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Constructive Logic and the Medvedev Lattice

Sebastiaan A. Terwijn

Abstract We study the connection between factors of the Medvedev lattice and
constructive logic. The algebraic properties of these factors determine logics ly-
ing in between intuitionistic propositional logic and the logic of the weak law
of the excluded middle (also known as De Morgan, or Jankov, logic). We dis-
cuss the relation between the weak law of the excluded middle and the algebraic
notion of join-reducibility. Finally we discuss autoreducible degrees.

1 Introduction

Ever since Heyting wrote down the axioms of intuitionistic logic (in 1930), people
have tried to give a semantics for this logic that explains their constructive content.
Many people felt that such an explanation should have something to do with the
theory of computation, but most approaches based on this idea (such as Kleene’s re-
alizability) failed to capture intuitionistic provability. In 1932, Kolmogorov [5] pro-
posed a semantics for intuitionistic propositional logic based on a “calculus of prob-
lems.” Kolmogorov’s exposition was rather sketchy, but later several more complete
formalizations based on Kolmogorov’s idea were given by Medvedev. Although ini-
tially these contributions also failed to provide a complete semantics for intuitionistic
propositional logic IPC, later work by Skvortsova based on this did succeed in cap-
turing IPC. Furthermore, the algebraic structures introduced by Medvedev turned
out to be interesting for other reasons as well. In particular, there are many connec-
tions to the study of other structures from computability theory. For example, the
Medvedev lattice contains the Turing degrees (as an upper semilattice).

The approach discussed in this paper by no means exhausts the possibilities
for interesting connections between constructive logic and computation using Kol-
mogorov’s idea. For example, in Shen and Vereshchagin [13], connections are made
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to the theory of Kolmogorov complexity. The paper Terwijn [19] contains results on
50

1 classes bearing on constructive logic.
We briefly review the basic definitions of the Medvedev lattice in Section 2. In

Section 3 we then discuss the connection with logic, including Skvortsova’s result.
In Section 4 we take some steps in exploring the algebraic structure of the Medvedev
degrees. In particular, we discuss join-irreducible elements that are related to factors
of the Medvedev lattice where the weak law of the excluded middle, ¬α ∨ ¬¬α,
holds. Finally, in Section 5 we discuss autoreducible degrees.

2 The Medvedev Lattice

First we briefly recall the definition of the Medvedev lattice M, originally introduced
in Medvedev [8]. Let ω denote the naturals and let ωω be the set of all functions from
ω to ω (Baire space). A mass problem is a subset of ωω. We think of such subsets
as a “problem,” namely, the problem of producing an element of it, and so we can
think of the elements of the mass problem as its set of solutions. We say that a mass
problem A Medvedev reduces to mass problem B if there is an effective procedure
of transforming solutions to B into solutions to A. Formally, A ≤ B if there is
a partial computable functional 9 : ωω

→ ωω such that for all f ∈ B, 9( f ) is
defined and 9( f ) ∈ A. This can be seen as an implementation of Kolmogorov’s
idea of a calculus of problems. The relation ≤ induces an equivalence relation on
the mass problems: A ≡ B if A ≤ B and B ≤ A. The equivalence class of A
is denoted by [A] and is called the Medvedev degree, or the degree of difficulty of
A. We usually denote Medvedev degrees by boldface symbols. Note that there is a
smallest Medvedev degree, denoted by 0, namely, the degree of any mass problem
containing a computable function. There is also a largest degree 1, the degree of the
empty mass problem, of which it is impossible to produce an element by whatever
means. Finally, it is possible to define a meet operator × and a join operator +

on mass problems: For functions f and g, as usual define the function f ⊕ g by
f ⊕ g(2x) = f (x) and f ⊕ g(2x + 1) = g(x). Let n̂ A = {n̂ f : f ∈ A},
where ̂ denotes concatenation. Define

A + B =
{

f ⊕ g : f ∈ A ∧ g ∈ B
}

and
A × B = 0̂ A ∪ 1̂ B.

