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A C.E. Real That Cannot Be SW-Computed
by Any � Number

George Barmpalias and Andrew E. M. Lewis

Abstract The strong weak truth table (sw) reducibility was suggested by
Downey, Hirschfeldt, and LaForte as a measure of relative randomness, alter-
native to the Solovay reducibility. It also occurs naturally in proofs in classical
computability theory as well as in the recent work of Soare, Nabutovsky, and
Weinberger on applications of computability to differential geometry. We study
the sw-degrees of c.e. reals and construct a c.e. real which has no random c.e.
real (i.e., � number) sw-above it.

1 Introduction

The strong weak truth table reducibility was suggested by Downey, Hirschfeldt, and
LaForte as a measure of relative randomness. Versions of this reducibility are present
in computability theory; for instance, these are automatically produced by the basic
technique of “simple permitting” and one of them was used in the recent work of
Soare, Nabutovsky, and Weinberger on applications of computability theory to dif-
ferential geometry. The strong weak truth table reducibility naturally induces a de-
gree structure, the sw degrees. Yu and Ding showed that the sw degrees restricted to
the c.e. reals have no greatest element and asked for maximal elements.

In Barmpalias [1] this question was solved for the case of c.e. sets by showing
that there are no maximal elements in the sw degrees of the c.e. sets. The strong
weak truth table reducibility was originally suggested as an alternative for the Solo-
vay (or domination) reducibility which has been a very successful tool for the study
of the complexity of c.e. reals but presents various shortcomings outside this class.
Of course, the sw degrees present other difficulties (such as the lack of join operator;
see below) but they are nevertheless very interesting to study from a wider perspec-
tive. Moreover, Downey, Hirschfeldt, and LaForte [7] noticed that as far as the com-
putably enumerable sets are concerned, the sw degrees coincide with the Solovay
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degrees. So by [1] we also know that the Solovay degrees of c.e. sets have no max-
imal element. In the following we assume basic computability theory background
(e.g., see Odifreddi [9] and Soare [10]); knowledge of algorithmic randomness is
also useful. For definitions, motivation, and history of related notions such as ran-
domness, prefix-free complexity, and Solovay degrees we refer mainly to Downey
et al. [5] and secondly to Downey [6]. The forthcoming monograph [4] by Downey
and Hirschfeldt contains all this background and more.

Studying relative randomness, Downey, Hirschfeldt, and LaForte [7] found Solo-
vay reducibility insufficient, especially as far as non-c.e. reals are concerned. One of
the two new measures for relative randomness they suggested is a strengthening of
the weak truth table reducibility, which they called strong weak truth table reducibil-
ity or sw for short. This reducibility is quite natural since it occurs in many proofs in
classical computability theory: it follows when we apply simple permitting for the
construction of a set “below” a given one.

Definition 1.1 (Downey, Hirschfeldt, and LaForte [7]) We say A ≤sw B if there
is a Turing functional 0 and a constant c such that 0B

= A and the use of this
computation on any argument n is bounded by n + c.

The special case when c = 0 gives the ibT reducibility which is closely related
to a “domination” reducibility used by Soare, Nabutovsky, and Weinberger (see
Soare [11], Nabutovsky and Weinberger [8]) in applying computability theory to
differential geometry. In Barmpalias and Lewis [2] we showed the following.

Theorem 1.2 (Barmpalias and Lewis [2]) The ibT degrees of computably enumer-
able sets are not dense.

However, in this paper we will be concerned with computably enumerable reals and
not c.e. sets. We recall the definition of a c.e. real.

Definition 1.3 A real number is computably enumerable (c.e.) if it is the limit of a
computable increasing sequence of rationals.

C.e. sets are c.e. reals but the converse does not necessarily hold. But, of course, c.e.
reals are 12. Note that although we often consider reals as sets (with characteristic
sequence their binary expansion) and conversely, we do distinguish the meaning of
“c.e.” for the two cases. The main justification for ≤sw as a measure of relative
randomness was the following.

Proposition 1.4 (Downey, Hirschfeldt, and LaForte [7]) If α ≤sw β are c.e. reals
then for all n, the prefix-free complexity of α � n is less than or equal to that of β � n
(plus a constant).

