
243

Notre Dame Journal of Formal Logic
Volume 35, Number 2, Spring 1994

Incremental Semantics for Propositional Texts

C. F. M. VERMEULEN

Abstract In this paper we are concerned with the special requirements that
a semantics of texts should meet. It is argued that a semantics of texts should
be incremental and should satisfy the break in principle. We develop a seman-
tics for propositional texts that satisfies these constraints. We will see that our
requirements do not only apply to the semantics but also have consequences
for the syntax. The interaction between text structure and text meaning will
turn out to be of crucial importance to the semantics of texts. We develop
two versions of the semantics: one representational, one in update style.

1 Introduction Traditionally in formal semantics the attention has been
focussed on the interpretation of sentences. But since it was argued, by Kamp
[4] and Heim [3] for example, that the semantics of texts requires more than a
straightforward extension of the techniques developed for sentences, text seman-
tics has become a separate topic of research. It is now quite generally recognised
that special tools have to be developed for the analysis of typically text level phe-
nomena such as anaphora.

The tools that have been developed for the semantics of texts also have been
put to use in the analysis of sentences. For example in Kamp's Discourse Rep-
resentation Theory and Heim's File Change Semantics it is argued that anaphors
that find their antecedent within the sentence can best be treated in the same way
as anaphors that find their antecedent in another sentence in the text. The so-
called donkey sentence is a good example of a situation where this approach pays
off:

If a farmer owns a donkey, he beats it.

In the approaches mentioned above, this sentence obtains the required interpre-
tation in a natural way, while this is quite hard in traditional sentential seman-
tics. So the semantics of texts has led to the development of new techniques which
have proved useful for the study of old problems in sentential semantics.

In this paper we are concerned with the consequences of this shift of atten-
tion for the requirements on the formal methods that are used. In sentence
semantics the all important methodological constraint is compositionality. But

Received May 5, 1993; revised October 7, 1993

244 C. F. M. VERMEULEN

it seems that the compositionality principle, as it stands, is not appropriate for
the semantics of texts. Instead we propose other constraints: incrementality, pure
compositionality, and the break in principle. We will develop a semantics for
propositional texts that satisfies these three principles. Hence our semantics
will illustrate the way in which these principles work for a simple, propositional
language.

The incrementality principle is inspired by the observation that we can inter-
pret texts as we hear them. If we want to understand a text, we do not have to
wait for the text to be completed before we can start our interpretation. We can
simply start as soon as we hear the first word and then we build up our inter-
pretation step by step. It is also clear that for large texts this is the only possi-
ble procedure. We cannot first read a large text, a book say, and only after that
start to interpret it. Of course, we do not always choose to work strictly incre-
mentally—sometimes it might be convenient to wait a bit, for example until the
end of the sentence—but this waiting cannot be extended indefinitely. And any-
way, it should never be necessary. Although it might be convenient to wait some-
times, in principle the text should allow us to interpret it without delay.

This is the way we want to look at our observation concerning incremental-
ity. It simply is not true that we always do interpret texts incrementally. There
are numerous occasions on which we chose to read a text not simply from begin-
ning to end, but in some other order. (Note that it is harder to imagine a non-
incremental treatment of a spoken text.) Perhaps this is exactly what the reader
has done with this text. But all the time we rely on the fact that a text allows for
an incremental interpretation. And this will also be our constraint on the formal-
ism: we do not demand that everything is done incrementally, but merely that
everything can be done incrementally.

Note that here we are talking about the text level. We do not want to claim
here that everything that happens in the semantics of natural language has to be
accounted for incrementally. It is not excluded that some micro level phenom-
ena behave differently. Intuitions about incrementality typically apply to the
macro level and this is also the level for which text semantics is designed.

The incrementality constraint gives rise to an important difference with sen-
tence semantics. In sentence semantics we allow ourselves to use information
about the structure of the sentence in its interpretation. When we start interpret-
ing a sentence, we assume that its structure is known. Then we can let the struc-
ture tell us how the meanings of the sentence parts have to be glued together to
form the meaning of the sentence. This is how the compositionality principle
works in traditional sentence semantics. But in the current, incremental set up
we cannot use this method. For we want to do justice to the observation that we
can interpret a text as we hear it. Thereby we cannot let some kind of structural
analysis precede the interpretation process. Instead it seems that the analysis of
meaning and structure have to be performed at the same time. Therefore the
compositionality principle is, in its usual form, not appropriate for text
semantics.

Instead we will use a more modest form of compositionality than we are used
to in sentence semantics. Of course the meaning of the text as a whole is com-
posed from the meanings of the parts of the text: we do not want foreign ele-
ments to influence the interpretation of a text. But we cannot assume that

INCREMENTAL SEMANTICS 245

information about the structure of the text will tell us how the parts have to be
put together. The structure of the text has to be discovered at the same time as
the meaning of the text. Our modest form of the compositionality will be called
pure compositionality: it simply states that the meaning of a text depends on
nothing but the meaning of its parts.

The last constraint that we impose on text semantics is the break in princi-
ple. We have argued that it is always possible to interpret a text, even if it is clear
that the text is as yet incomplete and that more is to follow. But then it is inev-
itable that also our interpretations will have this property: they are incomplete
or partial in this sense. We do not mean that there will be room for doubt about
the meaning of such an incomplete text. What we mean is that the interpreta-
tion of a text will allow for combination with material from other parts of the
text, the parts that are to follow.

If we follow this line of reasoning a little further, we see that it is not only
natural to require that we be able to interpret unfinished texts, but also other
kinds of incomplete texts. In fact we want to be able to interpret all continuous
parts, or segments\ of texts. It seems that not only if we have not yet heard the
last part of a text, but also if we have not heard the first part of a text, we are
able to understand exactly what is being said. Of course we may have missed
some important clues in such a situation. So our understanding of what is being
said can again in general only be partial. But this partiality is in the result of the
interpretation only. We can interpret everything that is being said completely,
yet the information that we get out of such a text fragment is only partial: the
information becomes complete in combination with other, previous, partial inter-
pretations. This seems to be what happens when you listen in on a conversation,
in a train, for example: you can understand everything that is being said, even
though you may have missed the beginning of the story. This leads to the for-
mulation of the break in principle that guarantees that wherever we break in in
a text, we will always be able to understand what is being said. In other words
the break in principle says that every segment of a text should be interpretable.
From what has been said it should be clear that the break in principle can only
hold if we have in the semantics objects that are, in some sense, partial meanings.

This principle has serious consequences in the presence of the composition-
ality principle. According to the break in principle, anything is a meaningful part
of a text. Hence a text can be decomposed in many different ways and it seems
reasonable to assume that each of these decompositions should allow us to com-
pute the meaning of the text. It is also desirable that different decompositions
lead to the same result, as long as we are not considering texts that are ambig-
uous. Thereby the three principles together demand that text meanings form an
associative algebra: we want the meaning of the whole to be composed uniformly
from the meanings of the parts and each decomposition into parts should give
the same result. In particular an incremental decomposition has to be available.
So the situation is as follows:

Pure Compositionality: The meaning of a text can be computed (uniformly)
from the meaning of its parts.

Incrementality: The meaning of a text can be computed by a process of inter-
pretation that strictly follows the order of presentation.

246 C. F. M. VERMEULEN

Break in principle: Any segment of a text can be interpreted. (In general its
meaning will be partial.)

Together these requirements amount to:

Associativity: Text meanings form an algebra with an associative operation
(which we will call the merger) by which the meanings can be glued together.

We see that the general story for text semantics is quite different from what we
are used to in sentential semantics. In sentential semantics we allow ourselves to
use information about the structure of the sentence and we can postpone our
interpretation process until all the structural information is available. We can-
not afford to treat the structure of texts in the same way: we have to be able to
interpret a text as we hear it.

The semantics we give in this paper incorporates the three principles: we give
a compositional, incremental semantics of texts that satisfies the break in prin-
ciple. The texts that we study are very simple: they are built up from proposi-
tional variables, the atomic texts. The only kind of text structure that we consider
is the kind we find in reasonings. This kind of structure is usually indicated by
phrases such as 'suppose that', 'assume for the moment', 'hence', 'so', etc. It also
occurs at sentence level, typically in 'if . . . then' sentences.

