n−1〉 such that M |H p(a0, . . . , an−1)

and M ′
|H p(a′

0, . . . , a′

n−1), and there exists a tuple 〈b0, . . . , bm−1〉 such that for all
i < m, ai = b f (i) and M |H q(b0, . . . , bm−1), but there does not exist a tuple
〈b′

0, . . . , b′

m−1〉 such that for all i < m, a′

i = b′

f (i) and M ′
|H q(b′

0, . . . , b′

m−1). It
follows that 〈a0, . . . , an−1〉 and 〈a′

0, . . . , a′

n−1〉 realize different 6ωS-types, and so
hS

−1
{p} has more than one element.

If (S f )−1
{p} is topologically discrete for all m ≥ n and f : n

1–1
−−→ m, then also,

whenever m ≥ n and f : n
1–1

−−→ m, and (S f )(q) = p, (Sg)−1
{q} is topologically

discrete for all k ≥ m and g : m
1–1

−−→ k. Hence, (hS)
−1

{q} has a unique element.
In the topological space HSm, (hS)

−1
{q} is clopen. So (HS f )−1

{p′
} is topologi-

cally discrete for all m ≥ n and f : n
1–1

−−→ m, where p′ is the unique element of
(hS)

−1
{p}. �

Corollary 4.10 Suppose p ∈ HαSn is not isolated in HαSn. Then for all β < α,
(h
β+1,β
S )−1

{h
α,β
S (p)} has at least two elements.

We can thus derive a sharper characterization of slenderness.

Corollary 4.11 A type category S is slender if and only if for every α ∈ ω1 and
n ∈ ω, HαSn is countable, and for every α ∈ ω1, for every n ∈ ω, there exists
p ∈ HαSn such that (hα+1,α

S )−1
{p} has at least two elements.

Proof Suppose that for some α ∈ ω1 and n ∈ ω, for every p ∈ HαSn,
(hα+1,α

S )−1
{p} has just one element. Then by Theorem 4.9, for all p ∈ HαSn,

for all m ≥ n, and for all f : n
1–1

−−→ m, (HαS f )−1
{p} is topologically discrete.

Hence, for all k ≥ n, for all q ∈ HαSk, for all m ≥ k, and for all f : k
1–1

−−→ m,
(HαS f )−1

{q} is topologically discrete.
Then again by Theorem 4.9, for every k ≥ n, for every p ∈ HαSk, (hα+1,α

S )−1
{p}

has just one element. It now follows, from the definition of the topology on
Hα+1Sk, that for each k ≥ n, Hα+1Sk is topologically discrete. Thus, for each

p ∈ Hα+1S(n − 1), for all m ≥ n − 1 and for all f : n − 1
1–1

−−→ m, (Hα+1S f )−1
{p}
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is topologically discrete, and so we can prove that for each k ≥ n − 1, Hα+2Sk
is topologically discrete. Continuing in this way, Hα+n+1Sk is discrete for all k.
Applying Theorem 4.9 and induction on β, we can see that, firstly, HβSk is discrete
for all k and for all β ≥ α+n +1, and secondly, that for all β ≥ α+n +1, h

β,α+n+1
S

is one-to-one. It now follows that S is not slender. �

The following is obvious.

Proposition 4.12 If S is slender, then for all n, TSn is uncountable, all its levels
are countable, and it is scattered: that is, a Cantor-Bendixson rank can be assigned
to the elements of Hω1Sn (which are in natural one-to-one correspondence with max-
imal branches of TSn); or equivalently, TSn does not contain a copy of the Cantor
tree.

We abuse terminology by discussing the Cantor-Bendixson rank of maximal
branches in TSn instead of the Cantor-Bendixson rank of elements of Hω1 Sn,
exploiting this natural one-to-one correspondence.

From this proposition the next easily follows.

Proposition 4.13 If S is slender, then every uncountable, downward closed subset
of TSn contains an uncountable maximal branch.

Proof Suppose that D is an uncountable downward closed subset of TSn. Let ν
be a sufficiently large cardinal, and let M be a countable elementary substructure of
〈Hν,∈〉 containing S and D as elements. Then, for each β ∈ ω1 ∩ M , HβSn is an
element of M . Because HβSn is countable, it is also a subset of M .