So ≤sw arguably qualifies as a measure of relative randomness for the c.e. reals (and
in particular, it preserves randomness; i.e., if α is random and α ≤sw β then β is
random). Downey, Hirschfeldt, and LaForte [7] have shown that Solovay reducibility
(also known as domination) and strong weak truth table reducibility coincide on the
c.e. sets. But, as we see below, this is not true for the c.e. reals. Yu and Ding proved
the following.

Theorem 1.5 (Yu and Ding [12]) There is no sw-complete c.e. real.

By a “uniformization” of their proof they got two c.e. reals which have no c.e. real
sw-above them. Hence, we have the following corollary.
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Corollary 1.6 (Downey, Hirschfeldt, and LaForte [7]) The structure of the sw-
degrees c.e. reals is not an upper semi-lattice.

They also asked whether there are maximal sw-degrees of c.e. reals. They conjec-
tured that there are such, and they are exactly the ones that contain random c.e. reals.
The main idea of their proof of Theorem 1.5 can be applied for the case of c.e. sets
in order to get an analogous result. Using different ideas Barmpalias [1] proved the
following stronger result.

Theorem 1.7 (Barmpalias [1]) There are no sw-maximal c.e. sets. That is, for every
c.e. set A, there exists a c.e. set W such that A <sw W .

Note that since the Solovay degrees and sw-degrees coincide on the c.e. sets (see [5])
the following also holds.

Corollary 1.8 (Barmpalias [1]) The substructure of the Solovay degrees consisting
of the ones with c.e. members (i.e., containing c.e. sets) has no maximal elements.

In this paper we show the following.

Theorem 1.9 There are c.e. reals α that cannot be sw-computed by any random
c.e. real. That is, for any c.e. β ≥sw α, the number β is not random.

To justify the title of this paper we mention that random c.e. reals are known to be
exactly the �-numbers, that is, the halting probabilities of universal prefix-free ma-
chines. For background and other characterizations of random c.e. reals we refer to
Calude [3]. Theorem 1.9 can be seen as the local version of the following unpub-
lished result of Hirschfeldt which was announced after we submitted this paper.

Theorem 1.10 (Hirschfeldt) There are reals α which cannot be sw-computed by
any random real. That is, for any β ≥sw α, the number β is not random.

Note that Hirschfeldt’s theorem concerns the global structure of the sw-degrees and
does not imply Theorem 1.9.

2 About the Structure

We state some easy results about the c.e. sets and reals in the structure of sw-degrees.
We recall the following definition.

Definition 2.1 A Martin-Löf test M is a uniform sequence (Ei ) of c.e. sets of
binary strings such that µ(Ei ) ≤ 2−i . A real α avoids M if some for i , α 6∈ Ei6

ω.
A real number is called random if it avoids all Martin-Löf tests.

Here we identify reals in (0, 1) with infinite binary sequences (a real in (0, 1) cor-
responds to its binary expansion) and finite binary strings with intervals of (0, 1) (a
string σ corresponds to the interval of reals which have the prefix σ in their binary
expansion). We denote the Lebesgue measure of a set of reals by µ. Thus if E is
a set of finite strings, µ(E) is the Lebesgue measure of the union of the intervals in
E . The set of all infinite binary strings is denoted by 6ω and E6ω is the set of all
infinite binary strings with prefix one of the strings in E .

After the discussion in the previous section, it is natural to ask, are there c.e. reals
above all c.e. sets? It is not hard to show the following.

Proposition 2.2 Every random c.e. real is sw-above every set in the finite levels of
the difference hierarchy.
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A proof of this proposition for the first level of the difference hierarchy (the c.e. sets)
appears in the forthcoming monograph [4] (in the section about the sw reducibility).
The general case follows in a similar way. But are there nonrandom c.e. reals with
this property?

Proposition 2.3 There are nonrandom c.e. reals sw-above every set in the finite
levels of the difference hierarchy.

For example, α =
∑

e∈N

∑
n∈We

2−(e+n+2) is nonrandom (the digit changes below
certain levels depend on a finite number of c.e. sets and so a Martin-Löf test capturing
α can be easily constructed) and sw-above all c.e. sets. The general case is handled
similarly by considering the constants which bound the number of “mind changes”
in the various levels of the difference hierarchy.