It is not hard to show that × and + indeed define a greatest lower bound and a least
upper bound operator on the Medvedev degrees.1

Theorem 2.1 (Medvedev [8]) The structure M of all Medvedev degrees, ordered by
≤ and together with × and + is a distributive lattice.

Let F =
{

f : f noncomputable
}
. We note the following important fact, namely,

that for all mass problems A, if [A] 6≤ 0 (i.e., A does not contain any computable
function) then F ≤ A via the identity. That is, the Medvedev degree of F , which is
denoted by 0′, is the unique nonzero minimal degree of M.

A distributive lattice L with 0, 1 is called a Brouwer algebra if for any elements
a and b one can show that the element a → b defined by

a → b := least
{
c ∈ L : b ≤ a + c

}
always exists. We even have the following theorem.
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Theorem 2.2 (Medvedev [8]) M is a Brouwer algebra.

Proof Define A → B =
{
n̂ f : (∀g ∈ A)[8n(g ⊕ f ) ∈ B]

}
, where 8n is the

nth partial computable functional. This definition extends to the Medvedev degrees
in the obvious way. �

L is called a Heyting algebra if its dual is a Brouwer algebra. Sorbi [15] has shown
that M is not a Heyting algebra. Some more discussion and facts about M can be
found in Rogers [12]. A good survey of what is known about M is Sorbi [18], where
also a more complete list of references can be found.

We conclude this section with one more definition that we will use later. Note
that A ≤ B means that there is a uniform way to transform solutions for the one
problem into solutions to the other. There is also an interesting nonuniform variant
of this definition (Muchnik [10]): We say that A Muchnik reduces to B, denoted
A ≤w B, if (∀ f ∈ B)(∃g ∈ A)[ f ≤T g], where ≤T denotes Turing reducibility.
The corresponding degrees are called Muchnik degrees. They form a distributive
lattice in the same way as the Medvedev degrees.

Define C(A) =
{

f : (∃e)[8e( f ) ∈ A]
}
, where 8e is the eth partial computable

functional. The Muchnik degrees can be seen as a sublattice of the Medvedev degrees
by the embedding [A] 7→ [C(A)]. The Muchnik degrees are then precisely the
Medvedev degrees that contain a mass problem A such that C(A) = A. This is
equivalent to saying that A is upward closed under Turing reducibility.

3 Logic and Computation

As we have seen, the Medvedev lattice implemented an idea of Kolmogorov that
was supposed to give a computational meaning to the logical connectives. Below
we make precise what is meant by this and point out that, as already observed by
Medvedev himself, unfortunately this approach does not succeed to capture intu-
itionistic logic, at least not directly. However, a slight extension of the idea does
work and gives us, in an algebraically very natural way, a computational semantics
for intuitionistic propositional logic IPC.

In Section 2 we have already defined the operations ×, +, and → on M. We
can also define a negation operator ¬ by defining ¬A = A → 1 for any Medvedev
degree A.

Given any Brouwer algebra L (such as M) with join denoted by + and meet by
×, we can evaluate formulas as follows. An L-valuation is a function v : Form → L
from formulas to L such that for all formulas α and β, v(α ∨ β) = v(α) × v(β),
v(α ∧ β) = v(α) + v(β), v(α → β) = v(α) → v(β), v(¬α) = v(α) → 1. (Note
the upside-down reading of ∧ and ∨ when compared to the usual lattice theoretic
interpretation; see also note 1.) Write L |H α if v(α) = 0 for any L-valuation v.
Finally, define

Th(L) =
{
α : L |H α

}
.

On page 289 of Rogers [12] it is stated that Medvedev has shown that the identities
of M (i.e., Th(M)) are the theorems of IPC, the intuitionistic propositional calculus.
This however seems to be a misquotation. It is certainly not true that Th(M) = IPC.
(That would have been a great result!) Indeed, Medvedev already noted that for every
A ∈ M we have that either ¬A = 0 or ¬A = 1; hence that always ¬A × ¬¬A = 0.
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That is, M satisfies the weak law of the excluded middle ¬α ∨¬¬α. In fact, we have
the following result.

