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Maximality and Refutability

Tom Skura

Abstract In this paper we study symmetric inference systems (that is, pairs

of inference systems) as refutation systems characterizing maximal logics with

certain properties. In particular, the method is applied to paraconsistent logics,

which are natural examples of such logics.

1 Introduction

The aim of this paper is to introduce the concept of a symmetric inference system

and to illustrate some of its applications that seem interesting.

A propositional logic T is usually characterized by an axiom system P or by

a semantic (or algebraic) system M or by both. The systems P and M are quite

different. P is on the propositional level, while M must be on a higher one. However,

it is possible to characterize T by two propositional inference systems: POS and

NEG. POS consists of a set POS0 ⊆ T and a rule POS1 generating T . And NEG

consists of a set NEG0 ⊆ −T and a rule NEG1 generating −T . Such a pair S of

inference systems will be called a symmetric inference system. We find this concept

attractive because of its economy and possible applications. For example, it provides

new proofs of old results concerning decidability and refined semantic completeness

(see Skura [10]).

Moreover, for any symmetric inference system S we can consider the class of

logics (or more generally, sets of formulas) T that are S-closed (that is, T is POS-

closed and −T is NEG-closed). Further, we can view a system S as a refutation

device generating the set RF (S) of S-refutable formulas (by using POS derivations

as well as NEG derivations). If RF (S) = −T then T is maximal in the class of

S-closed sets. This aspect of symmetric systems is described in Section 3, where we

give a couple of general theorems as well as a few concrete examples.
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In Section 4 we apply this method to paraconsistent logics, which are defined by

both positive conditions and negative ones and in which maximality is an important

property. We give an interesting example of a paraconsistent logic that is determined

by a symmetric system. Starting with certain simple conditions and employing our

method, we arrive at a unique maximal set with the desired property.

Finally, for any system S we give an abstract characterization of the class of max-

imal S-closed sets by syntactic refutability using the elegant format of sequent con-

sequence relations.

2 Symmetric Inference Systems

Let FOR be the set of all formulas generated from a set VAR = {p, q, r, . . .} of

propositional variables by standard connectives. Logics are subsets of FOR satis-

fying certain conditions. They may be positive (that some formulas are in T ), for

example,

1. p→ p ∈ T ,

2. B ∈ T whenever A, A→ B ∈ T .

And they may be negative (that some formulas are not in T ), for example,

1. p→ (¬p→ q) 6∈ T ,

2. A ∨ B 6∈ T whenever A, B 6∈ T .

Such properties can be described by rules, which are sets of inferences X/A, where

A ∈ FOR and X is a finite set of formulas. By an inference system we mean a pair

P = (P0,P1), where P1 is a rule and P0 ⊆ FOR. We say that a set T ⊆ FOR is P -

closed, if P0 ⊆ T and for every X/A ∈ P1, if X ⊆ T then A ∈ T . By a symmetric

inference system we shall mean a pair S = (POS,NEG) of inference systems. We

say that a set T ⊆ FOR is S-closed if T is POS-closed and the complement of T

(that is, the set −T = FOR − T ) is NEG-closed. And we say that a set T is a SYM

set, if T is S-closed for some symmetric inference system S.

Intuitively speaking, POS0 is a set of valid formulas (axioms), POS1 is a rule

generating new valid formulas, NEG0 is a set of invalid formulas, and NEG1 is a

refutation rule generating new invalid formulas.

Example 2.1 (Paraconsistent logics) Leaving the question of positive con-

ditions for these logics aside, we could say that they are S-closed sets with

NEG0 = {p→ (¬p→ q)} and NEG1 = ∅.

Example 2.2 (Intermediate logics) Here POS0 is the set I0 of the axioms for the

intuitionistic logic and POS1 is the set I1 of all inferences determined by the rules:

substitution and modus ponens. And NEG0 = −C, NEG1 = ∅, where C is the set

of all laws of Classical Logic.

Example 2.3 (Intermediate logics with the disjunction property) They are S-closed

sets with POS = (I0,I1) and NEG = (−C,D), where D = {A, B/A ∨ B :

A, B ∈ FOR}.