In general it can be quite difficult to detect the structure of a text: often it
is only indicated vaguely or implicitly. Then it can be quite hard to determine
what is going on. But the problem of the detection of text structure does not con-
cern us here. We will focus on the interpretation of text structure. At this point
it may not be entirely clear to the reader what interpretation of structure is sup-
posed to mean. But this will become clear later on when we see in practice how
structure and meaning interact in our set up.

Since we are not trying to deal with the detection of (implicit) structural clues
here, we might as well assume that all clues are given explicitly. In our formal
language if, then and end are used for this purpose. The intended interpretation
of a text of the form ifφ then ψ end is the implication (φ -• ψ). (Note that we
only consider texts in which the assumptions are given before their conclusions.)
The formal language that we will work with is defined as follows.

Definition 1.1 Let a vocabulary of atomic texts A be given. We define the
texts over A, TextA, as follows:

//, then, end G TextΛ

± G TextΛ

pGA=*pe TextA

φ G TextA and ψ G TextA => φψ G TextA.

As one can see, we treat //, then and end simply as basic texts —even though we
plan to use them as structural indicators—and there are no structural restrictions
on texts: they are simply built up by concatenation. Sometimes the concatena-
tion of texts can be pronounced as 'and'.

This way we can get funny texts that have no sensible interpretation. This
agrees with the view on text structure that we developed above: the structure of
a text has to be analysed at the same time as its meaning. We cannot assume
beforehand that the texts that we have to analyse are well formed. If the text is

INCREMENTAL SEMANTICS 247

not well formed, then we will have to find this out as we proceed. Maybe it is
good to recall that an atomic text such as // does not only stand for the word
'if, but also for a phrase such as 'let's assume the following'. So an expression
such as ifp, which at first sight seems highly ungrammatical, can correspond to
a quite sensible text such as Let's assume that p holds.

Proofs are a good example of texts that have this kind of structure. They typ-
ically consist of a network of assumptions and conclusions of a kind that is very
similar to the structure of the texts of TextA. Therefore, one of the things that
we would like to do is to present a deduction system in which proofs are con-
sidered as a special kind of text, texts of which the construction satisfies a num-
ber of additional syntactic constraints.1 We will not develop such a deduction
system in this paper, but we intend to present it in another paper.

In the end we would also like to have a sentence level semantics that satis-
fies the incrementality constraint and the break in principle. We already explained
above that it is not automatically clear that this can be done. But then we can
just try and see which phenomena exactly resist an incremental treatment. We
will not attempt anything like that here, nor do we pretend that it is clear how
we could extend the approach in that direction. It seems that in sentences many
phenomena occur that do not have a counterpart at the level of texts. (Some
problems are discussed in Visser [7], who considers a very limited fragment.) But
at the same time it is clear that some phenomena in sentences simply are special
cases of text phenomena. Here we think of donkey anaphors, for example, but
also of 'if . . . then' constructions, which seem to be nothing but an internalisa-
tion of the kind of text structure that is the topic of this paper.

2 Texts as sequences In this section we present our first attempt at an incre-
mental semantics for TextΛ. The final version will be presented in the next sec-
tion. This first attempt serves to illustrate one important feature of our approach.
It can be seen as a solution to one important problem that arises in incremen-
tal semantics: non-associativity. It was pointed out above that an incremental
semantics satisfying the break in principle will always be associative. So non-
associative features of texts are problematic. In TextA an 'if . . . then' con-
struction intuitively causes non-associativity. For the interpretation of a simple
concatenation of basic texts/? E A, we do not have to worry about non-associa-
tivity: (pq)r andp(qr) give the same information. So any bracketing of such
simple texts will do. But if the special elements //, then and end occur in a text,
then we have to be more careful.

Consider, for example, the text p if q then r end. This text gives the infor-
mation that p and also that if q then r end. This suggests that we have to inter-
pret if q then r end first as one component of the text before we can add it to
our interpretation of p. This corresponds to a bracketing/? (if q then r end). But
we have to allow for an incremental interpretation of this text. So it seems that
we will only be able to handle the bracketing (((((/? //) q) then) r) end). The solu-
tion that we give for this problem in this section will work in general when an
incremental treatment of such non-associative phenomena is needed. The solu-
tion can be summarised by one word: memory. In our semantics we will allow
ourselves to have more than one slot where information can be stored. We will

248 C. F. M. VERMEULEN

not only have a slot for our current state of information, but we will also have
slots for some specific information states that we used to be in. So we remem-
ber our information history.

Now, when we have to interpret p if q then r end, we can first interpret p.
We store the information that/7 in our memory before we interpret q. This infor-
mation is again stored before we interpret r. Now we can construct from the
information that we have stored the information that // q then r. Finally this
information can be added to the information that p. Note that we do not need
brackets to tell us how we have to store the information: the special elements if
then and end will tell us exactly what has to be done.

This story can be formalised as follows. In the semantics we will always
assume that some Heyting algebra (HA for short) I is given to provide the basic
information items. Recall that Heyting algebras are defined as follows.

Definition 2.1

1. A lattice is a structure L = (L, A , v), such that the binary operations Λ and
v satisfy the following conditions:

(a A b) A c = a A (b A C) (associativity of Λ)
(a v b) v c = a v (b v c) (associativity of v)
a A b = b A a (commutativity of Λ)
a v b = bv a (commutativity of v)
a A a = a (idempotency of Λ)
a v a = a (idempotency of v)
a A (αv b) = a (first absorption law)
a v (a A b) = a (second absorption law)

In a lattice L we can define an ordering by:

2. A Heyting algebra is a structure I = (/ ,Λ,V,±,-») , such that (/,Λ,V) is
a lattice, _L is the least element of / and -> is a binary operation such that:

Note that each Heyting algebra has a top element, (J. -• ±), which we will call T.
There is nothing deep behind our choice of HAs as information algebras. We
have chosen HAs because we do not want to worry here about the definitions
of the conjunction and implication of information states. Thus working in a HA
allows us to concentrate on the other problems for our semantics and this is in
fact all that we want from them. Therefore any other structure with well defined
operations of conjunction and implication can serve equally well as I. One inter-
esting example of a suitable information algebra I that is not a HA is the alge-
bra of DRS meanings as define^ in Zeevat [10], another is the algebra of relations
that Groenendijk and Stokhof [2] use.

We call the elements of I information states. An information history is a
finite, non-empty sequence of information states. We define the interpretation
of texts φ, [φ], as a partial function on information histories. It is assumed that
for each atomic text/? G A an information state ιp is given: ιp is the information

INCREMENTAL SEMANTICS 249

that p. (We will use postfix notation for function application and we will adapt
the notation for function composition accordingly.)

Definition 2.2 We define for each φ the update function [φ] as follows. Let
an information history σ = (σu... ,σn)(n > 1) be given by:

σ[_L] = (σi,. . .,σn-UσnΛ _L)
σ[p] = (σu.. .9σn-Ϊ9σnΛip)
σ[if] = (σ i , . . . ,σ Λ _i ,σ Λ ,T)
σ[then] = (σu . . . ,σΛ_i,σΛ,T)

(a l 5 . . .,σ r t_2Λ (σΛ_! -> σn))

Furthermore we define truth as follows:

For i G l w e define(t) 1= φ iff (L) [φ] = (L). We say that φ is true in t.
We write 1= φ iff (T) 1= φ. We say that φ is true (in I).

A good example of an information algebra I that the reader can keep in mind
in what is to follow can be found, for example, in Veltman [6]'s update seman-
tics. He uses an information algebra that is defined as follows:

Definition 2.3 Let a vocabulary A of atomic expressions be given. Let W =
ψ(A). w e Wis called a possible world (or possibility). Let I = <ρ(W). I is the
information algebra (over A), ordered by c . The elements σ GI are called infor-
mation states.