3 Proof of Theorem 1.9

From now on all reals will be c.e. and without loss of generality members of the
unit interval (0, 1). We want to construct α such that any β that tries to sw-compute
α either fails to do that or fails to escape a Martin-Löf test (which is constructed
by us especially for β). In other words, β is unable to cope with both the tight α-
coding needed and the digit changes required for the escape from the intervals of our
Martin-Löf test. The requirements are

Q8,β : α = 8β
⇒ β ∈ ∩M for a Martin-Löf test M

where 8 runs over all partial computable sw-functionals and β over all c.e. reals in
the unit interval.

Looking at a single requirement we picture β (i.e., the opponent) having to cope
with two kinds of instructions. One comes from the α-changes that have to be sw-
coded into β. These occur after a change on a digit n of α and say “change a digit in
β below n.” Of course, if the use of 8 is the identity plus a constant c, the instruction
will be “change a digit in β below n + c” but at the moment we may assume c = 0
for simplicity.

On the other hand, β has to follow instructions of the type “change a digit below
n” where the sum

∑
2−n for each n occurring in the sequence of instructions (in-

cluding repetitions) is bounded. These test instructions come from the desire of β to
escape our Martin-Löf test and in particular a single member of it. A sequence (ni )
of test instructions can be identified with the sequence of intervals (σi6

ω) where
σi is the string consisting of the first ni digits of the current approximation to β (at
the time when that test instruction is issued); the latter is of course a member of a
Martin-Löf test M and failure to follow a test instruction means failure to escape that
member of M. Since the measure of the members of a Martin-Löf test goes to 0, we
have to accept that the above sum

∑
2−n will be as small as our opponent wants.

The above setting is like a game between players A, B where A controls α and
the sequence of test instructions, and B controls β. Once we sort out this atomic
case, that is, find a winning strategy for A, we can use the same ideas in a global
construction which deals with the general case. A winning strategy for A means an
enumeration of α and a sequence of test instructions such that any β which manages
to code α is unable to follow all test instructions. Further, we want the strategy for A
to have arbitrarily small cost; that is,
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(a) α is smaller than any threshold ε > 0 set by the opponent; in other words, we
can implement the strategy by changing α on an arbitrarily remote (from the
decimal point) segment;

(b) as mentioned before, the “measure”
∑

i 2−ni of the sequence of test instruc-
tions (ni ) is smaller than any threshold ε > 0 set by the opponent.

The purpose behind (b) was mentioned above whereas (a) is needed in order to put
all strategies together in a global construction (given that we only have one α). Once
we have such a winning strategy for A in the above game we can first iterate the
strategy with sufficiently low cost each time thus getting that any β which manages
to code α is unable to escape any of the members of the Martin-Löf test induced
by the sequences of test instructions. And by iterating again the previous module
we will be able to deal with all requirements Q8,β . Note that the cost-effectiveness
conditions (a), (b) are vital in implementing these iterations.

The following lemma will simplify things in designing a winning strategy for A.

Lemma 3.1 In the game described above between A, B a best strategy for B is to
increase β by the least amount needed to satisfy A’s request (i.e., a change of a digit
in β below a certain level) each time a request is put forward by A. In other words
if a different strategy for B produces β ′ then at each stage s of the game βs ≤ β ′

s .

Proof By induction on the stages s. At stage 0, β0 ≤ β ′

0. If βs < β ′
s (the case

βs = β ′
s is trivial) then there will be a position n such that 0 = βs(n) < β ′

s(n) = 1
and βs � n = β ′

s � n. When A issues a request for a β, β ′ change on position t or
higher in stage s + 1, if t < n it is clear that βs+1 ≤ β ′

s+1. Otherwise the highest
change β will be forced to do is on n and so again βs+1 ≤ β ′

s+1. �

This observation allows us to assume a particular strategy for B without losing any
generality. The idea is that A forces β to be larger and larger until it exits the unit
interval. But since our reals are in (0, 1), B will have to either abandon the α-coding
or stop trying to escape the intervals issued by A toward a Martin-Löf test. By
Lemma 3.1 if this happens with our standard “best strategy” β, it will also happen
with any other β ′ which follows a different strategy.