Theorem 3.1 (Medvedev [9], Jankov [3], Sorbi [16]2) Th(M) is the deductive clo-
sure of IPC and the weak law of the excluded middle (also known as De Morgan, or
Jankov, logic).

This is already very interesting, but in the light of the quest for a computational
semantics for IPC it may be a disappointment. Since M does not do the trick, we
need to look at other Brouwer algebras. A very natural idea, from an algebraic point
of view, is to look at factors of M, that is, to study M modulo a filter or an ideal.
Given a Brouwer algebra L and an ideal I in L, L/I is still a Brouwer algebra. If G
is a filter in L then L/G is not necessarily a Brouwer algebra, but if G is principal
then L/G is again a Brouwer algebra. In such a factorized lattice G plays the role
of 1. For example, if G is the principal filter in M generated by the degree D then
negation in M/G can be defined by ¬A = A → D.

Now it is quite easy to find a factor M/G of M such that Th(M/G) is classical
propositional logic. (Take G the principal filter generated by 0′, the degree contain-
ing the set of all noncomputable functions; see Section 2. Note that 0′

= 1 in M/G,
so that M/G has exactly the elements 0 and 1, corresponding to the classical truth
values 1 and 0, respectively.) Of course, what we really would like is a factor of M
that captures IPC. That such a factor indeed exists is the content of the following
beautiful theorem.

Theorem 3.2 (Skvortsova [14]) There exists a principal filter G such that Th(M/G)
equals IPC.

The proof of Theorem 3.2 consists of a number of clever algebraic coding techniques,
combined with some computability theory. Through a series of lattice embedding
results (including one by Lachlan for the Turing degrees) it is shown that the magic
interval can be found. The main problem is the control of the infima, which is taken
care of by making use of so-called canonical subsets on which the infima are well
behaved. As a canonical subset of M those degrees are used that contain a mass
problem that is upward closed under Turing reducibility. Note that these are precisely
the Muchnik degrees defined at the end of Section 2. So, interestingly, both the
Turing degrees and the Muchnik degrees play a role in the proof of Theorem 3.2.

4 Irreducible Elements

In the previous section we saw how the algebraic structure of M and its factors
M/G relate to the theories Th(M/G). In this section we discuss one special aspect
of the algebraic structure of M, namely, its join-irreducible elements. Recall that an
element a of a lattice L is join-reducible if there are b, c ∈ L such that a = b + c
and a 6≤ b, a 6≤ c. In this case we say that a splits into b and c. In this section
we discuss the join-irreducible elements of M. For a discussion of the dual notion
of meet-reducibility see, for example, [18]. Join- and meet-irreducible elements also
play a crucial role in various results about embeddings of degree structures that are
needed in the proof of Theorem 3.2.

In Theorem 3.1 we saw that M satisfies the weak law of the excluded middle
¬α ∨ ¬¬α. This is due to the fact that 1 is join-irreducible, as the following propo-
sition shows.
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Proposition 4.1 Let G be the principle filter generated by Medvedev degree D.
Then the weak law of the excluded middle holds in M/G if and only if D is join-
irreducible.

Proof Suppose that D is join-reducible; say A and B are incomparable such that
A + B = D. First note that ¬A 6= 1 in M/G (where 1 is now the top element D of
M/G) because ¬A ≤ B /∈ G. Hence ¬¬A 6= 0, for otherwise it would hold that
D ≤ ¬A. Also, ¬A 6= 0 since A 6≥ D. Now from ¬A 6= 0 and ¬¬A 6= 0 it follows
that ¬A × ¬¬A 6= 0, since M does not have any minimal pairs (because there is
exactly one nonzero minimal degree 0′ in M; see Section 2). So the weak law of the
excluded middle does not hold in M/G.

Conversely, if D is join-irreducible it is easy to see that for A 6= 1 we have that
¬A = 1. Since ¬1 = 0 we then have that ¬A × ¬¬A = 0 for every A. �

In fact, Sorbi proved the following theorem about the connection between irreducible
elements and the theories Th(M/G).