Here the w G W are called possible worlds because each subset w <Ξ A corre-
sponds to a way the world might be: the atomic propositions, or possible facts,
in w might be exactly the things that are true, while all other atomic propositions
are false. In information state σ we know that one of the w E σ is the real world,
but we do not know exactly which one. It is clear that I is a Heyting algebra since
I = φ(W) is an (atomic) Boolean algebra. So Definition 2.2 applies. The canon-
ical choice for ιp (p G A) is: ιp = ΐ ({/?}) = {w: {p} c w]. Definition 2.2 gives
us the right result for texts like/? if q then r end: it is easy to check that now:

(J)[p if q then rend] = (LPΛ (ιq-+ιr)).

And, since function composition is associative, the semantics clearly is incremen-
tal and associative, as required. But the semantics is not satisfactory in every
respect: the structural contribution of the special elements //, then and end is
not represented in the best possible way. We see, for example, that in our seman-
tics // and then get the same meaning: [//] = [then]. Thereby also [if p then
q end] — [thenpifq end]. This implies that for our semantics the texts ifp then
q end and then p if q end are equally acceptable, which intuitively, of course,
they are not. So our semantics cannot distinguish a coherent from an incoher-
ent text. This would imply that we have to determine in advance whether or a
text is coherent or not. Which brings us back to the treatment of text structure:
if we had a grammar of texts that would simply rule out then p if q end as
ungrammatical, no problems would arise. But we have already explained that this
is not the way things should be done in text semantics. Even if we have a text
grammar that rules out then pifq end as ungrammatical, we still want to find

250 C. F. M. VERMEULEN

out during the interpretation that the expression is illegal according to this gram-
mar. We need a situation in which un-wellformedness is indicated in the seman-
tics by some kind of failure or error behaviour.

At this point the only kind of semantic failure that occurs is partiality: some
expressions generate partial functions. This indicates that the text is left incom-
plete', i.e., we need some preceding material to be able to make sense of the text.
For example end will only be defined on information histories of length greater
than two, indicating that it should be preceded by two expressions that gener-
ate locations in memory. (In fact all partiality in the semantics of definition 2.2
originate from the partiality of end.) But unfortunately end is not able to dis-
tinguish //-locations from /Ae/z-locations. Therefore the partiality in the seman-
tics cannot rule out then p if q end.

Here we see in a concrete example how the interplay between syntax and
semantics is a crucial topic in incremental semantics. We have introduced the
incrementality requirement on the semantics of texts, since we feel that we can
interpret texts as we hear them. But if we are only able to interpret well formed
texts, then we also have to be able to decide about the well formedness of a text
as we hear it.

In what follows we will usually concentrate on the meaning of texts, but in
fact ever more refined incremental well formedness test will become implicitly
available in our machinery as we proceed.

3 Texts as trees In this section we attack the problem that we discovered for
the semantics with information histories. We saw that we cannot see in the
semantics whether a text is well formed or not. The reason for this is that the dif-
ferent locations in the information histories do not show why they were created:
were they created by // in order to store an assumption or were they created by
then in order to store a conclusion? Once we can answer this question we are
done.

Therefore we want to be able to distinguish the if places from the then places
in our information histories. In order to do that we simply add structure to the
information histories: instead of using sequences to represent our memory, we
will use binary trees. We will use the left branches in the trees to (temporarily)
store the antecedents of implications and the right branches will be used for the
conclusions. The [end] command will tell us that the implication is complete.
Clearly this way the // information can be distinguished from the then informa-
tion by its position in the structure. This will enable us to decide in the seman-
tics whether a text is well-formed or not. We call this idea, that the information
that we find in texts is structured in a tree-like configuration, the texts as trees
perspective.

Note that after end we can actually construct the implication in the Heyting
algebra, and we no longer need the tree structure. As a consequence not all binary
trees have to occur in the semantics. We can restrict ourselves to trees of the fol-
lowing kind.

Definition 3.1 Let a Heyting algebra I be given. We define the update trees
over I, ί/i, as follows:

INCREMENTAL SEMANTICS 251

t e I, =* ω e ih\
t E l a n d σ E t/If => (ι,σ) E ί/i;
i G I, ι' G I, σ G Uτ => (t,(ι'),σ) G t/Iβ

Maybe one does not immediately recognise these objects as binary trees. They
can be read as follows: the general format is (ι, (ι'), σ) where σ is itself an update
tree. The first component contains the information so far, ι. We think of it as
a flag at the root of the tree. The second component, (L')9 contains the material
that we have assumed. It is stored in the left branch of the tree. The third com-
ponent, the right branch, is used for the conclusion. If one of the components
is not in use, we do not write it down. Instead we could have chosen to fill the
places that are not in use with a dummy tree, but we prefer not to introduce a
foreign element into the picture. As it is the tree consists of elements of the Heyt-
ing algebra only.2 So we simply have (t) if we are not processing an implication
at the moment, and we have (t,σ) if we are building up the antecedent of an
implication. All components are filled, (ι,(ι'),σ), if we have arrived at the con-
clusion of the implication. Since we always compute the effect of an implication
as soon as we can (see the definition of [end] below); at most one of the three
components—the rightmost—is not an element of I. So we can keep the follow-
ing pictures in mind.

a tree of / a tree of />, a tree of
the form A the form ι A t h e f o r m

(0

Each time the simplest example of such a configuration arises when σ is of the
form (ι"). Before we define the interpretation of our texts on these update trees,
we introduce the notion of the final segment of a tree. This notion will be of use
in the definition of the update semantics. The fact that we can distinguish the
final segment in a tree from the other parts shows that the structure of the trees
as we have defined them can be interpreted 'historically': from a tree we recon-
struct its construction process. We can tell which parts were built first and which
parts later.

Definition 3.2 We define for each tree r its final segment, segf(τ), as
follows:

) = (0;

segf((ι9σ)) =segf(σ) if σΦ (O;
segf((ι9(*>'),σ)) = segf(σ) if σΦ (t").

We will write σ{p} for σ to emphasise that segf{σ) = p and σ{p'/ρ] for the tree
that results from replacing p, the final segment of σ, by p' in σ. If it is clear from
the context what p is, we simply write o{p'\. This notation is analogous to the
notation φ(x) in predicate logic to indicate the free variable x in φ and the nota-
tion φ(a) for φ with x substituted by a? We can now define the incremental

252 C. F. M. VERMEULEN

semantics of our propositional texts: with each proposition φ we associate a par-
tial function on update trees, [φ], as follows.

Definition 3.3 Let σ E U\ be given. The following clauses define the update
functions [φ] for φ G TextA:

σ t f ω ϊ U] =σ{(ι~

Λ (ι' -> 0)};
σ[φψ] =(σ[φ])[ψ].

In these clauses the update functions are defined for certain configurations of
the final segment of σ. If the final segment of σ does not have this configuration,
the function is undefined. As before, we can define truth as follows:

For t e l w e define (t) N φ iff (ι) [φ] = (t). We say that φ is true in ι. We
write 1= φ iff (T) 1= φ. We say that φ is true (in I).

Note that for [±], [p] and [//] we do not need the entire final segment: only
the very latest information state in the configuration, t, is required. In [then]
and [end] we see how the structure of the final segment matters in the updat-
ing process: if the final segment has the wrong shape the update functions are
undefined. In the following example we see how the updating process works.

Example 3.4

(T) [if p then q end] =
(τ,(τ))[/7 then q end] =
(T,UP))[thenqend] =
(T,UP),(T))[qend] =
(T,(ι>P)ΛT Λig))[end] =

We give pictures for two of the stages in the process.

T, T

(T)[ifp] (T) [if pύxmg]

INCREMENTAL SEMANTICS 253

Now we can introduce the following notions of well formedness for texts.

1. [φ] is grammatical if [φ] is a total function and (T) [φ] = (ι) for some
iGl.

2. [φ] is right incomplete (but left complete) if [φ] is a total function and
φ] Φ(ι).

3. [φ] is left incomplete (and possibly right incomplete) if [φ] is a partial
function but [φ] Φ 0 .

4. [φ] is incoherent if [φ] = 0 .