Assuming the best B-strategy of Lemma 3.1, every A-strategy corresponds to a
single B-strategy and so a single β.

Definition 3.2 The positions on the right of the decimal point in a binary expansion
are numbered as 1, 2, 3, . . . from left to right. The first position on the left of the
decimal point is position 0.

Definition 3.3 Suppose 0 < n ≤ t . We say that there is an n-ahead between α, β
at position t when

1. β(t − n) = 1 and β(i) = 0 for i strictly between t − n, t ;
2. α(t) = 1 and α(i) = 0 for i = t − n or strictly between t − n, t ;
3. for all positions k strictly between the decimal point and t − n,

α(k) = β(k) = 0.

An illustration of a typical case of this definition is shown in Figure 1. Where arrows
appear the digits can be anything. Note that this definition allows the possibility
β ≥ 1. Since the reals considered in the general construction are in (0, 1) this case
will only be used for the sake of deriving a contradiction.
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α = 0 .

`︷ ︸︸ ︷
0 . . . 0

n︷ ︸︸ ︷
0 0 . . . 0 1 7−→

β = 0 . 0 . . . 0︸ ︷︷ ︸
`

1 0 . . . 0︸ ︷︷ ︸
n

7−→

Figure 1 An n-ahead (between α, β) at position n + ` + 1.

α
β

∣∣∣∣ 0 0 0 0
0 0 0 0

∣∣∣∣ 0 0 0 0
0 0 0 1

∣∣∣∣ 0 0 0 1
0 0 1 0

∣∣∣∣ 0 0 1 0
0 1 0 0

∣∣∣∣ 0 1 0 0
1 0 0 0

Figure 2 A-strategy for the production of a 1-ahead at position 2
with cost 2−4.

Given arbitrary n, t > 0 and a rational ε > 0 we wish to design a finite (i.e., con-
sisting of finitely many steps) A-strategy with cost of the occurring test instructions
less than ε, which leaves α, β with an n-ahead at position t . As mentioned before,
the cost of the test instructions n1, . . . , nk is

∑k
i=1 2−nk .

3.1 Case n = 1 This case is easy: issue the test instruction “change β on position
k” for some (e.g., the least) k > t with 2−k < ε and then carry on the consecutive
α-changes in positions k, k − 1, . . . , t again using the least effort (i.e., adding the
least amount to α) required for the changes to take place.

Figure 2 illustrates the A strategy for n = 1, t = 2, and ε > 2−4 (so we chose
k = 4). The first 4 digits of α, β are shown in consecutive stages of the game and
one can see the action of A along with the response of B. When α does not change
and β does, a test instruction is issued.

3.2 Case n > 1 In this case the strategy for A will be more sophisticated and we
are going to build it by recursion. We note that given n, t, ε the A-strategy will only
change α at positions ≥ t and issue test instructions for β-change at positions > t .
The following lemma will be very useful; the idea behind its name will be explained
later. When we say “before position i” we mean “at i or higher,” that is, ≤ i .

Lemma 3.4 (Passing through lemma) Consider two games (like the one described
above), one between A, B and the other between A′, B ′, running in parallel (the
first controls α, β and the second one α′, β ′). Although the strategies of B, B ′ are
the same (i.e., the “least effort” strategy described above) and the A, A′ strate-
gies (i.e., α, α′ increments and test instructions) are identical, the first starts with
α[0] = β[0] = 0 (as usual) and the second with α[0] = σ1, β ′

[0] = σ2 for finite
binary expansions σ1, σ2. If A, A′ only ever demand changes (by either changing
α, α′ or issuing test instructions) before positions n > max{|σ1|, |σ2|} then at every
stage s,

α′
[s] = α[s] + σ1, (1)

β ′
[s] = β[s] + σ2. (2)

Proof Equation (1) is an obvious consequence of the hypotheses. By induction on s
we show that (2) holds and β ′

[s], β[s] have the same expansions after position |σ2|.
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For s = 0 it is obvious. Suppose that this double hypothesis holds at stage s. At
s + 1, A demands a change before position n > |σ2| and since β, β ′ look the same
on these positions, β ′

