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SOME THINGS DO NOT EXIST

R. ROUT LEY

The main objects of this paper are to suggest a definition of 'exists',
to propose solutions to difficulties raised within restricted predicate logic
with identity by failures of existential presuppositions of purportedly
referring expressions such as individual constants and definite descrip-
tions, to develop within a semantical system R*, with the syntax of a
restricted applied predicate calculus, the logic of 'exists', and to unify
within =R*, i.e. R* with identity, several hitherto distinct logical theories,
to construct theories of definite descriptions, and to criticize certain
widely accepted criteria for the ontological commitment of a theory. The
logical developments in this paper are limited almost entirely to those that
can be carried out in a first-order predicate logic with identity but without
modal or intensional functors.

On the meaning of the predicate 'exists'. 'Exists' is gramatically a
predicate, and the predicate seems to demarcate a property which Russell
has, Socrates had, and Pegasus lacks. If, at a given time or atemporally, a
domain D' of items, represented by names or referring expressions
referring or purportedly referring to these items, is selected, then the
property of existence, like other properties, can be represented over D1 by
a subdomain of D\ by the class of its instances. For example given the
domain [Churchill, Russell, the present king of France, Pegasus] 'exists'
is represented by the subdomain [Churchill, Russell], 'Exists', like any
other property-word, has various designation-domains, the main special
feature of which is that whereas the actual designations or extensions of
other predicates, like '(is) red' or 'walks', are proper subclasses of the
class G of all actual (or existent) items the extension of 'exists' coincides
with G. The sense of 'exists' can also be explained [see below] in ways
resembling explanations of the sense or meaning of other property-
demarcating predicates, though admittedly the explanation is more like that
for predicates also cast under suspicion, such as 'is true' and 'is good',
than that for paradigmatic property-demarcating predicates such as
predicates which demarcate simple descriptive properties. But, without
drastic legislation on the meaning of 'property', these differences would at
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most show that 'exists' does not mark out a property of a certain sort, e.g.
that it marks out an ontological, not a descriptive property. There is, in
short, because of sense and designation features of 'exists', a prima facie
case for claiming that 'exists' demarcates a property. Moreover, widely
deployed arguments designed to show that 'exists' does not demarcate a
property fail, I contend, to establish their conclusion. Although moves
useful in disabling these arguments appear in the sequel, the thesis that
existence is a property is not actively defended1; and for much of what
follows it is enough that 'exists' is a predicate which functions in some
ways like a property-demarcating predicate.

The full sense of (or dictionary data on) the predicate 'exists' is given
by giving
(i) its grammatical-range: namely all (singular) grammatical substantival
expressions. That is, 'α exists' is well-formed or grammatical if 'a9 is a
singular substantival expression.
(ii) its significance-range. 'Exists' is exceptional in that its significance-
range coincides, or almost coincides, with its grammatical-range. Whether
it exactly coincides turns on the controversial issue as to whether sen-
tences like 'most tame tigers exist' are significant or not. It seems,
however, despite celebrated arguments1 to the contrary, that English
sentences like 'some tigers exist', 'Churchill exists', 'This exists', 'Red
exists ' are certainly significant.
(iii) its concentrated sense, under which conditions for its correct applica-
tions (among its significant uses) are specified. Although these correctness
conditions do not in the case of 'exists' quite coincide with specific criteria
for assessing content values such as truth and falsity of "α exists", they
are nonetheless closely bound up with truth and falsity conditions. Now
criteria used for assessing the truth or falsity of "a exists" notoriously
vary. Most frequently used criteria are those linked with spatio-temporal
or temporal locatability or observability, but that these are far from
exhausting employed criteria such examples as "Santa Claus exists", "Red
exists," "Natural numbers exist," "Ideas exist," "Electrons exist,"
"Battles exist," "Tame tigers exist," "God exists" make clear. A
definition of the concentrated sense of 'exists' which is neutral as between
various rival criteria must allow for two degrees of freedom; for criteria
for assessing truth or falsity of " a exists" depend both on 'a' and on the
context in which the sentence appears. There is a further minor complica-
tion: once temporal variations are admitted 'exists' is no longer un-
ambiguous. On the other hand when temporal variables are bound as in
'exists at some time9 or explicitly introduced as in (exists at t9, (exists9

does not seem to have several senses. (Whether it does have several
senses or not rests in the end of criteria for sameness of sense agreed
upon). Then 'exists', or 'exists at t9, appears to be a one-sense multi-
criterion expression, i.e. an expression with one sense but with several