5. The texts that are not incoherent are called coherent.

Here we use grammatical for well formed in the strict sense. In the loose sense
all coherent expressions are well formed: they can occur as a segment of a gram-
matical text. For example, in our terminology if p then q is coherent —it falls
under case 2 —and if p then q end is grammatical, then p if q end is an exam-
ple of an incoherent text. Note that, for now, among the left incomplete texts
we cannot distinguish the right complete from the right incomplete texts: both
then q end and then q fall under case 3.

At this point we have an incremental semantics for our propositional texts
that can distinguish // from then. This means that structural deficiencies of a text
of TextΛ can be detected as we are interpreting it. The methodological con-
straints are also satisfied: for any text segment we can compute its meaning as
an update function. Since composition of (partial) functions is an associative
operation, associativity is satisfied.

This means that we have done our job. But we have done it in a special way:
using update functions as meanings. In the remaining part of the paper, we will
see whether it is necessary to use an update formulation of the semantics.

4 Trees as an update algebra

4.1 Update algebras So far we have given the semantics of texts in terms
of update functions. For some purposes the meaning as update view is mislead-
ing. Sometimes we do not only want to see the effect of a sentence meaning: we
also want to look into the meaning of a sentence. In Visser [8] we find the notion
of an update algebra. If an update semantics can be defined in terms of an update
algebra, then there is a natural harmony between the update view on meaning
and the so-called representational view: in this case the elements of the update
algebra represent the update functions. If the update functions allow for such
a representation, then clearly no conflict between the different ways of looking
at meanings arises.

In this section we present trees as an update algebra. Thus a representational
interpretation of texts is obtained which is in harmony with the update interpre-
tation that we have defined in the previous section. Visser defines his update alge-
bras as follows:

Definition 4.1 A merge algebra M is a structure (X,S,id,) , where id E
S c x and where:

254 C. F. M. VERMEULEN

(X,id,) is a monoid (with identity element id).

S is the set of states of the algebra, is called the merger.

A merge algebra M = (X,S, id,) is an update algebra if M satisfies the fol-
lowing principle, called OTAT: x yeS^xGS.

Intuitively, the states are the information objects that are not partial. They do
not have to be interpreted in the light of previous information. They can be com-
bined with other information objects, but this is not necessary. The other objects
in X are partial: they steal bits of information from previous information states.

It might be helpful to think about the partiality of information in terms of
evaluation: the truthvalue of the information from a state, s G S can be deter-
mined independently. But partial information (Λ: E X\S) can be evaluated only
if it is preceded by a suitable context.

In an update algebra adding information later, on the right-hand side does
not help to satisfy such a demand for previous information, on the left-hand side.
Visser calls this the Once a Thief, Always a Thief, or OTATprinciple. The OTAT
principle introduces an essential asymmetry in the formalism. The elements of
a merge algebra (X,S, ,id) generate canonical update functions on the set 5 of
states as follows:

For each x E X we define Φ*: S -• S as follows:

sΦx = s x if s x E S. Otherwise sΦx is undefined.

It is not clear in general which functions should be allowed as update functions.
Of course the set of update functions over S should contain the Φ*. But apart
from the canonical update functions that we have defined above one might want
to consider other functions, for example a m/g/tf-operator as in Veltman.

It is clear that the class of update functions should be closed under function
composition: if you update your information state with some update function
and then update the result with another update function, then, surely, this whole
process should also count as an update function. Hence the update functions
over S form a monoid, say (Fs,°,Id), where {Φx:xE X] c f s and Id = Φid.
(Here <> stands for function composition.)

Now the notion of an update algebra is inspired by the following fact:

Proposition 4.2 Let a merge algebra (X,S, , id) be given. Consider the mon-
oid of update functions (Fs,<>9Φid). Define Φ: (X, ,id) -• (Fs,<>,Φid) by xΦ =
Φx. Then Φ is a homomorphism of monoids iff (X, S,; id) is an update algebra.

Proof: For a proof we refer to Visser [8].

The fact that Φ is a homomorphism guarantees that Φx.y = Φ* ° Φy. This implies
that:

Φχ O (Φy ° Φz) = (Φ^ ° Φy) °ΦZ =

INCREMENTAL SEMANTICS 255

(by associativity of function composition). Thereby updating with the elements
of an update algebra is a process that can be done incrementally and satisfies the
break in principle.

4.2 Partial trees Now we show that update trees fit the update algebra pic-
ture. We define a monoid of trees such that we find the update functions of def-
inition 3.3 among its canonical updates. Then it will be clear that the text
semantics that we have developed so far can be handled in a representational
semantics as well as in update style.

In order to make an update algebra of trees, we have to find a suitable notion
of partial tree. We obtain this notion by taking a different perspective on trees:
instead of regarding trees as fixed objects, we now treat them as things that grow.
In our set up it is the process of growth that we are mainly interested in, since
this is where the update functions come in: we have seen that updates with the
information that we find in texts are represented as instructions to build update
trees.

The construction process follows a fixed route through the tree: left-to-right,
top-down path. If we want to analyse the construction process of some tree, we
simply have to follow this path. In this way the stages of the construction pro-
cess are represented in the tree by the segments of the path. (Maybe the reader
has noticed that our habit of collapsing completed subtrees somewhat disturbs
the analogy between the construction and the path. For the moment we will
ignore this mismatch, but it will be taken care of later.) Now we make the fol-
lowing step: we no longer distinguish between a tree and its construction process.
So we think of trees only in terms of the left-to-right, top-to-bottom path through
the tree. Then it is but a small step to consider the segments of such a path as
partial trees. We take these segments as the elements of the update algebra. Note
that among the elements of update algebra we will find segments that actually
correspond to an update tree. These will be the states of the update algebra. In
the following definition we describe the tree segments systematically. (We will
use the terms (partial) tree, (tree) path, and (tree) segment to refer to them.)

Definition 4.3 We define the (partial) trees over some HA I, Tτ, inductively.
In our definition we have to distinguish the subclasses downTi for the down
trees and upT\9 for the up trees. (This terminology will be explained below.)

l . i G l =» (t) G downTi Π upTγ\
2. i G I, σ G downTi => (ι,σ) G downTτ;
3. L G I, σ G upTλ => (σ,ι) G upTτ;
4. i, i1 G I, σ G downTi => (ι,(ι'),σ) G downTλ\
5. i, ι' G I, σ G upTτ => (σ,(ι),O E upTτ;
6. (ι,σ) G downTj, (σ',0 G upTλ => (σ',ι,σ) G Tτ;
7. λ G upTl9 p G downTλ => (λ,p) G Tγ\
8. 0 G 71
9. downTj U upTγ c ττ.

(Note that in (6) either σ = λ for some λ G upTτ or σ = (ι'), λ for some ι' G I,
λ G upT\. Similarly for σ'.) Each of these clauses corresponds to a kind of seg-
ment through an update tree. Note that we distinguish down trees and up trees:

256 C. F. M. VERMEULEN

clauses (l)-(5) define these subclasses and in clauses (6)-(9) they are used to con-
struct Tτ. The down trees—cases (2) and (4)—are the segments that actually cor-
respond to an update tree. These paths start at some root ι and then go down
into the tree below that root. With these segments we can simply think of the pic-
tures of trees that we also used in the previous section. We just have to add
arrows to indicate the direction of the path.

a generic
down tree

a down tree X^V\ a d θ W n t Γ e e

of the form /'/ N s \ of the form
(ι,σ) W / \

The up trees —cases (3) and (5) —are the mirror images of the down trees. They
are segments that start somewhere in a tree and then go up to its root. For up
trees we use as pictures the mirror images of the pictures for down trees.

a generic
up tree

an up tree y χ \ χ v a n u p t r e e

of the form /Y Λ ^) of the form

Now we have seen the path segments that start at a root and go down into the
tree and the path segments that start somewhere in the tree and climb up to the
root. This leaves two cases to consider: the segments that both start and finish
at a root and the segments that neither start nor finish at a root.

The first case gives those segments that actually describe a complete subtree.
Since we are in the habit of collapsing completed subtrees, we will not find many
of these paths in our trees. Only the degenerate case can occur, where a path
starts at a root and does not leave it. This case is handled by (1) in the defini-
tion. Such a tree is both a down and an up tree.