Theorem 4.2 (Sorbi [17], Theorem 4.3) For every principal filter G generated by a
join-irreducible element greater than 0′ it holds that Th(M/G) = IPC + ¬α∨¬¬α.

We note that it is not the case that if G is a filter generated by a join-reducible ele-
ment D then automatically Th(M/G) = IPC. For example, if D is a join-reducible
Muchnik degree then, by Skvortsova [14], Th(M/G) satisfies the Kreisel-Putnam
formula

(¬p → q ∨ r) → (¬p → q) ∨ (¬p → r),

which shows that Th(M/G) is strictly larger than IPC.
The Medvedev degrees 0 and 1 are trivial examples of join-irreducible elements.

More interesting examples of irreducible elements are the degrees [B f ], for any
noncomputable f , where B f is defined as B f = {g : g 6≤T f }; cf. Sorbi [16].
(To see that [B f ] is join-irreducible suppose that B f ≡ A + C and that B f 6≤ A.
Then it cannot be that A ⊆ B f (for otherwise the identity would be a reduction) so
there is h ∈ A with h ≤T f . Now B f ≤

{
h ⊕ g : g ∈ C

}
, via 9 say. But then

9(h ⊕ g) ≤T h ⊕ g 6≤T f ; hence all g ∈ C satisfy g 6≤T f . So B f ≤ C via
the identity.) Notice that [B f ] together with [{ f }] forms a maximal antichain of size
two in M.

Splittings in the Turing degrees give many examples of join-reducible elements
of M, as the next lemma shows.

Lemma 4.3 (Sorbi [18]) Suppose A is a mass problem such that the following
condition holds:

There exist functions g, h 6∈ C(A) such that g|T h and g ⊕ h ∈ C(A). (1)

Then the Medvedev degree [A] is join-reducible.

Proof If condition (1) holds then it is easy to see that

[A] = [A × {g}] + [A × {h}].

On the other hand, by incomparability of g and h and the fact that they cannot com-
pute anything in A, it follows that the degrees [A × {g}] and [A × {h}] are incom-
parable. �
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Problem 5.4 in Sorbi [18] asks for a characterization of the join-irreducible ele-
ments of M. Below we show that condition (1) of Lemma 4.3 characterizes the
join-reducible Muchnik degrees and that it does not characterize the join-reducible
elements of M.

Recall from Section 2 that the Muchnik degrees are precisely the Medvedev de-
grees containing a mass problem A such that A ≡ C(A).

Proposition 4.4 Condition (1) characterizes the join-reducible Muchnik degrees.

Proof Suppose that [A] is a Muchnik degree. Lemma 4.3 holds for the Muchnik
degrees just as well as for the Medvedev degrees, so we only have to show that if
condition (1) does not hold for A then A is join-irreducible. So suppose (1) does
not hold and suppose that A ≡ B + C and A 6≤ B. We show that A ≤ C. Since
A ≡ C(A), A 6≤ B implies that there is g ∈ B \C(A). Then A ≤

{
g ⊕h : h ∈ C

}
,

via 9 say. But then, since 9(g ⊕ h) ≤T g ⊕ h and by the failure of (1), all h ∈ C
must be in C(A). Hence A ≡ C(A) ≤ C via the identity. �

In Dyment [2] it was shown that every Muchnik degree is meet-reducible. (It may be
informative to note here that E. Z. Dyment and E. Z. Skvortsova are in fact the same
person.)

Proposition 4.4 points out a way in which a Medvedev degree [A] can be join-
reducible without satisfying condition (1): It may happen that B ⊆ C(A) but that
nevertheless A 6≤ B because there is no uniform procedure that reduces A to B.

Theorem 4.5 Condition (1) does not characterize the join-reducible elements of
M: There is a join-reducible Medvedev degree [A] such that (1) does not hold.