Let λ = M ∩ ω1; then λ is a countable limit ordinal. Let 〈αm : m ∈ ω〉 be a
strictly increasing sequence of ordinals converging to λ. We note that because HλSn
is the inverse limit of the HαSn for α < λ and HλSn is countable, it is impossible to
find a subsequence 〈αmi : i ∈ ω〉 of 〈αm : m ∈ ω〉 and elements ps , for s ∈

<ω2
such that

1. if dom s = i , then ps ∈ Hαmi Sn,
2. if s ⊆ t , dom s = i , and dom t = j , then ps = h

α j ,αi
S (pt ),

3. for all s, there are uncountably many members of D above ps ,
4. for all s, ps_0 and ps_1 are different.

Hence, there exist m ∈ ω and p ∈ D ∩ HαmSn such that the following statement is
true about p:

For all α ∈ λ there exists β ∈ λ such that β ≥ α, and there is only one
element q of HβSn such that q is above p and there are uncountably
many elements of D above q .

(Here, by “q is above p,” we mean “h
β,αm
S (q) = p.”) That is,

For all α ∈ ω1 ∩ M there exists β ∈ ω1 ∩ M such that β ≥ α, and
there is only one element q of HβSn such that q is above p and there
are uncountably many elements of D above q.

Now because M is an elementary substructure of 〈Hν,∈〉, the following statement
must be true:

For all α ∈ ω1 there exists β ∈ ω1 such that β ≥ α, and there is
only one element q of HβSn such that q is above p and there are
uncountably many elements of D above q.
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Let C be the unbounded set of ordinals β ≥ α such that there is only one element q of
HβSn such that hβ,αm (q) = p and there are uncountably many elements of D above
q, and let qβ be, for β ∈ C , the element of HβSn so defined. Then, if β, γ ∈ C , and
β < γ, then h

γ,β
S (qγ ) must be qβ , for all the elements of D that are above qγ must

be above some element of HβSn, and qβ itself is the only possibility.
There is thus an uncountable maximal branch B containing all the qβ for β ∈ C .

Since D is downward closed, each qβ belongs to D, and hence B is included in D,
as required. �

Here, and elsewhere, a branch is simply a linearly ordered subset of a tree.

4.3 Atomic and saturated models Suppose S is a slender type category. Referring
to the Vaughtian trees TSn, we define the predicate 8(p, α), for p ∈ TSn and
α < ω2, by recursion on α thus:

8(p, α) iff {q 6⊥ p | ¬∃β < α8(q, β)} contains exactly one maximal branch.

Here the notation q 6⊥ p means that q and p have a common upper bound, that
is, q ≤ p or p ≤ q . Then, of course, any maximal branch contains co-initially
many points p such that8(p, α) holds, where α is the Cantor-Bendixson rank of the
branch, and if8(p, α), then there exists a unique branch through p of rank ≥ α, and
this branch in fact has rank α.

Of course, not every node necessarily satisfies such a predicate. However, for
every p ∈ TSn, it is the case that p belongs to a branch of Cantor-Bendixson rank α
for only certain values of α. So, let us define a related predicate 9(p, α) as follows:

9(p, α) iff {q 6⊥ p | ∃r ≥ q 8(r, α)} contains at least one maximal branch,

equivalently, if and only if ∃q ≥ p8(q, α). Now let us say that p generates a
branch if 8(p, α) holds for some α and define the branch generated by p to be the
downward-closure of

{q ≥ p : 8(q, α)}
(which is an uncountable maximal branch and has rank α). Our next task is to work
out how to express the notion that every uncountable branch is generated by some
point, without referring to the branches. We do this by an indirect route.

Let us define the scattered height of p ∈ TSn to be the supremum of the set
{β + 1 | ∃q ≥ p8(q, β)}. (The reason for the terminology is that p defines a
clopen subset of the topological space of branches, or equivalently of Hω1Sn, which
is scattered, and the definition we have given is that of the scattered height of that
space of branches.)