3 Maximal SYM Sets

For a given symmetric inference system S there are usually plenty of S-closed sets,

and we are often interested in maximal ones. Here we say that an S-closed set T

is maximal, if there is no S-closed set T ′ such that T is a proper subset of T ′. By
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Zorn’s lemma we know that such sets exist, although we do not know how to find

them. It is thus worth exploring methods for characterizing them. We are going

to present a method of generating maximal SYM sets by syntactic refutability. The

idea is to regard a symmetric inference system as a refutation device for refuting

formulas by derivations, and it is based on Łukasiewicz’s method of refutation rules

introduced in [6]. (For more recent information on the method see [10].)

Every inference system P determines a consequence relation ⊢P in a natural

way. We say that a formula A is P -derivable from a finite set X ⊆ FOR (in symbols

X ⊢P A), if there is a sequence A1, . . . , An of formulas such that An = A and each

Ai is in X ∪ P0 or is obtained from some preceding formulas by P1. We also write

⊢P A for ∅ ⊢P A. Note that such a relation ⊢ has the following properties.

1. A ⊢ A.

2. If X ⊢ A then X′ ⊢ A, where X ⊆ X′.

3. If X, A ⊢ B and X ⊢ A, then X ⊢ B .

Since both POS and NEG are inference systems, a symmetric inference system can

be used for generating both valid formulas and invalid ones. Of course, NEG deriva-

tions are refutations. But POS can also be used for refuting formulas, namely, if C is

refutable and B ⊢POS C , then so is B . More formally, for any symmetric inference

system S = (POS,NEG), we say that a formula A is S-refutable, if

∅ ⊢N (S) A

where N (S) = (NEG0,NEG1 ∪ NP ) and NP = {C/B : B ⊢POS C}. The set of

all S-refutable formulas will be denoted by the symbol RF (S), and its complement

FOR−RF (S) by F (S).

Proposition 3.1 If L is S-closed, then L ⊆ F (S).

Proof By induction on the length n of an N (S) derivation A1, . . . , An we show

that An 6∈ L.

(n = 1) Then A1 ∈ NEG0, so A1 6∈ L because NEG0 ⊆ −L.

(n ≥ 2)

Case 1 An is obtained from say A1 by NEG1. Also A1 6∈ L by the induction

hypothesis. Since −L is NEG1-closed, we get An 6∈ L.

Case 2 An is obtained from say A1 6∈ L by NP . Then An ⊢POS A1. Now L is

POS-closed, so if B ∈ L and B ⊢POS C then C ∈ L. Hence An 6∈ L. �

Corollary 3.2 Let T be an S-closed set such that F (S) ⊆ T . Then T = F (S)

and T is the greatest S-closed set.

Example 3.3 (Intuitionistic Logic—INT ) Does the disjunction property uniquely

characterize INT ? By Corollary 3.2, it suffices to prove that every A 6∈ INT is S-

refutable, where S is the system defined in Example 2.3 (which was, in fact, conjec-

tured by Łukasiewicz). However, this is impossible for there are intermediate logics

with the disjunction property that are proper extensions of INT (see, e.g., Gabbay

[5]). A property of this kind (called the generalized disjunction property) that does

characterize INT is given in Skura [8] where it is shown that INT is S
′-closed and
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every A 6∈ INT is S
′-refutable. The system S

′ results from S by replacing D by

GD =

{A→ A1, . . . , A→ An/A→ A1∨· · ·∨An : A = (A1 → B1)∧· · ·∧(An → Bn)}.

Let AX ⊆ FOR. By the axiomatic strengthening of POS by AX we mean the system

POSAX = (AX ∪POS0,POS1). We also define S
AX = (POSAX,NEG).

Proposition 3.4 Let T be an S
AX-closed set such that F (SAX) ⊆ T . Then T is a

maximal S-closed set.