[s] will need to increase by the same amount that β[s] needs to
increase. So β ′

[s + 1] = β[s + 1] + σ2 and one can also see that β, β ′ will continue
to look the same at positions > |σ2| (consider cases whether the change occurred at
positions > |σ2| or not). �

The idea for the recursion which will give an efficient strategy for A is as follows.
Fix n, t as before. Suppose that for i = t + 1, . . . , t + n − 1 we have procedures
P(n, i) which (working in isolation) produce an n-ahead between α, β at position i
and at cost (i.e., measure of test instructions) C(n, i). Moreover, they only demand
β-changes (either by changing α or by test instructions) on positions ≥ i . Then we
can define P(n, t) which only demands β-changes before position t and produces an
n-ahead between α, β at position t as follows.

3.2.1 P(n, t) modulo P(n, i), i = t + 1, . . . , t + n − 1

(p1) Produce an n-ahead at position t + 1 by running P(n, t + 1).
(a1) Change α at position t .
(p2) Produce an n-ahead at position t + 2 by running P(n, t + 2).
(a2) Change α at position t + 1.
...

...
...

(pn−1) Produce an n-ahead at position t + n − 1 by running P(n, t + n − 1).
(an−1) Change α at position t + n − 2.

( f ) Produce a 1-ahead at position t +n−1 by running the usual procedure
of “case n = 1.”

Notice the slight abuse of the term n-ahead in the procedure above. Since we begin
applying some P(n, i) when α = σ1, β = σ2 (possibly nonzero) a precise statement
would be “after P(n, i) has finished there is an n-ahead between α − σ1 and β − σ2
in position i .” The latter is true because of the passing through Lemma 3.4 which can
be applied because of the nature of P(n, t) and the hypotheses on P(n, i). One can
now justify the name of this lemma by looking at the illustration of procedure P(n, t)
(Figure 3): it allows us to create “n-aheads” within already developed α, β. Observe
that by the hypothesis on P(n, i), procedure P(n, t) only demands β-changes (either
by changing α or by test instructions) on positions ≥ t . Also note that the final step
( f ) is not fully determined as Section “case n = 1” describes a bunch of procedures
with variable cost (which can be arbitrarily small). So, modulo P(n, i) we can think
of P(n, t) as a family of very similar procedures which differ only on the version of
their final step (and the cost of their final step is arbitrarily small).

Figure 3 shows a final segment of α (first line) and β (second line) during the
stages when strategy P(n, t) is played by A. It is assumed that β responds to all
instructions issued by A so far (otherwise it would lose) and that it uses the “least
effort strategy” explained above. The first position shown is position t − n and the
first after the first ellipsis mark is position t − 3. The first position after the second
ellipsis mark is position n + t − 3. The symbol ∗ indicates that a 0 or 1 occupies the
position, but it does not matter which. The arrow 7→ indicates that from that position
on it does not matter what follows and the ellipsis mark ‘. . . ’ that the following
digits will be as the last one before the mark. Note that the positions higher than
t − n are not affected during the whole process and P(n, t) finishes with an n-ahead
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(p1)
0 0 0 0 . . . 0 0 0 1 ∗ 7→

0 1 0 0 . . . 0 0 0 ∗ ∗ 7→

(a1)
0 0 0 0 . . . 0 0 1 0 0 . . .
0 1 0 0 . . . 0 0 1 0 0 . . .

(p2)
0 0 0 0 . . . 0 0 1 0 1 7→

0 1 1 0 . . . 0 0 1 0 ∗ 7→

(a2)
0 0 0 0 . . . 0 0 1 1 0 . . .
0 1 1 0 . . . 0 0 1 1 0 . . .

...
...

(pn−1)
0 0 0 0 . . . 0 0 1 1 1 . . . 1 0 1 7→

0 1 1 1 . . . 1 1 1 1 1 . . . 1 0 ∗ 7→

(an−1)
0 0 0 0 . . . 0 0 1 1 1 . . . 1 1 0 . . .
0 1 1 1 . . . 1 1 1 1 1 . . . 1 1 0 . . .

( f )
0 0 0 0 . . . 0 0 1 1 1 . . . 1 1 1 7→

1 0 0 0 . . . 0 0 0 0 0 . . . 0 0 0 . . .