1. Some standard arguments are criticized by M. Kiteley 'Is Existence a Predicate?'
Mind LXXIII (1964), 364-373.
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different criteria, or, more narrowly, truth-conditions, linked under the
one sense. My suggestion is that criteria (and test-procedures) are com-
bined under a single sense by a designation requirement as follows:
(u exists (at ty can be expanded or defined 'qu(w)2 is a referring or
specifying expression which has, in the context, a suitable designation
(at ty - where the designation is suitable in usual non fictional contexts in
the case of a medium sized material object, e.g. my house, Churchill, if it
is (at t) spatio-temporally locatable and observable, in the case of an
observable physical property if it has observable instances, in the case of a
theoretical item if it is referred to in a true scientific theory and is tied
theoretically, e.g. by correspondence rules, with several observable
phenomena, and so on through quite a long and open-ended list of cases; and
where the designation is suitable is a special context like a fictional one if
the fictional or legendary item is mentioned as existing in fiction or in
legendary stories, and in a special context like an intuitionistic mathe-
matical one if the designed item is effectively constructible proofwise or is
constructed in some typical instances. Which case is at hand is determined
both by the sentence in which 'exists' occurs and by its context of appear-
ance. Whether special contexts occur where ordinary criteria are sup-
planed by other criteria as sketched above is debatable. It seems that
although special contexts do occur the relevant sentences can always be
satisfactorily paraphrased by sentences set not in the special contexts but
in usual contexts. For many sorts of designating expressions what, if
anything, counts as a suitable designation even in usual contexts is also
debatable, and the above examples are not intended as more than illustra-
tive of various criteria. In providing an account of the sense of 'exists
(at ty these issues need not be resolved any more than it need be settled in
explaining the sense of 'good' what is good. Someone who simply asserts
that u exists does not say what he counts as a suitable designation, what
criterion he is using, but he gives it to be understood or gives the impres-
sion that he could if challenged. Compare with 'exists' and 'existent' on
these matters 'good' and 'true'. Some features of the definition are worth
emphasizing: first that use/mention difficulties are avoided through use of
a quotation-function 'qu'; second that the definition is not implicitly circular
since 'has'need not carry existential import (the definitions can be expanded
using the 'Σ' introduced below); third that 'suitable designation' can, like
'sufficiently many good-making characteristics' in a definition of 'good', be
given independent elaboration; and fourth that an intermediate course be-
tween one-sense one-criterion and several sense accounts of 'exists' is
adopted. The definition also goes some distance towards meeting Leibnitz's
requirement that the existent is what is possible and something more since
an expression can only have a suitable designation if it has a possible
designation.

2. On quotation function 'qu' see L. Goddard and R. Routley 'Use, Mention and Quotation'
Australasian J. of Philosophy (May 1966). The function 'qu' is so defined that whatever
the expression value of the argument the function value is the quotation-expression of
that value.
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On the elementary logic of 'exists*. With sketchy preliminaries over a
start can be made a logical development. A restricted predicate logic R*
is obtained from the usual restricted predicate logic by adding individual
constants and a predicate constant Έ9, read 'exist(s)', and by changing the
interpretation of quantifiers and of free and bound variables. For com-
pleteness the primitive frame of R* is sketched. The primitive symbols of
R* are:

(improper symbols) D ~ π ( ) f

(variables) x y z f g h
(constants) a b c

/o So \ E

From recursion rules like: If u is a (predicate or individual) variable
(constant) then u' is a variable (constant), further variables and constants
can be generated. The formation rule for Έ' runs: If u is an individual
variable or constant then E(u) is well-formed. The postulate set of R* is as
follows:

RO: If A is truth-functionally validy then A.

R1: (ΉX)(A^>B) Z). A z>.(irx)B, provided individual variable x does not occur
free in A.