Proof We prove this by constructing such an A by brute force. Let Be, e ∈ ω, and
X be subsets of ω such that each pair of them forms a minimal pair in the Turing
degrees and such that every Be does not bound a minimal Turing degree. That such
sets exist follows from standard results about lattice embeddings into the Turing
degrees. (One can use here the result of Lachlan and Lebeuf [6] that every countable
upper semilattice with a least element is isomorphic to an initial segment of the
Turing degrees. See, for example, Lerman [7].) Now define B ′

=
{

Be : e ∈ ω
}

(we
identify sets with their characteristic functions here) and C′

=
{

f : ∅ <T f ≤T X
}
.

Finally, define

A =
{

f : f 6≤T X
}

\
{
8e(Be) : 8e(Be) total

}
,

and
B = A × B ′ and C = A × C′.

Then B, C ≤ A so B + C ≤ A. We further prove that A ≤ B + C, A 6≤ B ′,
A 6≤ C′ and that A satisfies the negation of condition (1).

A ≤ B +C: It is enough to show that A ≤ B ′
+C′. In fact we have B ′

+C′
⊆ A.

To see this, let Be ⊕ f ∈ B ′
+ C′. Then we cannot have that Be ⊕ f ≤T X since

otherwise Be ≤T X . Also, there is no i such that Be ⊕ f = 8i (Bi ) since otherwise
f ≤T Bi , contradicting that X and Bi form a minimal pair. So Be ⊕ f ∈ A.

A 6≤ B ′: This is by definition of A. 8e cannot map B ′ into A since A excludes
8e(Be).

A 6≤ C′: If f ∈ C′ then f ≤T X so f cannot compute any f ′
6≤T X .
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A satisfies ¬(1): Suppose that g /∈ C(A). Then in particular g /∈ A. Now if
g = 8e(Be) for some e then, since Be does not bound a minimal degree, we can find
f ≤T g with f 6= 8e(Be), which is not Turing-below any other Bi nor is Turing-
below X . Then f ∈ A, and therefore g ∈ C(A). So we must have g ≤T X . Now
take any other h /∈ C(A). By the same reason h ≤T X . Hence g ⊕ h ≤T X , so
g ⊕ h /∈ C(A). �

Lemma 4.3 gives a special example of a situation where [A] is join-reducible,
namely, when an f ∈ A can be split into g and h both not in C(A). Note that if
we generalize g and h to sets of functions we more or less get the definition back:
[A] is join-reducible if and only if there is a set of gs that do not uniformly compute
elements in A (generalizing that g /∈ C(A)) and a set of hs that also does not
uniformly compute elements in A (generalizing that h /∈ C(A)) such that the pairs
g ⊕ h uniformly compute elements of A (generalizing that g ⊕ h ∈ C(A)).

5 Autoreducibility

In computability theory, a set A is called autoreducible if A can compute the answers
to membership questions of the form ‘x ∈ A ?’ without using the bit A(x), that is, if
there is a code e such that for all x , {e}A−{x}(x) = A(x). For example, for every set
A one can easily see that A ⊕ A is autoreducible, since all information of the form
x ∈ A is doubly stored. This shows that every m-degree contains an autoreducible
set (Trakhtenbrot). A noncomputable Turing degree is completely autoreducible if
it contains only autoreducible sets. That there is a completely autoreducible Turing
degree was shown by Jockusch and Paterson [4] using the same method with which
one can build a minimal Turing degree. Now let us define in an analogous way
autoreducibility for Medvedev degrees.

Definition 5.1 A mass problem A is autoreducible if for every f ∈ A,
A − { f } ≤ A. A Medvedev degree is autoreducible if it contains an autore-
ducible mass problem and completely autoreducible if it contains only autoreducible
mass problems.

First we note that every Medvedev degree is autoreducible: Given any mass problem
A, A + A ≡ A and A + A is autoreducible. (Note the similarity to Trakhtenbrots
argument for sets quoted above.) Next we turn to completely autoreducible degrees.

Proposition 5.2 There exists a completely autoreducible Medvedev degree.