Figure 3 A final segment of α, β during the stages of P(n, t) mod-
ulo P(n, i), i = t + 1, . . . , t + n − 1.

at position t and a block of 1s of length n starting from position t in α. So after the
final step ( f ) the positions in α from 7→ on will have 0s.

Let C(n, t) be the infimum of the costs (measure of test instructions) of proce-
dures P(n, t); as noted before, this is a family of similar strategies depending on the
version of the procedure used to produce the 1-ahead on step ( f ). And let C(n, t +i),
i = 1, . . . , n − 1 be the infimum of the costs of the procedures we have available for
step pi . Since step ( f ) can have arbitrarily small cost we have

C(n, t) ≤

n−1∑
i=1

C(n, t + i). (3)

Note that the more times we apply the recursion we described (procedure P(n, t)
modulo P(n, i), i = t + 1, . . . , t + n − 1) in order to get a strategy, the longer the
segment of α, β we need to work on is. It is clear that in order to have a definite
strategy we need to start from somewhere, that is, some fixed strategy producing an
n-ahead on some large positions. Then we can start applying the recursion in order
to get n-aheads on higher positions. We call this fixed strategy crude because it has
relatively large cost.

3.2.2 Crude strategy Suppose we want to produce an n-ahead at position t . The
idea is the following:

(1) Ask for a β-change on position t − n + 1 or higher via a test instruction.
(2) Ask for a β-change on position t − n + 2 or higher via a test instruction.
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...
...

...
(n) Ask for a β-change on position t or higher via a test instruction.
( f ) Change α at position t .

The problem is that this procedure does not fulfill our requirement that the test in-
structions are issued only for positions ≥ t so that the passing through lemma does
not apply and the recursion cannot be done properly. However, a simple modifica-
tion of it suffices: for i = 1, . . . , n we replace (i) with a 2t−(t−n+i)

= 2n−i times
iteration of the command:

Ask for a β-change on position t or higher via a test instruction.
It is easy to see that this modification does not alter the result (nor the cost) of the
previous formulation of the crude strategy and so we are going to adopt it; now (i)
means the relevant batch of commands. Figure 4 shows α (first line) and β (second
line) during the end of batches (1), (2), (3), (4) and the final step ( f ) for the case
when we want to produce a 3-ahead at some position t (so the first digit shown is
t − 3). The cost has been 2−(t−2)

+ 2−(t−1)
+ 2−t < 2−(t−3). In general the cost of

the crude strategy for the production of an n-ahead at position t is

< 2−(t−n).

α
β

∣∣∣∣ 0 0 0 0
0 0 0 0

∣∣∣∣ 0 0 0 0
0 1 0 0

∣∣∣∣ 0 0 0 0
0 1 1 0

∣∣∣∣ 0 0 0 0
0 1 1 1

∣∣∣∣ 0 0 0 1
1 0 0 0

Figure 4 Crude strategy for the production of a 3-ahead.

3.2.3 A definite strategy for A. Given n ≤ t we want to define a strategy for A
which produces an n-ahead at position t and which depends on the length of the
initial segment of α, β that we are allowed to use. Suppose that the length of this
segment is a given n0 ≥ n + t − 1. During the production of 1-aheads in final steps
f of procedures P we allow the usage of longer segments of α, β (we could avoid
this exception but then the argument would be slightly different; see below).

For n0 −n +2 ≤ i ≤ n0 we define P(n, i) to be the crude strategy for an n-ahead
at position i . Note that these strategies are exactly what we need in order to define
P(n, n0 − n + 1) (recall that n0 − n + 1 ≥ t) by the recursion explained above.
For t ≤ i < n0 − n + 2 define P(n, i) successively from large i to small, using the
recursion of Section 3.2.1. Recall that from i = n0 − n + 1 and less, P(n, i) is a
family of similar strategies with members derived from a choice of members from
P(n, i + 1), . . . , P(n, i + n − 1), application of the recursion, and a choice of the
version of the final step ( f ) of the recursion. Note that the procedures P defined with
the crude strategy are considered as families with one element.