V

R2: {$x)A D Λ A , where y is an individual variable or a consistent

individual constant*.

RR1: A, A-DB ->B (modus ponens)

RR2: A —> (πx)A (generalization)

Quantifier V is read 'for all' or 'for all possible'. A given constant a is
consistent if it is possible that 'a' has a referent. The restriction to
consistent individual constants can be eliminated and replaced by another
qualification once identity is introduced. Individual constant expressions go
proxy for any individual (referring) expressions, e.g.'Churchill', 'Pegasus',
'the least rapidly converging sequence', 'the round square cupola on
St. Paul's'; but constants can only be used for instantiation in R2 if they
refer to consistently describable or possible individuals.

Further quantifiers can be introduced by definitions

(Σx)A =Df ^(τrx)^A
(lx)A(x) =Όr (Σx)(A(x)&E(x))
(Vx)A(x) =Df ~(lx)~A(?c)

3. The substitution notation, the extrasystematic notation, and some terminology and
abbreviations are adapted from A. Church Introduction to Mathematical Logic: Vol. I,
Princeton (1956). The explanation of ' Q* A ' parallels Church's explanation of
v i ^y

§ζ A\ , p. 192. To avoid confusion Church's symbols T ('true') and f/'('false') are
replaced, respectively, by ψ and '/\
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[(Vx)A(x) = (τrx)(E(x) ΏA(X))] follows. The symbol 'Σ' is read 'for
some' or 'for at least one', ' 3 ' is read 'there exist(s)' or 'for some
existing', and 'V 'for all existing' or 'for all actual'.

With this little apparatus several sentences usually judged to lie
beyond the scope of the formalism of predicate calculus can be symbolised;
e.g. 'Churchill exists' can be written Έ(c)' and 'something exists'
'(Σx)E(x)'. Substitution in theorem [f(y) D (ΣX) f(x)] gives [E(c) z> (Σx)E(x)],
i.e. if Churchill exists then something exists. All the usual predicate
inferences can be specialized in this way for the predicate Έ'; e.g. from
[(TΪX) fo(x) ^ho(x))], (s^y? a 1 1 unicorns are one-horned) and [(Σx)(fo(x) & E(x))]

(some unicorns exists) follows [(Σx)(ho(x) & E(x)) ], i.e. [(lx)ho(x)] (there
exist one-horned things). A generalization of 'Round squares do not exist'
can be symbolized '(πx)(f(x) & ~f(x) D . ~E(x))9, and in view of the equiva-
lence: (πx)(f(x) &~f(x) D . ~E(x)) = ~(3AΓ)(/(AΓ) &~f{x))> can alternatively
be written in the regular way as '^(lx)(f(x) &^f(x))\ 'Some things do not
exist' is symbolized '(Σx) ~E(x)'; its equivalent 'not every item exists'by
6^(πx)E(x)\ These sentences do not yield contradictions; a point about
which there need be no difficulty so long as it is remembered that 'a does
not exist' can be explicated by ' 'a' is a referring expression without a
suitable referentΌ Thus [(πΛ )̂ (Λr)] is not universally true4, unless the class
of domains with respect to which interpretations are allowed is severely
curtailed, and is not a theorem, as can be demonstrated using a decision
procedure for monadic predicate calculus under which Έ' is treated as an
ordinary predicate,, But "There are things that don't exist," i.e.
[(3#) ~E(x)] is impossible since it is equivalent to [(Σx)(E(x) &~E(x))].
Thus [(Vx)E(x)] is a theorem. "Some things exist", i.e. [(Σx)E(x)], which
is equivalent to[(lx)E(x)], does not, however, follow from [(Vx)E(x)].
[(Σx)E(x)]9 like [(Σx) ~E(x)\ is not a theorem of R*. Whether these state-
ments are universally true depends both on the width of the domain of
individuals and on the criteria for existence admitted. If properties such
as non-existence, for example, are admitted as individuals then it is
demonstrable in unrestricted predicate logic that something does not exist.
On the other hand it seems, under the criteria for existence I favour, that
[(ΣΛΓ)£(Λ;)] is not analytic, even though the statement, through occurrences
of its representative sentence, is contextually self-supporting. The
strengthened system Rx* is obtained from R* by adding the axioms