Proof Suppose that T is S
AX-closed and F (SAX) ⊆ T , but T is not a maximal

S-closed set. Then there is an S-closed set T ′ such that T is a proper subset of T ′,

so there is a formula B ∈ T ′ − T . Since B 6∈ T , B 6∈ F (SAX). Now T is S
AX-

closed, so AX ⊆ T ⊆ T ′, and so T ′ is S
AX-closed. Hence T ′ ⊆ F (SAX) by

Proposition 3.1. Therefore B 6∈ T ′, which is a contradiction. �

Example 3.5 (Medvedev’s logic M of finite problems) Let S be the system defined

in Example 2.3, and let S
′ = ((I′0,I1),NEG) with

I′0 = I0 ∪ {(¬p→ q ∨ r)→ (¬p→ q) ∨ (¬p→ r)}.

It is known that M is S
′-closed, and it can be shown that F (S′) ⊆ M (see Skura

[9]). By Corollary 3.2, M = F (S′) and M is the greatest S
′-closed set. And by

Proposition 3.4, M is a maximal S-closed set.

It is an interesting question whether other maximal intemediate logics with the

disjunction property can be generated in this way.

Remark 3.6 Let us say that a system S is consistent, if for no formula A we have

both ⊢POS A and ⊢NEG A. Clearly, if S is consistent then there is an S-closed set

T (for example, the set {A :⊢POS A}). On the other hand, if T is S-closed and for

some formula A we have ⊢POS A and ⊢NEG A, then A ∈ T and A ∈ −T , which is

impossible. Therefore a system S is consistent if and only if there is a set T that is

S-closed.

Remark 3.7 The set RF (S) is NEG-closed for any system S. However, F (S) need

not be POS-closed. Indeed, let S be the system defined in Example 2.3. If F (S)

is POS-closed, then F (S) is an S-closed set, so (by Corollary 3.2) it is the greatest

S-closed set, which is impossible (see Chagrov and Zakharyashchev [1]).

Remark 3.8 It is natural to define S-provability as follows. A formula A is S-

provable, if ∅ ⊢POS A. By symmetry, one could also use refutations in S proofs

(just as proofs are used in S refutations). But I do not know whether this idea has

any interesting applications.

4 Paraconsistency

Paraconsistent logics are natural examples of SYM sets. They are defined by both

positive conditions and negative ones. Further, a paraconsistent logic should contain

as many classical theorems as possible (see da Costa [2]), which can be expressed

by means of maximality. In order to define S, let us reject the classical explosive

law E = p → (¬p → q), which we do not want. It is also natural to reject

all formulas that are not classical theorems. On the positive side there are various

possibilities. What do we want to have? It seems reasonable to adopt substitution and
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modus ponens together with the positive axioms for the intuitionistic logic as well

as the formula N = (p → q)→ (¬q → ¬p). This guarantees the replacement of

equivalent formulas by the law (A ≡ B)→ (. . . A . . . ≡ . . . B . . .).

More precisely, we assume that FOR is the set of formulas generated from VAR

by the connectives ∧,∨,→,¬. And our system S = (POS,NEG), where

NEG0 = {p→ (¬p→ q)} ∪ (−C) NEG1 = ∅

POS0 = {p→ (q → p), (p→ (q → r))→ ((p→ q)→ (p→ r)),

p ∧ q → p, p ∧ q → q, p→ (q → p ∧ q),

p→ p ∨ q, q → p ∨ q, (p→ r)→((q → r)→(p ∨ q → r)),

(p→ q)→ (¬q → ¬p)}

POS1 = {A/s(A) : A ∈ FOR, s is a substitution}∪

{A, A→ B/B : A, B ∈ FOR}.

For any A, B ∈ FOR we say that A is equivalent to B if ⊢POS A ≡ B . (Here

A ≡ B = (A → B) ∧ (B → A).) If X = {A1, . . . , An} with each Ai ∈ FOR, we

write X→ A instead of A1→ (A2→ · · · → (An → A) . . .). Note that X→ A is

equivalent to
∧

X→ A, where
∧

X = A1 ∧ · · · ∧ An .