Lemma 4.14 If p ≤ q, then the scattered height of p is greater than or equal to
that of q. If 8(p, α), then the scattered height of p is α + 1.

Proof Obvious. �

Lemma 4.15 If p ∈ TSn and the scattered height of p is a limit µ, then there are
only countably many q ≥ p such that the scattered height of q is µ.

Proof Otherwise, the set of q ≥ p of scattered height µ would include an uncount-
able branch B by Proposition 4.12. But some element q of B would generate B.
Now necessarily, by definition of the scattered height of p, for some β < µ,8(q, β)
holds. But then the scattered height of q is β + 1 < µ, giving a contradiction. �
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Lemma 4.16 Suppose that p ∈ TSn, and the scattered height of p is a successor
β + 1. Then p belongs to just countably many uncountable branches of rank β, and
so there exists γ ∈ ω1 such that if for some δ > γ, q ∈ HδSn, q ≥ p, and the
scattered height of q is β + 1, then 8(q, β) holds.

Proof If p belonged to uncountably many branches of rank β, then the set of q ≥ p
such that q belonged to uncountably many branches of rank β would be uncountable,
and so would contain an uncountable branch by Proposition 4.12, which would have
rank at least β + 1. But then the scattered height of p would be at least β + 2, giving
a contradiction. �

Note that 8(p, α) and 9(p, α) can now be defined without any reference to
branches; 8(p, α) holds if and only if

1. for uncountably many γ, there exists q ≥ p such that q is in the γth level of
TSn and for cofinally many β < α, 9(q, β) is true but 8(q, β) is not, and

2. there exists γ such that if q and r are above p and also above level γ, and
if for cofinally many β < α, 9(q, β) and 9(r, β) are true but 8(q, β) and
8(r, β) are not, then q ≤ r or r ≤ q.

If we can find in the set Hω1 of all hereditarily countable sets some surrogate for
ordinals α ∈ ω2 which we can use to refer to the ranks of branches, then we can carry
out the definition of the statements 8(p, α) and 9(p, α) in the first-order structure
〈Hω1 ,∈〉. We can do this—once we have observed that the property of belonging to
TSn is definable in 〈Hω1 ,∈〉—by letting the elements p of TSn themselves stand
for the ordinals in question; so by recursion on the ordinal α such that 8(p, α), we
can define surrogate formulas 8′(p, q), 9 ′(p, q), and L(p, q), in which L(p, q)
stands for ‘there exist α and β ≥ α such that 8(p, α) and 8(q, β)’, 8′(p, q) stands
for L(p, q) ∧ L(q, p), and 9 ′(p, q) stands for ‘there exists α such that 8(q, α)
and 9(p, α)’. We do this as follows. We declare that 9 ′(p, q) if and only if there
exists r ≥ p such that 8′(r, q). If 9 ′(p, q) is true but 8′(p, q) is false, then we
declare that 9 ′(q, p) is false.

We now declare that 8′(p, q) is true if and only if either for all r, s ≥ p, r ≤ s,
or s ≤ r , and for all r, s ≥ q, r ≤ s, or s ≤ r , or else

1. for uncountably many γ, there exists r ≥ p such that r is in the γth level of
TSn and for all s ≥ q, if 8′(s, s) is true and 8′(s, q) is false, then 9 ′(r, s)
is true but 8′(r, s) is not, and

2. there exists γ such that if r and s are above p and also above level γ, and
if for all t ≥ q such that 8′(t, t) is true but 8′(t, q) is false, 9 ′(r, t) and
9 ′(s, t) are true but 8′(r, t) and 8′(s, t) are not, then r ≤ s or s ≤ r ,

and the same conditions hold with the roles of p and q reversed.
We define L(p, q) to hold if and only if 8′(p, p), 8′(q, q), and 9 ′(p, q) all

hold. Then L imposes a well-order on the equivalence classes of 8′ from which the
ordinal ranks of the branches can be recovered.