R3: ~(τrx)E(x)

R4: ~(τrx)~E(x)

4. On the strong case for rejecting "Everything exists" see N. Rescher 'The Logic of
Existence' Philosophical Review LXVΠ (1959) 160-2. Note that Rescher's two-
sorted logic (p. 174-6) can be readily set up in R*.
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Among the theorems of R* are Leonard's principle5 L6, i.e.
[f(y)&E(y)τ>.(lx)f(x)l but not [f(y)Ώ&x)f(x)]; [(V*) /(*) & E( y) D/(y) ],
but not [(V#) /(#) D/(y)]. Consider now that subsystem FR* of R*, the wff of
which consists of all wff (or definitional contractions of wff) which contain
no quantifiers other than 'V or ' 3 ' and no constants. FR* is a free logic6,
i.e. logic free of existential presuppositions: it can be axiomatized using a
postulate set consisting of RO, RΓ, R2f, RR1, and RR2f, where RΓ and
RR2 are obtained from RΊ and RR2 by replacing occurrences of (π' by 'V,

y

and R2' is: (R2 ): (Vx)A & E(y) D C* A
χjy

Theorem: All theorems of FR* are theorems of R*.

Proof: It suffices to show that the quantificational rules and axioms of FR*
are derivable given R*.

(i) RR2f (generalization). Since [A(x) D . E(x) z>A(x)1 [(πx)A(x) D . (ττx)E(x)
ΏA(X)].

Thus from the rule: A(x) -> (πx)A{x)
the rule: A(x) -> (Vx)A(x), is derivable.

(ii) R1\ [ ( £ ( # ) D .A^B]Ώ J D . E(x)z>B]. Thus

[(iΐx)(E(x) Z^.AΌB) D .A-D{ΊΪX){E(X)-DB)\ provided x is not free in A.

Therefore, under the same proviso, [(Vx)(Az)B) D.AZ)(VX)B]

(iii) R2\ (Vx)A &E(y) D . (τrx)(E(x) z)A) &E(y)

D.(JB(y)DC* A )&E(y)
v Oy

=). S>
Theorem: Every theorem of R* which is (or the definitional abbreviation of
which is) a wff of FR* is a theorem of FR*.
Proof: Let B be a theorem of R* which is a wff of FR*. Since B is a
theorem of R* there is a sequence of wff of R*

BUB2, . . . Bn, such that Bn = B,

which represents a proof of B. It needs to be shown that given this
sequence a new sequence can be constructed which constitutes a proof oίB
in FR*. A proof of this result (which can alternatively be stated: For
every π-Σ quantifier free theorem of R* there is a proof which is π-Σ
quantifier-free, where a wff is π-Σ quantifier-free if every occurrence of

5. Leonard's replacement for PM *10.24. See H. S. Leonard 'The Logic of Existence'
Phil. Studies, VΠ, 4 (June 1956) 49-64. An equivalent replacement was advocated
much earlier by G. E. Moore * Facts and Propositions' Arist. Soc. Supp. Vol. VΠ
(1927), 204.

6. It coincides with Lambert's free logic: See T. C. Lambert 'Notes on E! ΠI; A Theory
of Descriptions' Phil. Studies XIΠ 4 (June 1962), 51-59. Though free of existential
presuppositions FR* is not free of possibility presuppositions.
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quantifiers V or (Σ' can be definitionally replaced by an occurrence of

'V or ' 3 ' respectively) is sketched. Replace both R* and FR* by equivalent

Gentzen sequents systems. To be explicit R* is replaced by a system G1R*

obtained from Kleene's system G17 by suppressing all individual constants,

by adding predicate constant ζE9, and by replacing 'V and '3 ' respectively

by 'π' and ' Σ \ FR* is replaced by a system G1FR* obtained from GΊ by

suppressing all individual constants, by adding predicate constant Έ' and

by replacing rules V —• and —»3 , respectively, by:

p-*E(y), ®/A{y), p -» © p-*E(y), ®/p -> ® , A(y)

{\fχ)A{%\ p-> @ p - @ , (lx)A(?c).