How many maximal S-closed sets are there? Only one! The system S deter-

mines a unique maximal S-closed set, namely, F (S). We are going to show that

F (S) = CPC, where CPC = C ∩ PC and PC is the set of formulas valid in the

algebra 2
′ resulting from the 2-element Boolean algebra 2 = ({0, 1},∧,∨,→,¬)

by replacing ¬ with the operation − defined thus: −0 = −1 = 1. More formally,

A ∈ PC if v(A) = 1 for every valuation v assigning either 0 or 1 to each propo-

sitional variable and extended for all the formulas by using the 2
′ operations in the

familiar way. (v(¬B) = −vB and so on.)

Theorem 4.1 CPC = F (S) and CPC is the greatest S-closed set.

Proof (1) We first observe that both C and PC are POS-closed. (We remark that

if X ⊢POS A and X ⊆ PC, then A ∈ PC.) Moreover, if vp = 1, vq = 0, then

vE = 0, and so E 6∈ CPC. Also −C ⊆ −CPC. Hence CPC is S-closed, so by

Proposition 3.1, CPC ⊆ F (S).

(2) In order to show that F (S) ⊆ CPC, we introduce a technique that is quite gen-

eral and useful in syntactic procedures. (The technique was known to Wajsberg [11].)

For any formula A we construct a normal form A′ as follows. First of all, with

every compound subformula B of A we associate a new propositional variable pB

and we put pa = a for every variable a occurring in A. Then we define the following

set of formulas.

ŴA = {(¬pB) ≡ p¬B : ¬B is a subformula of A}∪

{(pB ⊗ pC) ≡ pB⊗C : B ⊗ C is a subformula of A,⊗ ∈ {∧,∨,→}}.

Finally, we define A′ = ŴA → pA. It is not difficult to prove that

1. A′ ⊢POS A (Substitute B for pB .)

2. ⊢POS A→ A′ (By using replacement show that ⊢POS ŴA → (B ≡ pB)

for every subformula B of A.)

Let us now assume that A 6∈ CPC. Then A 6∈ C or A 6∈ PC. If A 6∈ C, A is

S-refutable, so A 6∈ F (S), and so we may assume that A 6∈ PC. Then A′ 6∈ PC,

so there is a valuation v such that v(A′) = 0. Hence v(pA) = 0 and vF = 1 for

every F ∈ ŴA , so that −v(pB) = v(p¬B) and so on. Let s be a substitution such
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that sa = q if va = 0 and sa = ⊤ = p → p otherwise (a ∈ VAR). Note that

the ¬-free formulas in s(ŴA) (like (⊤ → q) ≡ q) are equivalent to ⊤. Thus we

may concentrate on the formulas of the kind s(¬pB ≡ p¬B). Now v(p¬B) = 1

(because−v(pB) = 1), so s(p¬B) = ⊤, and so each of these formulas is equivalent

to ¬s(pB), where s(pB) is either ⊤ or q . Therefore s(A′) is equivalent to G → q ,

where G = ¬a1 ∧ · · · ∧¬an with each ai ∈ {⊤, q}. By using N and p→ (q → p),

one easily shows that ⊢POS (p ∧ ¬p) → ¬r . Hence ⊢POS (p ∧ ¬p) → G, so

⊢POS s(A′) → E , and so A ⊢POS E . This means that A is S-refutable, so that

A 6∈ F (S), as required.

(3) Since CPC is an S-closed set such that F (S) ⊆ CPC, we obtain the result by

Corollary 3.2. �

The logic CPC is known in the literature and it is known to be maximal (see da Costa

and Béziau [3] and Nowak [7]). But the fact that it is the greatest S-closed set seems

new. The simple conditions defining S are quite natural, so the fact that CPC is the

unique maximal S-closed set provides a natural justification for CPC.

5 Maximality and Refutability

It is possible to give a general characterization of maximal SYM sets by syntactic

refutability. Because of its generality, the characterization will be an abstract one.