Now we wish to find the infimum C(n, t) of the costs of procedure P(n, t). We
do this by going through the “backward” recursion of the definition of P(n, t). First
of all we know by Section 3.2.2 that

C(n, n0) < 2−(n0−n), C(n, n0 − 1) < 2−(n0−1−n), . . .

. . . , C(n, n0 − n + 2) < 2−(n0+1−2n).
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Now recall (3) and consider the sequence

C(n, n0), . . . , C(n, n0 − n + 2), C(n, n0 − n + 1), . . . , C(n, t).

After C(n, n0 − n + 2) each term is less than or equal to the sum of the previous
n − 1 terms (according to (3)). So if we define

D(n, i) :=

{
2i−1, if 1 ≤ i < n;∑n−1

j=1 D(n, i − j), if i ≥ n,

(i.e., D is the sequence with the i th term for i ≥ n equal to the sum of the previous
n − 1 terms and the first n − 1 terms equal to 20, . . . , 2n−2, respectively) then by
induction we have

C(n, t) ≤ D(n, n0 − t + 1) 2−(n0−n). (4)

Since the family of procedures P(n, t) defined depends on the choice of n0 we write
P(n, t)[n0] to indicate it. If we show that

lim
n0→∞

D(n, n0)

2n0
= 0 (5)

then for any given ε > 0 we can effectively find a suitable n0 such that the corre-
sponding family P(n, t)[n0] contains members which produce an n-ahead at position
t at cost less than ε. Since the members of P(n, t)[n0] can be enumerated effectively
along with their associated costs, a particular procedure can be found which produces
an n-ahead at position t at cost less than ε.

3.2.4 Proof of (5) First observe that for all k

D(n, k + 1) ≤ 2D(n, k). (6)

Indeed, for k < n this is clear and for k ≥ n we have that

D(n, k) =

n−1∑
j=1

D(n, k − j).

But in order to form D(n, k + 1) we take D(n, k) and add only
n−2∑
j=1

D(n, k − j)

so that (6) holds and the sequence ( D(n,k)
2k ) is decreasing. Now if k ≥ n this means

that
2n−1 D(n, k − n + 1) ≥ D(n, k).

But then

D(n, k + 1) = 2D(n, k) − D(n, k − n + 1) ≤ 2D(n, k) −
D(n, k)

2n−1 =

2D(n, k)(1 −
1
2n ).

Thus
D(n, k + 1)

2k+1 ≤ (1 −
1
2n )

D(n, k)

2k

and (5) follows.
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3.3 Variation of strategies and many strategies working together Recall that so
far we assumed that the use of the sw-functional which computes α from β is the
identity. In general it will be x + c on argument x and so we need to modify the
procedures P which produce n-aheads. For arbitrary c we consider the modification
Pc(n, t)[n0] of P(n, t)[n0] which produces an n-ahead on position t + c. Looking
at P(n, t)[n0] working in isolation, in the presence of a constant c the α-changes
cause β-reaction as if they occur c places ahead (i.e., lower). So in order to apply
our reasoning as before, we need to modify the test instructions: these will now ask
for changes c places ahead than they did before. If we call this modified strategy
Pc(n, t + c)[n0] it is clear (recalling that β follows the “least effort” strategy) that
the usual reasoning applies giving us the production of an n-ahead on position t + c
at cost same as in P(n, t + c)[n0] and by issuing instructions and α changes on
positions ≥ t + c. Assume an effective list of all requirements

Q1, Q2, . . .

based on an effective list (8i , βi ) of all pairs of partial computable sw-functionals
and c.e. reals in (0, 1). We break each Qi into Qi,1, Qi,2, . . . where