We can also define scattered height in 〈Hω1 ,∈〉 by expressing the concept ‘p has
scattered height α’ as

1. ∀β < α ∃γ ≥ β 9(p, γ ), and
2. if β ≥ α, then ¬9(p, β),

(only, of course, we must use some surrogate for the ordinals α, β, and γ, as described
above).
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Now although the proofs of the above lemmas refer to branches in TSn, the state-
ments can be rephrased so that they do not, as follows:

1. if the scattered height of p is a limit µ, then there exists γ such that if q ≥ p
and for some δ > γ, q ∈ HδSn, then the scattered height of q is less than µ;

2. if the scattered height of p is a successor β + 1, then then there exists γ such
that if q ≥ p, q ∈ HδSn for some δ > γ, and q has scattered height β + 1,
then 8(q, β).

Thus these statements, which are first-order over 〈Hω1 ,∈〉, are true in 〈Hω1 ,∈〉. Thus
we can prove the following (recall that any countable elementary substructure 〈M,∈〉

of 〈Hω1 ,∈〉 is transitive, so its intersection with ω1 is an ordinal and is in fact a limit).

Lemma 4.17 Suppose that 〈M,∈〉 is a countable elementary substructure of
〈Hω1 ,∈〉. Let λ = M ∩ ω1. Suppose p ∈ HλSn. Then p generates a branch.
Moreover, there exists α < λ such that hλ,αS (p) generates the same branch.

Proof Suppose λ is the supremum of the increasing sequence 〈αn | n ∈ ω〉, and that
for each n, pn = hλ,αn

S (p). Let ηn be the scattered height of pn . Then the sequence
〈ηn | n ∈ ω〉 is nonstrictly decreasing, so it is eventually constant. So, without loss
of generality (by omitting the first few terms of the sequence if necessary), let us
suppose that ηn = η for all n.

Then η is the scattered height of p0. Because 〈M,∈〉 is an elementary substructure
of 〈Hω1 ,∈〉, η is not a limit, for otherwise there exists γ < λ such that if q ≥ p0 and
q ∈ HδSn for some δ ∈ (γ, λ), then the scattered height of q is less than η. But this
contradicts the fact that the scattered height of pn is η for all n. So η is a successor
β + 1. By a similar argument, there exists γ < λ such that if q ≥ p0, and q ∈ HδSn
for some δ ∈ (γ, λ), and the scattered height of q is β + 1, then 8(q, β) holds.

Thus for all but finitely many n, 8(pn, β) holds. So each corresponding pn gen-
erates a branch of rank β. Since the pn are linearly ordered, these branches must all
be the same and must include p. Therefore p generates this branch also. �

We draw the obvious corollary.

Corollary 4.18 There exists a closed unbounded subset C of ω1 such that if λ ∈ C,
and p ∈ HλSn, then p generates a branch.

This result permits us to make the following definition.

Definition 4.19 Suppose α ∈ C and β ∈ (α, ω1]. Suppose p ∈ HαSn. Then we
define h

α,β
S (p) to be the unique element of HβSn belonging to the branch generated

by p.

We have an obvious result.

Lemma 4.20 Suppose h
α,β
S and h

β,γ
S are both defined. Then h

α,γ
S is defined, and

h
α,γ
S = h

β,γ
S ◦ h

α,β
S .

Now for one that is rather less obvious.
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Lemma 4.21 Suppose that 〈M,∈〉 is a countable elementary substructure of
〈Hω1 ,∈〉, α = M ∩ ω1, β ∈ ω1, and f : m → n. Then the diagram

HαSn
HαS f

−−−→ HαSm
h
α,β
S

y yh
α,β
S

HβSn
HβS f

−−−→ HβSm

commutes.

Proof This is obvious if β ≤ α, so suppose β > α. Suppose p ∈ Sn, and
q = HαS f (p). By Lemma 4.17, there exists ζ < α such that if p′

= h
α,ζ
S (p)

and q ′
= h

α,ζ
S (q), then p′ generates the branch containing p, and q ′ generates the

branch containing q . Also, q ′
= HζS f (p′).

Suppose that 8(p′, ξ) and 8(q ′, η). Suppose it were the case that there existed
γ ∈ (ζ, α) and p′′

∈ HγSn, q ′′
∈ HγSm such that p′′ > p′ and q ′′ > q, 8(p′′, ξ)

and 8(q ′′, η), and q ′′
6= HγS f (p′′), then necessarily we would have p′′

= h
α,γ
S (p)

and q ′′
= h

α,γ
S (q), and this would give rise to a contradiction, since q = HαS f (p).