The second case, of the segments that neither start nor finish at a root, can
again be divided into two cases. First there are the paths that describe a jump
from assumption to conclusion. These paths do not meet the root of the tree in
which they occur. They are the bridges between left and right branches of trees.
We describe them in case (7) and we use the following pictures for them.

INCREMENTAL SEMANTICS 257

a tree of the form
(λ,p)

But there is another kind of segment that does not start or finish at a root. This
case is described by (6). Here the comparison with paths in binary trees breaks
down. As one can see in (6), we are in a situation where an up tree is followed
by a down tree. The up tree moves up to some root, and then the down tree
moves down from this root. In the path of a binary tree this cannot happen: each
node has just one subtree below it and if we have completed the path through
this subtree, the only way to continue the path is by going to the next node (on
the right-hand side). This is the point where we see how our habit of collapsing
subtrees somewhat spoils the analogy with the paths. For in our situation, if the
path through some subtree is completed, we collapse this subtree and add the
result of this collapse to the node. After we have collapsed the tree, there is only
a node left. Then we can simply start a new subtree from this same node. Case
(6) describes this moment when one subtree is completed and the next one is built
at the same node. Such a moment occurs, for example, when we are interpret-
ing the conjunction of two implications:

if p then q end if r then s end.

The information of both these implications should be stored at the same node.
For such a situation we use the following kind of picture:

a tree of the form
(σ',ι,σ)

Finally there is the tree 0. In fact 0 is not really a tree: we will use 0 to describe
the situation in which the construction process has reached the error state: some-
thing has gone wrong and we no longer know what to do. So 0 does not corre-
spond to the empty tree. (In fact (T) plays the role of the empty tree.) 0 is just
the opposite of the empty tree: the empty tree is harmless and really does not do
anything. 0, on the other hand, is lethal in all situations.

Now we know how to think about partial trees as tree paths. Sometimes it
is easier to think of them in terms of their basic components. We distinguish the
following basic trees.

Definition 4.4 We distinguish the following basic trees in Tγ:

(0 is a basic tree for each i G I. (Think of an atomic text 'p'.)

(T,(T)) is a basic tree. (Think of the instruction 'if'.)

((~Γ),T) is a basic tree. (Think of the instruction 'end'.)

((T),(T)) is a basic tree. (Think of the instruction 'then'.)

258 C. F. M. VERMEULEN

In a picture:

A \
(0 (

We can think of all tree segments in terms of these basic segments: big segments
are obtained by glueing together these basic segments. Before we can make this
precise, we have to explain how tree segments are glued together. This is the topic
of the next section.

4.3 The merger of trees In this section we describe how segments of tree
paths can be merged into bigger segments. This merging operation will be the
monoidal operation of the update algebra of partial trees. The basic idea behind
the merger of trees is easy: if two tree segments r and τ' have to be merged, we
first complete the path described by r and then we simply continue along the path
described by r'. Or rather, we try to continue along r'. For, if we try to merge
two paths, something can go wrong. (It may help to compare these cases where
the merger goes wrong with the cases where the update functions of the previ-
ous section were undefined.) Consider the following examples of such a situa-
tion. In the pictures we use as notation for the merger and <> to indicate the
point where the segments are glued together. Note that this is not really neces-
sary since the arrows already give enough information to determine what should
go where.

If we simply glue together the segments as indicated in the pictures, we get some-
thing which, although it makes sense geometrically, is useless in our set up. For
it is clear that the result is not a segment of a (left-to-right, top-down) path
through a binary tree. In these cases we reach the error state, for which we have
introduced 0. (So 0 can also be read as 'undefined'.)

In most cases, however, things will not go wrong. For example, if r is a down
tree, i.e., a path downwards from some root, and also r' is a down tree, then
it is clear that the result of glueing r and r' together, will always be a sensible
path through an update tree. In fact it is clear that the result will be a downtree
as well.

INCREMENTAL SEMANTICS 259

There are also cases where r is not itself a down tree, but does look like a down
tree at the point of contact. These cases—where r is of one of the forms (σ',t,σ)
or (λ,p) (for a non-trivial tree p) —work similarly so we do not have to discuss
them separately. This is why we will ignore this kind of situation in what follows.
We can concentrate on what happens at the point of contact.

In the dual case, where two up trees meet, we cannot meet any problems
either.

A third kind of situation where the merger cannot go wrong is the situation where
an up tree is merged with a down tree. As was noted above, this is a case where
our geometrical intuitions about paths have to be stretched a little. In these cases
the first tree, which is an uptree, and the second tree, which is a down tree,
should be thought of as hanging at the same root, but not at the same time. The
second tree can only be built after the collapse of the first tree. In pictures this
looks as follows:

But the merger of trees can give rise to problems when a down tree and an up
tree meet. In such a situation the second path, up the tree, has to fit in the tree
associated with the first path.

260 C. F. M. VERMEULEN

We have already seen situations where this goes wrong. In both examples it was
easy to see in advance that something would go wrong, but in general this can
be quite difficult. Fortunately we do not have to see it in advance. We can sim-
ply check it step by step, as we are performing the merger. In each step of the
merging process our actions will be determined by what we find locally, at the
point of contact. There we just have to check whether the final segment of the
first tree and initial segment of the second tree match. We have already defined
the notion of the final segment for update trees, i.e., for down trees. Here we
extend this notion to partial trees. We also define the dual notion of the initial
segment of a tree, that gives for each path the configuration that we find at the
beginning of the path. If we were dealing with down trees only, we would always
find a root at the beginning of our paths. But since we also have up tree, there
are more ways in which a path can start.

Definition 4.5 We define the function segf and segi on trees in Tτ as follows:

segf((ι)) = (0 , segi((ι)) = (t) ;
segf((σ9i)) = (L); segi((ί9σ)) = (t) ,

segf ((i, σ)) = segf (σ), segi ((σ, ι)) = segi (σ),

segf((i,(n,U"))) = (ι,U'),(O); segMnΛi'U)) = ((0,(0,0;
segf((ι,(ι')9σ)) =segf(σ)9 segi((σ,(ι'),ι)) =segi(σ),

if σΦ (O; if σΦ {ι")\
segf((σ',ι9σ)) = segf((t9σ)); segi((σ'9ι,σ)) =segi((σ',ι));
segf((\9(ι))) = (λ,(0); segi((ι)9p)) = «ι),p);
segf((λ9p)) = segf(p), segi((λ9p)) = segi(λ),

if pΦ (0; if λ * (t);
segf(0)=0; segi(0) = 0.

We will keep the same notation for final segments, writing r i p } to indicate that
segf(τ) = p and r{p'} if we have substituted p' for the final segment of r. For
initial segments we introduce similar notation: ([λjr and {λ'jr.

If we want to indicate the final or initial segment in a picture, this looks as
follows:

a down tree with A an up tree with

final segment indicated / \ initial segment indicated

We need the final and the initial segment to keep track of shape of the path at
its end and beginning, respectively. Note that up trees have a trivial final segment,
of the form (t), and that down trees have a trivial initial segment. Another inter-
esting case are the trees of the form (λ,p), but we will not discuss this case until
we need it.

We have included a clause for 0 in the definition. Of course the final or ini-
tial segment of the undefined tree is not a particularly useful notion, but this way

INCREMENTAL SEMANTICS 261

segf and segj become total functions. This will make some technical details
slightly more elegant later on.

Now we can get back to our description of the merger of a down tree with
an up tree. We see that when a down tree and an up tree meet, there are two pos-
sibilities. Either the final segment of the first tree and the initial segment of the
second tree clash as in the examples above. Then we reach the error state: there
is a local mismatch between the two paths.