Qi, j : α = 8
βi
i ⇒ β ∈ E i

j ,

where E i
j is the j th member of the Martin-Löf test we are constructing; so

µ(E i
j ) < 2− j . Now we adopt a priority list of all Qi, j based on the following

priority relation
Qi1, j1 > Qi2, j2 ⇐⇒ 〈i1, j1〉 < 〈i2, j2〉,

where 〈 , 〉 is a standard pairing function.
To each Qi, j we assign an interval I i

j in the characteristic sequences of α, βi

where it can apply the instructions of its strategy. Here is how we define I i
j : suppose

that the intervals for higher priority requirements have been defined and that n is the
least number larger than all numbers in these intervals. The strategy for Qi, j will be
one of the Pc(n +c, n +c)[n0] for some big enough n0, where c is the constant in the
use of the sw-functional 8i . In particular, we effectively search for an n0 such that
there are strategies in Pc(n+c, n+c)[n0] which produce an (n+c)-ahead on position
n + c at cost less than 2− j (this search will halt due to (5)). Then we fix one of these
Pc(n + c, n + c)[n0]-strategies and find the largest position k where a Pc-instruction
for βi -change is issued (either in the form of an α-change or as a test instruction).
Define I i

j = [n, k]. Recall that test instructions are translated into members of E i
j

as follows: whenever such an instruction is issued requiring the change of a β-digit
> n, the sequence β � n (where β has current value) is enumerated into E i

j .
Note that here we also assigned a strategy for Qi, j . We explain why this works,

that is, why Qi, j is satisfied in this way. Suppose that inside I i
j , βi only changes

when an instruction is issued by Qi, j and when this happens it increases by the least
amount needed to follow the relevant instruction. Then according to the above, Pc
produces an (n + c)-ahead at position n + c and so, if βi follows all instructions, it
will end up outside (0, 1), a contradiction. According to Lemma 3.1 this will happen
even if βi diverts from the “least effort strategy related to Qi, j ” described above. So
in any case, βi will fail to follow either an α change or a test instruction. In other
words, 8

β
i 6= α or β ∈ E i

j . If we translate each α change on the nth position into
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the instruction “change β � (n + c + 1)” then the last argument is summarized as
follows.

Lemma 3.5 Any real β which follows the instructions of Pc(n + c, n + c) (any
procedure in this class) has to be ≥ 1.

Now we are going to put all strategies together and we will see that there is little
interaction between them. In particular, the arguments above work in the case of a
global construction because of Lemma 3.5. One thing to note is that when a change
happens in α inside I i

j , all lower (larger) positions inside I i
j become 0 (according to

the “least effort strategy” on the part of α operated by Qi, j ). However, α remains the
same in positions outside I i

j .

3.4 Construction The construction takes place in stages. At stage s, Qi, j requires
attention if 8

βi
i = α currently holds on all arguments up to the largest number in I i

j

and βi [s] 6∈ E i
j [s]. At stage s, consider Qi, j for 〈i, j〉 < s and access the one of

highest priority which requires attention. Then perform the next step of its strategy
and end stage s.

3.5 Verification Fixing i, j we will show that Qi, j is satisfied. Since the strategy
we assign to Qi, j produces E i

j with µ(E i
j ) < 2− j the satisfaction of all (Qi, j ) j∈ω

implies the satisfaction of Qi and the satisfaction of all Qi, j implies the theorem.
Suppose that the reduction 8

βi
i = α is total (otherwise the satisfaction is trivial).

If βi 6∈ E i
j then it follows all test instructions issued by Qi, j . And since α is

successfully being coded into βi , it follows all instructions of some procedure in
Pc(n + c, n + c). According to Lemma 3.5 βi ≥ 1, a contradiction. The lack of
induction in the verification (if Q > Q′ then the satisfaction of Q′ does not depend
on the satisfaction of Q) indicates a lack of interaction among the strategies.

3.6 Further comments Recall that in procedure P(n, t)[n0] the final steps ( f ) in
the recursions “P(n, t) modulo P(n, i), i = t + 1, . . . , t + n − 1” were left subject
to choice from a pool of 1-ahead procedures with arbitrarily small cost. Instead we
could choose for ( f ) a particular one, for example, the one which starts with a test
instruction “change β below n0” and moves the 1-ahead up to the position where we
want it. Then the cost of each ( f ) in P(n, t)[n0] would be 2−n0 and (4) would hold
for

D(n, i) :=

{
2i−1, if 1 ≤ i < n;∑n−1

j=1 D(n, i − j) + 2−n, if i ≥ n.

Then the argument of Section 3.2.4 is still valid, giving us (5). So the cost of
P(n, t)[n0] (which is now a single strategy) tends to 0 as n0 → ∞ and in the con-
struction we only need to search for a big enough n0.
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