Since 〈M,∈〉 is an elementary substructure of 〈Hω1 ,∈〉, there does not exist
γ ∈ ω1 and p′′

∈ HγSn, q ′′
∈ HγSm such that p′′ > p′ and q ′′ > q , 8(p′′, ξ)

and 8(q ′′, η), and q ′′
6= HγS f (p′′). Hence the diagram

HαSn
HαS f

−−−→ HαSm
h
α,β
S

y yh
α,β
S

HβSn
HβS f

−−−→ HβSm

commutes, as required. �

At elements of the closed unbounded set C , we also have amalgamativity. For we
show that Hω1 S is amalgamative and use elementary reflection.

Proposition 4.22 Suppose that S is a slender type category. Then Hω1 S is amal-
gamative. Also, if α ∈ C, then HαS is amalgamative.

Proof Suppose p ∈ Hω1Sm, q1 ∈ Hω1Sn1, q2 ∈ Hω1Sn2, f1 : m
1–1

−−→ n1,

f2 : m
1–1

−−→ n2, g1 : n1
1–1

−−→ l, g2 : n2
1–1

−−→ l, ran g1 ∩ ran g2 = ran g1 ◦ ran f1,
and the diagram

m
f1

−→ n1

f2

y yg1

n2
g2

−→ l

commutes. Then, for each α < ω1, if we let U = (hω1,α
S )−1

{hω1,α
S (q1)} and

V = (hω1,α
S )−1

{hω1,α
S (q2)}, then by definition of a type category there exists

rα ∈ Hω1Sl such that Hω1Sg1(r) ∈ U , Hω1Sg2(r) ∈ V , and Hω1S(g1 ◦ f1)(r) = p.
Now, HαSgi (h

ω1,α
S (r)) = hω1,α

S (qi ) for i = 1, 2, and obviously also if β ≤ α, then
HβSgi (h

ω1,β
S (r)) = h

ω1,β
S (qi ) for i = 1, 2.

Thus, the set{
r

∣∣∣ ∃α ∈ ω1
(
r ∈ HαSl ∧ HαSgi (r) = hω1,α

S (qi ) for i = 1, 2
)}
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is uncountable and downward-closed in TSl, and therefore contains an uncount-
able branch B. Suppose r ′ generates this branch and belongs to HγSl. Then for
all α ∈ (γ, ω1), h

γ,α
S (r ′), which, by definition, belongs to B, satisfies the defining

property of B, namely, that HαSgi (h
γ,α
S (r)) = hω1,α

S (qi ) for i = 1, 2. Hence also,
Hω1Sgi (h

γ,ω1
S (r)) = qi for i = 1, 2, and so amalgamativity of Hω1 is proved.

Now suppose the branch containing p is generated by p′, the branch containing
qi is generated by q ′

i for i = 1, 2. Then the following statement is true about p′, q ′

1
and q ′

2:
There exists r ′

∈ TSl such that r ′ generates a branch, and for all γ
at least as great as the levels of p′, q ′

1, q ′

2, and r ′, if r ′′ is the element
of the branch generated by r ′ on level γ and p′′, q ′′

1 , and q ′′

2 are the
elements, respectively, of the branches generated by p′, q ′

1, and q ′

2 on
level γ, then (Sgi )(r ′′) = q ′′

i and (S fi )(q ′′

i ) = p′′ for i = 1, 2.
This is all expressible in first order in 〈Hω1 ,∈〉, and is true in 〈Hω1 ,∈〉, and is there-
fore satisfied by 〈Hω1 ,∈〉 as a first-order structure.. Hence it is also true in any
countable elementary substructure 〈M,∈〉 of 〈Hω1 ,∈〉 which contains p′, q ′

1, and q ′

2.
It follows that if α ∈ C , then HαS is amalgamative. �

We define atomic and saturated models of an element of a type category in the way
that one would expect.