Now consider the proof of B i.e. the derivation of —*B, in G1R*. It needs

to be shown that there is a derivation of —>B in G1FR*. A proof can be

obtained by induction over the number of occurrences of quantifiers

V & 3 in B when B is written in π-Σ quantifier free form. If A contains no

occurrences of V or 3 then the same proof suffices as a derivation of —> A

in G1FR*. If B contains k+1 occurrences of V and 3 consider the last

introduction of a quantifier in the proof of B. Either V or 3 is introduced

and since the cases are similar it suffices to consider introduction of V.

By hypothesis of induction the proof to that stage can be transformed into a

proof in G1FR*. If at the last introduction V is introduced in the succedent

the same step will suffice in G1FR*, and if in fact π was introduced in the

succedent in GΊR* V could equally well have been introduced. If V is

introduced into the antecedent in the last introduction, e.g., by π —» and

definitional abbreviation, then a further premiss,

p,Λ->Δ, ®9E(y)

where y is the variable free in π —•, i.e. in:

My), P - » ® ,

must be supplied in the proof otherwise the proof will not be a proof of the

required —> B, for it will not be possible to ensure that B is π-Σ free. But

if the additional premiss is available it can be used in rule V —* of G1FR*.

This completes the sketch of the proof.

On the interpretation of logic R*. The intended extensional interpreta-

tion of R* is, formally at least, straightforward once a non-null discourse-

universe or individual-express ion domain D is selected. D is a class of

names or referring expressions each of which refers or putatively refers

to an individual item. If D is non-null some among these expressions, e.g.

'Churchill', 'Pegasus' either have or possibly have referents; such expres-

sions are called possibly referring. But D may also include expressions,

e.g. 'Primecharlie', the name of the first even prime greater than two,

which do not even possibly have referents. The items referred to by

7. Set out in S. C. Kleene Introduction to Metamathematics Amsterdam (1952) 442-3.
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expressions which have or could have referents are called possible items
(with respect to D). These items are, if you like, the items which would be
actually referred to by the expressions concerned if possibilities were
actualities. Expressions of D which could not possibly have a referent are
sometimes said, purely for convenience, to refer to impossible items. Any
discourse-universe D will have an associate individual item domain D' of
possible items with respect to D. The intended extensional interpretation
of R* with respect to non-null domain D1 associated with D is then exactly
the same as intended interpretations of restricted predicate calculus with
respect to some non-empty individual domain8: in particular: -

(i) Individual variables are variables having elements of D\ or possible
items, as their (designation) range.
(ii) For a given set of range-values of the free variables of (πx)A, the
true-value of {πx)A is 4- if the truth-value of A is Φ for every range-value
of x, and if/ otherwise. Thus [(πx) f(x)] is true if every element of D' has
/, e.g. belongs to the class assigned to f. Validity and satisfiability can,
therefore, be defined in pretty much the usual way. Though associated item
domains may be empty they must not be null, where emptiness and nullity
are distinguished as follows:

Item domain w is empty =Dj ^(3x)(xεw)
Item domain w is null =Dj ^(Σx)(xεw)

D is non-null if its associated domain D' is non-null.

The interpretation may be presented more satisfactorily if, in place of
designation-ranges of variables, substitution-ranges of variables, i.e. the
classes of expressions with which variables can be replaced, are taken.
Then an interpretation of R* will read as follows:

(i) Individual variables are variables having possibly-referring expres-
sions of D as their substitution-range.
(ii) Monadic predicate variables are variables having as their substitution-
range singulary predicates whose field is D and which are represented by
subclasses of D. [Or: Singularly functional variables are variables having
as their substitution-range singularly (sentential) functions from possibly-
referring expressions to truth-values]. And so on. The semantical rules
for the predicate constant Έ' are as follows:

(Ei) E is a monadic predicate constant which is represented by the class E°
of expressions of D which have (suitable) existent referents, i.e. which
actually have referents. E° is a subclass of the class of possibly-referring
expressions.
(Eii) If x has substitution-range value a then E(x) has truth-value 4- if a
belongs to E°, and has truth-value / otherwise.