Proof Let A =
{

Xn : n ∈ ω
}

be a uniform sequence of sets of descending Turing
degree: Xn+1 <T Xn for every n and there exists a computable functional 8 such
that 8(Xn) = Xn+1 for every n. Such a sequence can be constructed by standard
methods (even in the c.e. degrees); cf. Odifreddi [11]. Now suppose that B ≡ A.
Then B is also autoreducible: Suppose that A ≤ B via 90 and B ≤ A via 91.
Suppose Y ∈ B. Suppose that 90(Y ) = Xn . Let 8(n) denote the nth iterate of 8.
Then for every X ∈ B, 91 ◦ 8(n)

◦ 90(X) ∈ B, and, moreover,

91 ◦ 8(n+1)
◦ 90(X) ≤T 8(n+1)

◦ 90(X)

≤T 8(n+1)(X0)

<T Xn

≤T Y
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for every X ∈ B. In particular, B − {Y } ≤ B via 91 ◦ 8(n+1)
◦ 90. �

We could also have defined a mass problem A to be autoreducible if { f } ≤ A − { f }

for every f ∈ A. (The reader may find that this definition more closely resembles the
one from computability theory.) Under this alternative definition the autoreducible
Medvedev degrees are precisely the degrees of solvability, that is, the ones containing
a mass problem of the form { f }.

Proposition 5.3 Under the new definition, A is autoreducible if and only if
A ≡ { f } for some f .

Proof Every degree of solvability is autoreducible because { f } + { f } is autore-
ducible. Conversely, if A is autoreducible then we claim that { f } ≡ A for some
f ∈ A. If A contains an isolated branch f (in the usual tree topology on ωω) then
this is easy to see. Suppose σ ∈ ω<ω is a finite string such that f is the only element
of A extending σ . Then { f } ≤ A by using the functional for { f } ≤ A − { f } for
elements that do not extend σ , and by using the identity otherwise.

Now suppose that A has no isolated branches. Then in particular A is uncount-
able. By autoreducibility for every f ∈ A there is a computable functional 8 f
such that { f } ≤ A − { f } via 8 f . Since A is uncountable, and since there are only
countably many computable functionals, there must be f , g ∈ A, f 6= g such that
8 f = 8g . We then have that { f } ≤ A − { f } via 8g and {g} ≤ A − {g} via 8g .
Let 9 be such that { f } ≤ { f, g} via 9. (9 exists since by autoreducibility f ≡T g.)
Then for all h ∈ A, 9 ◦ 8g(h) = f ; hence { f } ≤ A via 9 ◦ 8g . �

Since for noncomputable f , clearly { f } is not autoreducible, we see that under this
definition noncomputable completely autoreducible degrees do not exist.

Notes

1. There is an annoying notational conflict between the various papers in this area.
Sorbi [18] maintains the usual lattice theoretic notation with ∧ for meet and ∨ for join,
but, for example, Rogers [12] and Skvortsova [14] use ∧ and ∨ exactly the other way
round! The advantage of the latter choice will become clear below, namely, that ∧ and
∨ then nicely correspond with ‘and’ and ‘or’ in the propositional logic corresponding to
the lattice (see Section 3). To avoid headaches we have introduced separate notation for
the lattices (+ for join and × for meet) and the logic (the usual ∧ for ‘and’ and ∨ for
‘or’) here. This is in line with notation that is used in some textbooks on lattice theory,
cf. Balbes and Dwinger [1]. It has as an additional advantage that the join operator + in
M corresponds to the usual notation ⊕ for the join operator in the Turing degrees.

2. Medvedev [9] actually stated that the positive fragments of Th(M) and IPC coincide.
Jankov [3] proved that IPC + ¬α ∨ ¬¬α is the largest propositional calculus that is
conservative over IPC with respect to positive formulas. The theorem follows from these
results, since the weak law of the excluded middle holds in M. The result also follows
directly from the embedding result in Sorbi [18] that characterizes the finite Brouwer
algebras that are embeddable in M.