Or else the final and initial segments have one of the following shapes.

collapse

In the two cases indicated here we see that locally the paths match. The final seg-
ment and the initial segment together form a complete subtree. Now we can sim-
ply compute the information of this subtree, collapse the subtree itself and add
the information at its root.4 Then the two trees will have a new final and initial
segment, and we can check again whether these match. Continuing in this fash-
ion, we either reach the error state at some point or we reach a situation which
is no longer of this type (i.e., either the down tree of the first path is absorbed
by the second path, or the up tree of the second path is absorbed by the first
path). Then we are in a situation where at the point of contact it is not the case
that a down tree and an up tree meet.

Before we make formal sense of this pictorial explanation, we have to con-
sider one more case. This is the case where one (or two) of the trees is of the
shape (λ,p). We already explained above that, if the first tree is of this form and
in case p is not a trivial tree, (λ,p) behaves just like a down tree at the point of
contact. But if p = (t) for some i £ I, then the bridge shape of (λ,p) is relevant.
This explains the definition of the final segment: if p = (i), then seg/((λ,p)) =
(λ,p). Else we just get segf((λ9p)) = segf(p).

In such a bridge shaped situation a clash can occur, for example, in:

= 0

262 C. F. M. VERMEULEN

If we simply glue together these paths, then we get something that cannot occur
in a binary tree. What we get reminds us of the second example of a mismatch
discussed above.

There can also be a match between the bridge and the initial segment. This
again reminds us of something that we have seen before. But now, even if the
trees match, we never get a complete subtree. So we do not get a collapse. In a
picture:

We see that we do not get a complete subtree, so there is no collapse. Of course
we also have the symmetrical situation, where the second tree is ((t),p), which
is handled analogously.

Now we are ready for the formal definition of the merger of partial trees.
It will simply be summary of the explanation above. The reader may find it use-
ful to look at the appropriate picture for each of the clauses.

Definition 4.6 We define the merger of two trees τ and r', r 7'. We distin-
guish the following cases, considering all combinations of final and initial seg-
ments:

0 0 0 /

τt(io»

We distinguish four subcases:

Uo) Ui) =
(σ,t0) (t i) = (σ , t 0 Λ t i)

(ι o) (ti»σ') =

(σ,t0) (M,σ')

rt(ι o » t«n),t2)j7/ = {(7t(ιo»

«»' {(

{ (t (o) ϊ Ui
= (7{(60)}

' { () } ((

) = (r o
(λ,(to» ί((ti),62)1)7^= {(λ,(t0)

INCREMENTAL SEMANTICS 263

/ 13

, 14
= 0

(λ,(ιo))
(λ,(to))

/ 16

((n),p)=O.

The definition contains a lot of cases: one for each combination of final and ini-
tial segment. For each case there is also a symmetrical one. In our presentation
each case is followed by its mirror image. Each case in this definition has already
been covered in the pictorial explanation above. The cases (3), (5), and (9) are
cases where the second tree is a down tree. These are easy cases, where we can
just glue the paths together and nothing can go wrong. The cases (4), (6), and
(10) are dual: here the first tree is an up tree. Case (2) is the situation where an
up tree is followed by a down tree. This is also a situation in which nothing can
go wrong. The real work has to be done in the remaining cases, (11)-(17), where
either a down tree meets an up tree or else one of the trees has a bridge shape.
Here we can make one step of the computation as indicated and then we con-
tinue with the new situation. We give one last example of how this works in pic-
tures. In the example we see how a down tree and an uptree are merged. In the
first step the final and initial segment match. So a subtree is completed and the
result, (t Λ K -> μ), is added to the second tree. In the next step we see that the
final segment and the initial segment do not match. We reach the error state, 0,
and the computation stops.

= 0

Now it is not difficult to prove our claim that the class of the trees over I can
be generated from the basic trees with the merge operation .

Lemma 4.7 (Generation Lemma) IfτG 7J, then r can be constructed from
basic trees with a finite number of applications of .

Proof: In the proof we follow the inductive definition of Tj. We will assume
that the conditions of its clauses are satisfied. (Recall that for all r G downTτ,
segj(τ) is of the form (ι) and that for r E upTl9 segf(τ) is of the form (ι))

1. (ι) G 7i is a basic tree;
2. If σ is constructed from basic trees, then (i) ((T,(T)) σ) gives a con-

struction of (t,σ) from basic trees.

264 C. F. M. VERMEULEN

3. If σ is constructed from basic trees, then (σ ((T), T)) (t) gives a con-
struction of (G,L) from basic trees.

4. If σ is constructed from basic trees, then (t) ((T,(T)) ((ι') (((T),
(T)) σ))) gives the required construction of (ι,(ι'),σ).

5. If σ is constructed from basic trees, then (((σ ((T),(T))) (O)
((T),T)) (ι) gives the required construction of (σ,(ι'),ι).

6. If σ' and σ are constructed from basic trees, then (σ' (((T), T) ((t)
((~Γ,(T)) σ)))) gives the required construction of (σ',ι,σ).

7. If λ and p are constructed from basic trees, then λ (((T), (T)) p) gives
the required construction of (λ,p).

8. 0 =

4.4 Associativity Now we go on to prove that the merger is an associative
operation on partial trees, thus ensuring that what we have defined is a semi-
group. We find that, because of the generation lemma, the following result suf-
fices to prove associativity.

Proposition 4.8 (Basic Associativity) Let two trees τ and τ' and a basic tree
β be given. Then (r β) r' = τ (β 7').

Proof: See appendix.

We can extend this associativity result as follows:

Proposition 4.9 (Full Associativity) Let three trees r0,τχ,τ2ζΞ Tτ be given.
Then:

(TO TJ) T2 = T0 (TJ T2).

Proof: By the generation lemma we can write the 77 as products of basic trees.
Let nx be the number of basic trees we need for τx. The proof will be by induc-
tion on nx. If nγ = 1, then τx is a basic tree and we are done by the previous
proposition. So let nx — n + 2 and assume that the statement holds whenever
nx < n + 2. Then τx is a product of basic trees and can be written (by the induc-
tion hypothesis) τ\ = r β for some tree r and a basic tree β. Now:

(τo τι) r2 =
(r 0 (r β)) r 2 = (by induction hypothesis on τ\)
((τ0 T) β) τ2 = (by induction hypothesis on r 0 (r β))
(r 0 r) (j8 72) = (by induction hypothesis (for nx = 1))
TO (7 (β 72)) = (by induction hypothesis (7 is smaller than τx!))
To ((7 j3) 72) = (by induction hypothesis on 7 (β 72))
?"θ (ϊ"i 7 2) .

This proves the proposition.

Now it is clear that the partial trees as we have defined them in this section
form a semi-group. This means that the partial trees may provide a suitable set-
ting for text semantics: in Section 1 associativity was introduced as the method-
ological constraint on text semantics.

The next step is to check that the partial trees actually form an update alge-
bra, as the title of this section promised, with as states the update trees of the

INCREMENTAL SEMANTICS 265

previous section. After that we have to see whether the update functions of Sec-
tion 4 really can be represented in this update algebra.

Proposition 4.10 (TΎ,downT\, ,(T)) is an update algebra.

Proof: We know that (71,•) is a monoid. It is clear that (T) is its unit. It is not
difficult to check that O7MΓholds: if r r' G downTl9 then already r G 71.

5 Trees and texts In Section 4 we have seen that texts can be interpreted as
update functions on down trees and in Section 5 we have seen how trees form
an update algebra. In this section we make the relation between the semantics
of Section 4 and the trees of Section 5 precise. First we define the tree represen-
tation of a text.

Definition 5.1 For a text φ G TextA we define its tree representation
Ά.

DUB = U) ;

ίPl = M ;

UΠ =(T,(T));

Ithenj = ((τ),(τ));

lendl = ((τ) , τ) ;

un = ui
Now we can check that this tree representation indeed generates the update func-
tions from Section 4.

Proposition 5.2 Let a text φ G TextΛ be given. Then [φ] = ΦM.

Proof: The proof for the basic cases JL, p, if then, and end consists of a care-
ful comparison of the clauses of definition 3.3 with the corresponding clauses
in definition 4.6, where we read 0 as undefined (or vice versa). For compound
texts, φψ, the result is a direct consequence of the fact that 71 is an update
algebra:

[Φψ] = W ° W = ΦffΦii ° $i[*i = φwi\-ιn = φwn

So we have an equivalent representational semantics for the update semantics of
Section 3. Thereby we also inherit the notion of truth from Section 3. The fol-
lowing corollary can even be seen as an explanation of the notion of truth we
gave there: it turns out that texts that are true (in I) have (T) as representation.