As axioms we take all formulas in a set T . What is more, we transform a symmetric

inference system S into one abstract rule by using sequents. Here by a sequent we

mean a pair X/Y, where X,Y are finite sets of formulas. And by a sequent rule

we mean a set 6 of sequents. We say that a set T ⊆ FOR is 6-closed, if for every

X/Y ∈ 6 we have Y ∩ T 6= ∅ whenever X ⊆ T . For any symmetric inference

system S = (POS,NEG) we define the sequent rule

6(S) = {∅/A : A ∈ POS0} ∪POS1∪

{A/∅ : A ∈ NEG0} ∪ {A/X : X/A ∈ NEG1}.

And if AX ⊆ FOR, we define 6AX = 6(SAX) (= 6(S) ∪ {∅/A : A ∈ AX}).

Every sequent rule 6 determines a sequent consequence relation ⊢6 between

finite sets of formulas defined as follows. X ⊢6 Y if there is a finite sequence

α1, . . . , αn of sequents such that αn = X/Y and each αi is in 6 or is obtained from

preceding sequents by one of the following metarules.

(refl) ∅

X/X
where X 6= ∅

(mon)
X/Y

X′/Y′
where X ⊆ X′, Y ⊆ Y′

(cut)
X, A/Y X/A,Y

X/Y

For any sets T ,U ⊆ FOR we say T ⊢6 U, if there are finite sets X ⊆ T , Y ⊆ U

such that X ⊢6 Y.

Let A ∈ FOR. We say that A is 6-refutable (in symbols, A ∈ RF (6)), if

A ⊢6 ∅.

Theorem 5.1 An S-closed set T is maximal if and only if every A 6∈ T is 6T -

refutable.
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Proof (←) First we prove that

(∗) If L is S-closed, then L ⊆ F (6) = FOR−RF (6), where 6 = 6(S).

Indeed, let α1, . . . , αn (where αi = Xi/Yi ) be a 6 derivation. By induction on n we

show that if Xn ⊆ L then Yn ∩L 6= ∅. (Then B 6∈ L whenever B ⊢6 ∅.)

(n = 1) Then α1 ∈ 6 (or it is obtained by refl), and this is true because L is

6-closed.

(n ≥ 2) We only consider the case where αn = X/Y is obtained by cut from

X, B/Y and X/B,Y. Assume X ⊆ L. By the induction hypothesis Y′ ∩L 6= ∅,

where Y′ = {B} ∪Y, so B ∈ L or Y∩L 6= ∅. If B ∈ L then X∪ {B} ⊆ L, so (by

the induction hypothesis) Y ∩L 6= ∅, which gives (∗).

Finally, suppose that T is S-closed and F (6T ) ⊆ T , but T is not a maximal S-

closed set. Then there is an S-closed set T ′ ⊃ T , and so some formula B ∈ T ′−T .

Thus B 6∈ F (6T ). Since T ′ is S
T -closed, T ′ ⊆ F (6T ) by (∗). Hence B 6∈ T ′.

This is a contradiction.

(→) Let us suppose that T is a maximal S-closed set but some A 6∈ T is not

6T -refutable. Then A 6⊢6T ∅, so T , A 6⊢6T ∅.

It can be shown that there is a set T ′ such that T ∪ {A} ⊆ T ′ and T ′ 6⊢6T U,

where U = FOR − T ′. To this end enumerate all formulas A1, A2, . . . and define

a sequence (T0,U0), (T1,U1), . . . of pairs of sets of formulas in such a way that

T0 = T ∪{A},U0 = ∅ and Tn+1 = Tn ∪{An},Un+1 = Un if Tn, An 6⊢6T Un and

Tn+1 = Tn,Un+1 =Un∪{An} otherwise. Then check that the set T ′ = T0∪T1∪· · ·

has the required property (for more details see [5], p. 11).

It follows that T ′ is S-closed. Indeed, suppose that X/Y ∈ 6(S) and X ⊆ T ′,

but Y ∩ T ′ = ∅. Then X ⊢6T Y and Y ⊆ U, so T ′ ⊢6T U, which is impossible.

Therefore T ′ is an S-closed set such that T ⊂ T ′, which contradicts the assumption

that T is maximal. �
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