Medvedev Lattice 81

References

[1] Balbes, R., and P. Dwinger, Distributive Lattices, University of Missouri Press,
Columbia, 1974. Zbl 0321.06012. MR 0373985. 80

[2] Dyment, E. Z., “Certain properties of the Medvedev lattice,” Mathematics of the USSR
Sbornik, vol. 30 (1976), pp. 321–40. MR 0432433. 78

[3] Jankov, V. A., “Calculus of the weak law of the excluded middle,” Izvestiya
Akademii Nauk SSSR. Seriya Matematicheskaya, vol. 32 (1968), pp. 1044–51. In Rus-
sian. Zbl 0187.26306. MR 0237298. 76, 80

[4] Jockusch, C. G., Jr., and M. S. Paterson, “Completely autoreducible degrees,” Zeitschrift
für mathematische Logik und Grundlagen der Mathematik, vol. 22 (1976), pp. 571–75.
Zbl 0384.03026. MR 0441709. 79

[5] Kolmogoroff, A., “Zur Deutung der intuitionistischen Logik,” Mathematische
Zeitschrift, vol. 35 (1932), pp. 58–65. Zbl 0004.00201. MR 1545289. 73

[6] Lachlan, A. H., and R. Lebeuf, “Countable initial segments of the degrees of unsolv-
ability,” The Journal of Symbolic Logic, vol. 41 (1976), pp. 289–300. Zbl 0361.02054.
MR 0403937. 78

[7] Lerman, M., Degrees of Unsolvability. Local and Global Theory, Perspectives in Math-
ematical Logic, Springer-Verlag, Berlin, 1983. Zbl 0542.03023. MR 708718. 78

[8] Medvedev, Y. T., “Degrees of difficulty of the mass problem,” Doklady Akademii Nauk
SSSR, vol. 104 (1955), pp. 501–504. Zbl 0065.00301. MR 0073542. 74, 75

[9] Medvedev, Y. T., “Finite problems,” Doklady Akademii Nauk SSSR, vol. 142 (1962),
pp. 1015–1018. Zbl 0286.02028. MR 0133233. 76, 80

[10] Muchnik, A. A., “On strong and weak reducibility of algorithmic problems,” Sibirskiı̆
Matematicheskiı̆ Zhurnal, vol. 4 (1963), pp. 1328–41. In Russian. 75

[11] Odifreddi, P., Classical Recursion Theory. The Theory of Functions and Sets of Natural
Numbers, vol. 125 of Studies in Logic and the Foundations of Mathematics, North-
Holland Publishing Co., Amsterdam, 1989. Zbl 0744.03044. MR 982269. 79

[12] Rogers, H., Jr., Theory of Recursive Functions and Effective Computability, McGraw-
Hill Book Co., New York, 1967. Zbl 0183.01401. MR 0224462. 75, 80

[13] Shen, A., and N. Vereshchagin, “Logical operations and Kolmogorov complexity,” The-
oretical Computer Science, vol. 271 (2002), pp. 125–29. Electronic Colloquium on Com-
putational Complexity, report TR01-088, 2001. Zbl 0982.68079. MR 1872285. 73

[14] Skvortsova, E. Z., “A faithful interpretation of the intuitionistic propositional calculus by
means of an initial segment of the Medvedev lattice,” Sibirskiı̆ Matematicheskiı̆ Zhurnal,
vol. 29 (1988), pp. 133–39. In Russian. Zbl 0661.03003. MR 936795. 76, 77, 80

[15] Sorbi, A., “Some remarks on the algebraic structure of the Medvedev lattice,” The
Journal of Symbolic Logic, vol. 55 (1990), pp. 831–53. Zbl 0703.03022. MR 1056392.
75