Under the interpretation sketched, there are no longer obstacles to

8. For instance, that given by Church, op. cit., 175.
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including in domains of individual items ideal or abstract items such as
bodies not acted on by external forces, point masses, and Pegasus, or to
taking as discourse-universes purely abstract or fictional universes. If
such domains are selected certain standard difficulties about universal
generalizations whose antecedent referring expressions have no actual
referents can be evaded. For Newton's first law of motion, 'All bodies not
acted on by external forces continue in their state of rest or uniform
rectilinear motion', can now be symbolized by '(πx)(f(x) Z)h(x))'. That
there are, in fact, no such bodies does not matter; for although such
paradoxes of implication as [~ (Σx) f(x) D (ΉX)(f(x) D h(x))] are still theo-
rems, [~(lx)f(x) D(IΓ*)(/(*)D h(x))]9 i.e. [~(Σ*)(/(*) &E(x)) D (**)(/(*)=>
h(x))], is not a theorem, as can be shown by using again a decision pro-
cedure. In other words so long as we are prepared to assert that [(Σx) f(x)]
is true; i.e. that some (ideal) items are bodies not acted by external forces,
predicate calculi as here reinterpreted can be used for the formulation of
all scientific laws. [(πx)(f(x) ^h(x))] is not automatically true. Not that I
want to pretend that this situation is entirely satisfactory: for, first,
suitably large domains have to be selected and the premisses of the law
sentences qualified; and second, with a little ingenuity conditionals at least
as satisfactory as formal implications can be defined.

On domains which include impossible items. The domains selected
may also include impossible items, which can be represented by constants
'a9, 6b\ 'c' etc; but quantifiers take no account of them and free variables
of R* may not be replaced by them, i.e. expressions without possible
referents do not lie within the substitution-range of free variables or the
class of range-values of quantified expressions. The restriction to
possibly-referring expressions of range-values of bound variables, or, put
differently, the restriction to possible items on the interpetation of
quantifiers V and 'Σ' cannot be lifted, unless quantification theory is
radically amended, in such a way that contradictions do not spread.
Extension of range-values of quantifiers to all possibly-referring expres-
sions is the maximum admissάble extension within the framework of
standard quantification logic. For an extension to all possibly-referring
expressions as substitution-range-values can be made consistently; for R*
is consistent and its interpretation is consistent since it can be mapped into
the system. But a further extension cannot be consistently made. If
'Primecharlie' (Primecharlie is the first even prime greater than two;
Joesquare is the round square at tx at pi) were within the substitution-range
then for some /, /(Primecharlie) and ~/(Primecharlie). For, unless
predicate and sentence negation are distinguished, either "Primecharlie is
not prime" and "Primecharlie is prime" are both true or they are both
false. If they are both true 'is prime' provides a suitable predicate; if they
are both false 'is not prime' is suitable. Since then for some / [/(Prime-
charlie) &^f (Primecharlie) would be true, neither \^(f(x) &^f(x))] nor
[(πx)~(f(x) &^f(x))] would be universally valid: the laws of non-contradic-
tion and excluded middle would fail. The system would be inconsistent
under interpretation.
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In contrast with 'V and ' 3 ' , *Σ' and V are not replaceable by or
definable in terms of near regular quantifiers with more extensive ranges.
For quantifiers 'V and *E' the equivalences [(Vx)(E(x) Z)A(x)) = (Vx)A(x) ]
and [(lx)(E(x) & A(x)) = (lx)A(x)] are provable. In contrast for quantifiers
'Ή' and 'Σ> the relations [(Σx)(O(x) ΏA(X)) = (ΉX)A(X)] and [(Σx)(O(x) &A(x)) =
{Σx)A(x)], where '<>' is a predicate constant read 'is possible' or 'is a
possible item', though they hold under the intended interpretation, are
not derivable from relations connecting them with more extensive un-
restricted quantifiers of a consistent standard system. The further re-
lations specified do, however, underlie the intended interpretation of (π*
and (Σ\ More extensive quantifiers Ά' and CS' can be introduced in non-
standard systems which restrict the application of the classical laws of
non-contradiction and exclude middle. For example, this may be achieved
by distinguishing sentence and predicate negations, and qualifying the
classical laws for predicate negation. Important among such systems are
Meinongian systems, that is systems for which ^(f(x) & J(x))> where '-'
represents predicate negation, holds only for possible x. Not only are
unlimited quantifiers available in such systems; also the problem of the
null domain can be easily resolved.