Corollary 5.3 Let a text φ G TextA be given. Then φ is true iff M = (T).

Proof: Recall that φ is true iff (T) [φ] = (T). Hence φ is true iff (T)
(T)iff ίφi = (T) .

With the tree representation of texts we have obtained a more refined test of well
formedness: the grammatical texts have a trivial tree representation— (t) for some
i G I—the coherent texts are precisely the texts that are not represented by 0 and
the left (respectively right) complete texts are the texts that have a down (up) tree

266 C. F. M. VERMEULEN

as a representation. The advantage over the test with the update functions is that
we can now easily distinguish among the trees that are both left and right incom-
plete from the texts that are just left incomplete.

6 Concluding remarks The main conclusion of this paper is that an incre-
mental semantics (of texts) is feasible, even if typically non-associative phenom-
ena occur. The general strategy to deal with these phenomena is to exchange
non-associativity for structured memory.

We have introduced a non-trivial kind of structure on the memory slots in
order to be able to distinguish semantically the contribution of the different kinds
of items that we store in the slots, in our case assumptions and conclusions. As
a result we have obtained trees as texts. In the general case other, more complex,
structures will probably be called for, but the strategy of using structured mem-
ory will still work.

It was also shown that the update view on semantics and our tree semantics
are compatible. We have been able to fit our update functions in the general
frame of Visser's update algebras. In an update algebra the static meanings gen-
erate update functions canonically, but it is not excluded that also other update
functions exist. This seems to represent a very reasonable view on the relation
between static and dynamic semantics: it is hard to imagine static meanings that
do not give rise naturally to update functions,5 but, at least at first sight, it is not
clear that all ways to update information states should be representable statically,
as the meaning of some text6: our text language simply might not be rich
enough.

We have used binary trees to represent slots in memory. For the kind of texts
we consider this is not an unreasonable choice. But our ways of reasoning do not
always fit the binary format.7 For example, we tend to use intermediary conclu-
sions, as in:

Suppose Mary shows up. Then she will bring her dog along with her. And
therefore Bob and his cat will be forced to leave.

If we want to represent such situations in our approach, binary trees will not be
sufficient. We would need structures of flexible length to handle an arbitrary
number of intermediary conclusions. This would make the objects in our seman-
tics more complex. Another problem would be the semantics of end: there we
would have to compute the content of such a complex structure. But it is not
obvious how this should be done. The relation between the three statements in
the example clearly is not very simple and there is room for discussion about what
exactly this relation is. For example, is the fact that 'if Mary shows up, then she
will bring her dog' part of the evidence on which we base our conclusion that
'Bob and his cat will leave'! Or does the conclusion only depend on the infor-
mation that 'Mary shows up' and that 'she will bring her dog along with her' and
not on the causal connection between these events?

There is another point to be made about the kind of structure that we use.
It is clear that we use binary trees (or rather we use segments of depth first path-
ways through binary trees), but not all binary trees occur in our semantics. This
is a consequence of the strategy to compute the content of an implication as soon
as this is possible. It is because of this strategy that our structures remain rela-

INCREMENTAL SEMANTICS 267

tively simple. But maybe this is an unjustified simplification: maybe there is rea-
son to distinguish the step of actually computing the content of an implication
from the step of simply interpreting it. The step where we distroy the //... then
structure and compute its information content in the Heyting algebra could be
postponed for a while. Then we can remember the structure of the text explic-
itly until we choose to perform that computation.8 It is not difficult to adapt our
semantics to this effect.

We have already made a remark about the connection of our work with Dis-
course Representation Theory, DRTΐoτ short: instead of propositional texts we
could also use basic Discourse Representation Structures (DRSs). Thus we would
obtain a formulation of DRT which satisfies the constraints mentioned in the
introduction. Also in Kamp's formulation tree structures (DRSs) are introduced
for the interpretation of texts. But the way in which they are handled is not very
elegant. Complete if... then structures —subtrees—are treated as conditions, the
kind of thing that can only be added to a DRS in one sweep. This is a clear dis-
advantage if we also want to consider if. .. then structures that are stretched out
over several sentences. It also is a rather counterintuitive procedure for the inter-
pretation of (deeply) nested //... then constructions. So our tree algebras can be
used to improve DRT in this respect.

There is also a relation between this work and the work of Visser9: he also
tries to obtain an incremental semantics by using structured semantics. Instead
of trees he uses stacking cells as a way to represent structure in the semantics.
Stacking cells are in a sense quite similar to our trees. A stacking cell consists of
a number of /?o/?-levels, a stem, and a number of /?w,sA-levels. So the general for-
mat is (pop, stem, push). This corresponds to the general format (σf,i, σ) of the
trees in Tγ: the up tree σ' corresponds to the pop in a stacking cell, the root i
corresponds to the stem and the down tree σ corresponds to the/w/sΛ-levels. Our
structures are less elegant because we allow for a split in each level, splitting it
in an if and a then part. This results in a nesting of levels which makes the inter-
action between trees more complicated than the interaction between Visser's
stacking cells. Still it can be shown that the partial tree structure can be simu-
lated with a special kind of stacking cells.

Finally a remark about other kinds of texts. The texts in this paper are all
of the same kind, the kind that comes with //... then structure. But in the gen-
eral case different types of texts are mixed. We find small arguments in long sto-
ries, in which not only a course of events is described, but also more or less
extensive comments on these events are included. Each of these kinds of texts
has its own peculiarities which have to be taken into account in the semantics.
In fact it seems that in a text we find a nesting of these types of texts. This nest-
ing is not unlike the nesting of different kinds of modalities, each of which intro-
duces us into a different kind of situation in which different kinds of laws rule.
Each of these kinds of texts has features that are crucial for the interpretation
of the text and the sentences of which it is made up.

Appendix We use this appendix to present the proof of the basic associativ-
ity result (proposition 4.8) that is essential for the associativity of . The nota-
tion is as in Section 4.

268 C. F. M. VERMEULEN

Proposition A.I (Basic Associativity) Let two trees τ and 7' and a basic tree
β be given. Then (7 β) τ' = r (β 7').

Proof: We can assume that r = τ([p]} and 7' = <[λ])τ'. Now we distinguish two
situations:

either: segf(τ β) = segf(p β) and segt{β 7') = 5e&(jS λ).
(This includes the case where one of λ,p equal 0.) or
not: segf(τ β) = segf(p 0) and segj(β 7') = segj(β λ).

First we discuss the situation where not: segf(τ β) = segf(p β) and segj(β τ') =
segi(β λ). Assume first that segf(τ β) Φ seg/(p β). This can only happen if
7 β gives rise to a collapse. Then either

or

= (to,(n),(ι 2))andj8=((T),τ)

= (ιo,(ii))andj8 =

We will discuss the first case. The second one is handled analogously. So 7 β =
τ{Uo)} Ui -> i>i)- Note that it is not possible that also β τ' gives rise to a col-
lapse. So we know that segj(β 7') = seg^β λ). This means that segi(β 7') =
((T), T Λ tλ) = β (ι λ), where tλ is the leftmost node of λ. (The terminology
leftmost node should be clear: it is the point where the path segment λ starts. We
could define this notion properly, but feel that this would only confuse matters.)
This gives us:

(τ β) τ'=(τ[(ι.)} (ι'->ι")) τ'

and

(β = 7 t((T),ιλ)}j8 7' = (τ{(ι)} 1"))

Since se& (/J 7')=β (t λ), we see that {(tλ)} (/? 7r) = r' So the result follows.
The case where £έg, (j3 7') =£ êg/dS λ) follows by symmetry.
In the second case segf{7 β) = segf(p 0) and segi(β 7') = segi(β λ).

Now it suffices to check that for all choices of p,β,λ we have:

(p 0) λ = p (j8 λ).