[16] Sorbi, A., “Embedding Brouwer algebras in the Medvedev lattice,” Notre Dame Journal
of Formal Logic, vol. 32 (1991), pp. 266–75. Zbl 0737.06009. MR 1123000. 76, 77

http://www.emis.de/cgi-bin/MATH-item?0321.06012
http://www.ams.org/mathscinet-getitem?mr=0373985
http://www.ams.org/mathscinet-getitem?mr=0432433
http://www.emis.de/cgi-bin/MATH-item?0187.26306
http://www.ams.org/mathscinet-getitem?mr=0237298
http://www.emis.de/cgi-bin/MATH-item?0384.03026
http://www.ams.org/mathscinet-getitem?mr=0441709
http://www.emis.de/cgi-bin/MATH-item?0004.00201
http://www.ams.org/mathscinet-getitem?mr=1545289
http://www.emis.de/cgi-bin/MATH-item?0361.02054
http://www.ams.org/mathscinet-getitem?mr=0403937
http://www.emis.de/cgi-bin/MATH-item?0542.03023
http://www.ams.org/mathscinet-getitem?mr=708718
http://www.emis.de/cgi-bin/MATH-item?0065.00301
http://www.ams.org/mathscinet-getitem?mr=0073542
http://www.emis.de/cgi-bin/MATH-item?0286.02028
http://www.ams.org/mathscinet-getitem?mr=0133233
http://www.emis.de/cgi-bin/MATH-item?0744.03044
http://www.ams.org/mathscinet-getitem?mr=982269
http://www.emis.de/cgi-bin/MATH-item?0183.01401
http://www.ams.org/mathscinet-getitem?mr=0224462
http://www.emis.de/cgi-bin/MATH-item?0982.68079
http://www.ams.org/mathscinet-getitem?mr=1872285
http://www.emis.de/cgi-bin/MATH-item?0661.03003
http://www.ams.org/mathscinet-getitem?mr=936795
http://www.emis.de/cgi-bin/MATH-item?0703.03022
http://www.ams.org/mathscinet-getitem?mr=1056392
http://www.emis.de/cgi-bin/MATH-item?0737.06009
http://www.ams.org/mathscinet-getitem?mr=1123000


82 S. A. Terwijn

[17] Sorbi, A., “Some quotient lattices of the Medvedev lattice,” Zeitschrift für mathematis-
che Logik und Grundlagen der Mathematik, vol. 37 (1991), pp. 167–82. Zbl 0702.03021.
MR 1155135. 77

[18] Sorbi, A., “The Medvedev lattice of degrees of difficulty,” pp. 289–312 in Computability,
Enumerability, Unsolvability: Directions in Recursion Theory, edited by S. B. Cooper,
T. A. Slaman, and S. S. Wainer, vol. 224 of London Mathematical Society Lecture Notes,
Cambridge University Press, Cambridge, 1996. Zbl 0849.03033. MR 1395886. 75, 76,
77, 78, 80

[19] Terwijn, S. A., “The Medvedev lattice of computably closed sets,” Archive for Mathe-
matical Logic, vol. 45 (2006), pp. 179–90. 74

Acknowledgments

The author is supported by the Austrian Research Fund (Lise Meitner grant M699-N05).
We are grateful to Andrea Sorbi for providing us with several pointers to the literature
about the Medvedev lattice. We also thank Rosalie Iemhoff for helpful remarks concern-
ing intuitionistic logic. Finally, we would like to thank an anonymous referee for various
useful comments and a simplification of the proof of Theorem 4.5.

Institute of Discrete Mathematics and Geometry
Technical University of Vienna
Wiedner Hauptstrasse 8–10/E104
A-1040 Vienna
AUSTRIA
terwijn@logic.at
http://www.logic.at/people/terwijn

http://www.emis.de/cgi-bin/MATH-item?0702.03021
http://www.ams.org/mathscinet-getitem?mr=1155135
http://www.emis.de/cgi-bin/MATH-item?0849.03033
http://www.ams.org/mathscinet-getitem?mr=1395886 (97g:03048)
mailto:terwijn@logic.at
http://www.logic.at/people/terwijn

	1. Introduction
	2. The Medvedev Lattice
	3. Logic and Computation
	4. Irreducible Elements
	5. Autoreducibility
	Notes
	References
	Acknowledgments