Although the value-range for bound variables, or quantifiers, cannot be
further extended consistently and within the framework of a logic ap-
proximating to standard quantification logic, the substitution-range of free
variables can be further extended by slightly modifying quantification logic.
There are various alternative ways in which this extension can be carried
through. In each case extension of ranges of free variables has only a
limited effect on the class of theorems; but free variable formulations of
usual logic laws are no longer unconditionally asserted as theorems. There
are in particular two roughly equivalent ways in which the extension can be
made:

(a) By adding a new predicate constant '<>' to the primitive symbols of R*,
and by modifying the postulate set of R*. The resulting system UR* has the
following postulate set:

URO: If A is truth-functionally valid, then <χA.
UR 1: a((πx) (A~D B) D J D (TΓΛΓ) B), provided x is not free in A.

V

UR2: a(O(y) ^ . (TΓΛΓ) A~D Q* A ) where y is an individual variable or an

constant.
UR3: (TΪX) O (x)

URR1 and URR2 are the same as RRΊ and RR2.

E Xi> %2> . Xn are all the distinct free variables in A, which are not O -
qualified, then aA is (O(#i) D . 0 ( ^ 3 . -.D. <>{xn)^A) . (xl} . . xn are here
O-qualified in a A). From URO it follows that quantifier-free laws contain-
ing free variables only hold on condition that substitution-ranges of these
variables are restricted to possibly referring expressions; and from UR2
that instantiations are permitted only for variables with substitution-ranges
restricted to possibly referring expressions or for constants with possibly
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referents, i.e. for consistent constants. In fact no theorems of UR* contain
variables which are neither bound nor unqualified by '<>'. It is, however,
possible to lift some of the qualifications on UR1 and UR2.

(b) By replacing theorems of R* by their closures whenever theorems
would otherwise fail because of the extension in the substitution-range of
free variables. One system which results by this strategy is URX*, a
system which differs from UR* in that UR3 is dropped and 'a' is replaced
throughout the postulate sentences by 'I- ' , where \-A is the universal (π-)
closure of A.

Theorem: All theorems of URX* are theorems of UR*.

Proof: It suffices to derive URiO, URX1 and URX2; and derivation of URXO
may serve as typical. Suppose, Xi, Xz . . xn are all the distinct free
variables in A. Then, if A is truth functionally valid O W ^ . O W ^ . . .
D.O(#«) Z)A is a theorem of UR*. By repeated application of URR2 and
UR1 it follows:

(TΓΛ I) O(xχ) =>. (irx$ O(x2) D . . . z>. {τϊxn) O(xn) D . (πxx)...(πxn) A

By UR3 and URR1 (TΓΛΓI) . . . (πxn)A, results as required. Note that:

a(ΊΪX)(O(X) ^>Λ(X)) = a(πx) A(x)

is a theorem of UR*.

Theorem: If the symbol '<>' is so introduced into URi* that the axiom
schemes

URX3: (ΉX)O(X)

URI4: (πx) A(x) D. O(y)^A(y), where x is the only free variable in A(x),

are satisfied then all theorems of UR* are theorems of URi*

Theorem: The closures of all theorems of R* are theorems of UR* and
URx*

For URi* differs from R* only in range of free variables. It is almost
immediate that the postulate set of URX* is derivable from that of R*.

A system embracing R* is obtained from UR* by replacing UR3 by

UR4: <>(*)

and replacing the hypothesis O(y) where y is a constant, in UR2 by the
proviso: provided y is a consistent constant.

Since an interesting axiom set for '<>' does not seem to be attainable
without the introduction of a higher order calculus or a calculus of
individuals, it is worth investigating replacements for '<>'. Once identity is
introduced a simple resolution can be made: for

OW = (x=x & O(x)) = (Σy) (y=x & O( y)) = (Σy) (y=x).