It is clear that this suffices, since is specified entirely in terms of the final and
initial segments. We have to check the following 64 combinations of p7 βk λy.
(We skip the really trivial cases where pi9\j = 0.)

(1)
(2)
(3)
(4)

p = segf{τ)

<K>)

(to,(ti»
(l 0 ,(t l),(ι 2))

(λ,(ι0))

β

(0
(τ,(τ))
((T),T)

((T),(T))

λ = sβg,(r')

do)
((t'l.li)
((t2),(t'l).lO)

((tό).P)

We distinguish cases according to the value of k. For each case we handle the easy
combinations, i.e., the combinations where either the error state, 0, is reached

INCREMENTAL SEMANTICS 269

or else three trees with the same direction' have to be merged. For also if ph βk,
and λy are all down trees (or symmetrically all up trees), then associativity is
obvious. For each case we will specify which are the remaining combinations.

k = 1: Note that now β does not change the form of the final or the initial seg-
ment. Therefore p, βi λj = 0 iff p, λ7 = 0. This is the case if: i=j =
2, / =j = 3, / — j = 4 or [ij] = {3,4}. Also if all three trees are down
trees or all three trees are up trees, no problem can arise. This is the case
if one of ij is equal to 1.

There are four remaining cases: p, βx λy for / = 2 andy E {3,4} or,
symmetrically, j = 2 and / E {3,4}.

k = 2: Note that β2 is a down tree. Hence the final segment of p, β2 will have
the same shape as β2. This implies that p, β2 λ,• = 0 iff β2 λj = 0. This
is the case precisely when j = 2. The other easy combinations are those
where all trees are down trees. This is the case whenever j = 1.

The eight remaining combinations are those where j E {3,4}.

k = 3: By symmetry with the previous case we may conclude that the case p/
β3 λj with i E {3,4} remain.

k = 4: Note that β4 has both a non-trivial initial and final segment. This means
that it behaves both as a down tree (when merging with λy) and as an
uptree (when merging with p,). As a consequence there are no easy cases
with just three up trees or just three down trees: we only have 0 cases as
easy cases.

We see that pz j34 λ, = 0 can be the case only if already p, β4 = 0
or β4 λy = 0. This is the case whenever / E {3,4} or j E {3,4}. The four
remaining cases are those in which {ij} <Ξ {1,2}.

We find that there are 4 + 8 + 8 + 4 = 24 cases left to consider. By symmetry
it suffices to check twelve of these (if these twelve are chosen carefully). For
example, checking the following twelve cases suffices to finish the proof.

P2

P2

Pi

P3

PA

P\

Pi

P3

P4

Pi

Pi

•jβi

0i
•&•

•&•
• βi
•βi
•βi
•βi
•βi

04
04

λ 3

λ 4

λ3

λ3

3

^3

Λ4

Λ4

λ4

λ4

λ l

λ2

(to,(Ί))
(to.(ti))

(to)

(^OJ v^l))

(^0 5 (*Ί) J (^2))

(λ,(t0))
(to)

(to.Ui))
(t o , (t i) , (ι 3))

(λ,(to))
(to)
(to)

(t)

(t)

<T,(T))

(τ!(τ))
(τ,(τ))
(τ,(τ»
(τ,(τ))
(τ,(τ»
(τ,(τ))

((Ό,(T))
«T),(T))

«ιi),(ι'i),ώ)
((tό),p)
((t2),U',),to)

((t2,(t'l),t0)

((tO),p)

((tό),p)
((tό),p)
((tό),p)
(to)
((t'i),ιό)

We leave it to the industrious reader to check these cases. (In fact the cases where
either pf βk or βk λy collapses have already been discussed above.)

270 C. F. M. VERMEULEN

This completes the proof of the proposition.

We have to admit that the proof is a bit clumsy. But at least it is pretty
straightforward as well: the main work is a lot of trivial case checking. By gen-
eral observations we have been able to reduce the number of cases that actually
have to be checked to twelve.

An alternative proof has been proposed by Albert Visser. It is possible to
embed the partial trees in a term rewriting system, Termtree say, such that the
term rewriting procedure actually computes the merger. The terms of Termtree
would be sequences of basic terms among which we find our basic trees. A typ-
ical rewriting rule for Termtree would look something like:

Now the proof of the associativity would follow from two observations about
the rewriting system Termtree:

• The normal forms of Termtree are exactly the partial trees of 71;
• Termtree enjoys strong normalization.

Then we would know that all different ways of rewriting the terms (or: comput-
ing the merger) would give the same result.

We have chosen not to present this proof in detail, although it is more ele-
gant than the direct proof. One reason is that we would have to introduce a lot
of notions for no other reason than to make the proof readable. Another rea-
son is that the resulting proof is not really shorter: the term rewriting system has
a lot of rules (it has to do the same thing as the definition of the merger, which
has 17 cases), which makes the normalization proof tedious.

NOTES

1. We like to call this view on proofs the proofs as texts perspective. Together with the
texts as trees perspective that will be developed in this paper, we get the slogan: proofs
as texts as trees.

2. Note that (T) cannot play the role of the dummy tree! If we use (T) as dummy, we
will get confused if we are processing expressions such as // T then T end.

3. Note that here two different notations are necessary because we do not have, in gen-
eral, segf(σ{p'/p}) = p'. Take for example σ = (ι,(ι'),(T,(T))) and p' = {ι"). Then

4. We have to choose in which of the two trees to store the information of the subtree.
We will prove later on that the choice does not really matter. If the reader cannot wait
for this, she can also store the information in both trees.

5. The fact that most static notions of meaning give rise to update functions is also
noticed by Van Benthem [1].

6. Although the idea is already implicit in Visser [8], it was Patrick Blackburn who
pointed out to me that one can think about the relation between update semantics and
static meanings in terms of representable functions.

7. In Zeinstra [11] an attempt is made to work with a more flexible language. She also
makes an attempt at an incremental semantics.

INCREMENTAL SEMANTICS 271

8. I would like to thank Marcus Kracht for discussion on this point. Kracht [5] defends
a similar distinction for other connectives as well.

9. In fact the author is not only influenced by Visser [8],[9],[7], in text, but also by
Albert Visser, in person. He has made many useful suggestions and has asked many
useful questions.

REFERENCES

[1] Van Benthem, J., "General Dynamics," Theoretical Linguistics, vol. 17 (1991), pp.
159-201.

[2] Groenendijk, J., and M. Stokhof, "Dynamic Predicate Logic," Linguistics and Phi-
losophy, vol. 14 (1991), pp. 39-100.

[3] Heim, I., "File change semantics and the familiarity theory of definites," pp. 164-
189 in Meaning, use and interpretation of language, edited by R. Bauerle et al.,
Walter de Gruyter, Berlin, 1983.

[4] Kamp, H., "A theory of truth and semantic representation," pp. 277-322 in For-
mal Methods in the Study of Language, edited by J. Groenendijk et al.,
Mathematisch Centrum, Amsterdam, 1981.

[5] Kracht, M., "When can you say 'it'," pp. 1-30 in Technical report II, Mathe-
matisches Institut, Freie Universitat Berlin, 1989.

[6] Veltman, F., "Defaults in update semantics," pp. 1-57 in Technical report LP-91-
02, Institute for Logic, Language, and Computation, University of Amsterdam,
1991.

[7] Visser, A., "Meanings in time," manuscript.

[8] Visser, A., "Actions under presupposition," Logic group Preprint Series 76, Phi-
losophy Department, Utrecht University, 1992.

[9] Visser, A., Lazy and quarrelsome brackets, Logic group Preprint Series 82,
Utrecht, 1992.

[10] Zeevat, H., "A compositional version of discourse representation theory," Linguis-
tics and Philosophy, vol. 12 (1989), pp. 95-131.

[11] Zeinstra, L., Reading as Discourse, Master's thesis, Philosophy Department,
Utrecht University, 1990.

Research Institute for Language and Speech (O.T.S.)
Arts Department, Utrecht University, Trans 10
3512 JK Utrecht, The Netherlands
e-mail: Kees. Vermeulen@let.ruu.nl