Definition 4.23 Suppose S is a type category, p ∈ Sn, and M is a model of S.
Then M is an atomic model of p if and only if M |H p(0, 1, . . . , n − 1), and for all
finite subsets A of ω including {0, 1, . . . , n − 1}, if q = M(A), then q is isolated in
(Sιn,|A|)

−1
{p}. M is a saturated model of p if and only if M |H p(0, 1, . . . , n − 1),

and whenever M |H q(i0, . . . , ik−1) and r ∈ (Sιk,k+1)
−1

{q}, then there exists ik
such that M |H r(i0, . . . , ik).

If L is a countable fragment of Lω1,ω, T is a theory in L, and SL
T is scattered (as is

the case if SL
T is slender), then it is well known that for any p ∈ SL

T n, there exists an
atomic model Ap of p.

We can now prove the following.

Corollary 4.24 If α ∈ C and p ∈ HαS0, then there exists a saturated model
Sp of p.

Proof HαS is amalgamative, and all HαSn are countable. �

There is a correspondence between a type in a theory and the orbit under the auto-
morphism group of a tuple realizing that type in a saturated model. Thus we now
have, as a corollary, the following.

Theorem 4.25 Suppose T is a countable theory in a countable fragment L of
Lω1,ω, and SL

T is slender. Then there exists a closed unbounded subset C of ω1 such
that if p ∈ HγS0 generates a branch, then for all α ∈ C such that α > γ, there exist
atomic and saturated models Aα and Sα of h

γ,α
S (p), and for α < β elements of C

there exist functions aα,β : Aα → Aβ , sα,β : Sα → Sβ , and iα : Aα → Sα such
that

1. iα , aα,β , and sα,β are HαL-elementary embeddings (strictly, aα,β is an em-
bedding of Aα into the reduct of Aβ to Hα

TL, and similarly for sα,β );
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2. moreover, for α < β, if x is a tuple on Sα satisfying a type p ∈ HαSn, then
sα,β(x) satisfies the type h

α,β
S (p) in Sβ ;

3. if α < β < γ, then aα,γ = aβ,γ ◦ aα,β and sα,γ = sβ,γ ◦ sα,β ;
4. if α < β are elements of C, then the diagram

Aα
aα,β

−−→ Aβ

iα

y yiβ

Sα
sα,β

−−→ Sβ

commutes;
5. if λ is a limit point of C, then Aλ =

⋃
α<λ ran aα,λ, and Sλ =

⋃
α<λ ran sα,λ.

Sacks has proved the following (see [8]).

Theorem 4.26 Suppose S is a slender type category. Then there is a branch B of
rank 1 in TS0, with associated atomic models Aα , satisfying the following condi-
tions. If α < β are admissible, then there exists a function aα,β : Aα → Aβ such
that

1. aα,β is an HαL-elementary embedding;
2. if α < β < γ, then aα,γ = aβ,γ ◦ aα,β ;
3. if λ is a limit of admissibles, then Aλ =

⋃
α<λ ran aα,λ.

The decrease of generality in restricting attention to one nonisolated branch is of
little importance, since from a slender type category we can generate one in which
TS0 has only one nonisolated branch. However, the increase of generality resulting
in the expansion of the closed unbounded set to the set of all admissibles is very
striking.

The following result was stated by Steel in [10] and a proof given by Becker in [2],
where again we have the embedding holding on the class of all admissible ordinals.

Theorem 4.27 Assume Projective Determinacy. Suppose S is a slender type cat-
egory such that TS0 has only one nonisolated branch. Let Sα be the associated
saturated models, for admissible α. Then if α < β are admissible, then there exists
a function sα,β : Sα → Sβ such that

1. sα,β is an HαL-elementary embedding;
2. if α < β < γ, then sα,γ = sβ,γ ◦ sα,β ;
3. if λ is a limit of admissibles, then Sλ =

⋃
α<λ ran sα,λ.

This gives us a way of defining the functions h
α,β
S when α is admissible, and if we

assume Projective Determinacy, then it seems plausible that Theorem 4.25 should be
provable for slender type categories with just one nonisolated branch in TS0, with
the closed unbounded set C improved to the set of all countable admissible ordinals.
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