In =R* the condition (Σy)(y=x) will be used in place of O(x). In a modalized
logic the equivalence [θ(x) = OE(x) ] may be used. In higher predicate logic
In higher predicate logic it is tempting to define:

<X*) = ~(#)(/(y)&~/(y)).
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From such equivalences [Or3θO(3θl i e > everything is possible, or, more
exactly, every possible item is possible, follows. The false statement
"Absolutely everything is possible" could not be adequately represented
in R* even if the symbol '<>' were added to the primitive symbols, but it
can be represented in UR* using free variables thus: O(#). An advantage
of Meinongian systems is that they permit the formulation of such
sentences: * Absolutely everything is possible' is symbolized '(Ax)O(x)9

On null domains. Although UR* seems reasonable as a venture towards
a system which allows for domains which include impossible items (or for
substitution-ranges which include expressions like 'Primecharlie' which
lack even possible referents) the system fails for null domains. Strictly
two cases should be disentangled:
(i) a domain is selected but contains only impossible items such as
Primecharlie
(ii) no domain is selected.
UR* fails in case (i) because [(Σx)O(x)] and, therefore [~(ΊTX)(f(x) &^f(x))]
(compare [^(πx) f]) are theorems of UR* though they are not theorems if a
domain of type (i) is selected. More comprehensive systems VR* and VRX*
which include the null domain as in (i) can be reached from UR* and URi*.
VR* differs from UR* only in that VR2 which replaces UR2 has the added
proviso: provided x is free in A. VR3 can be admitted since [(7ΓΛΓ)O(*)] is
true if no item of the domain is possible. VR* differs from UR* only in
that VRX2 carries a similar proviso to VR2. Theorems analogous to those
relating UR* and UR^ relate VR* and VRX*.

Theorem: System URi* results from VRi* by addition of ^ (TΪX) ^(pz>p) (or:

~(π*)#).

Proof: It has to be shown that the qualification on VRX2 can be lifted given
the additional axiom.
Now if x is not free in A,

"A-D.A D~(/>D/>)

D . (πx)(A D~(/>D/>)); by VRRX2 and VRJ
D . (TΪX) A D~(ΈX) ~(/>D/>); from VRJ and VRiO.

V V

~(τrx) ~(p D/>)D (τrx)Ai> §* A by VRXO & since §*y A\ is A.
y

~(vx)~ (P^P)^. 0ryi)(7ry2) . . (iry«)0r*M3 S y A\^

where y^ y2 . . . yn are all the free variables in A) by VRJ

ByVRRJ

(ΉX)A^> ^ A , x not free in A.

Note that a move similar to that preceding the last application of VRRJ,
i.e. modus ponens, should strictly precede each of the other applications of
modus ponens.

Even though a system containing (interpretation-) unrestricted free
variables may not hold for interpretations over null domains, a system
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which holds over null domains will contain unrestricted free variables if it
contains free variables at all. Hence the relations between U and V
systems.

Theorem: System OR* results from VR* by addition of [(Σ#)O(#)]

Proof: (ΉX)(O(x) D (/> D />)) by VRO
WHίD^-Φ)) by VRO, VR1, VRR1

^(τϊx)^O(x)^^(τϊx)^{pΌp) by VRO, VRΊ, VRR1

~(ΉX)~(pΏp)

The theorem then follows as in the preceding theorem.

Theorem: A system including R* results from VR* by addition of <y(x);

specifically the system obtained from R * by adding the primitive symbol
Ό' ond the above axiom.

For: O(x) D ~ (π x)~ O(x)
By the above theorem UR* results, and as before R* + O(#) results.

Theorem: R* results from VRi* by addition of:
v

(πx)Az) Q* A , where y is a variable or consistent context

For: {τx)~(p^p) D~{p-Dp)
p^p-D~(Ήx)~{pzip)
~(<πx)~(pz>p)

Therefore UR^ results from VRX*. Then R* results from URX* by
application of the given schema.

If the symbol Έ9 is omitted from these systems, so that systems R*-E,
VRi*-E etc., result, then various completeness theorems can be proved.
In particular: R*-E is complete, by a syntactical variant of Gδdel's
completeness theorem, URi*-E is complete in the sense that every closed
wff of the system valid in a non-null domain is a theorem of the system;
and VRi*-E is complete, i.e. every closed wff of the system valid in any
domain, null or not, is a theorem of the system9. Also appropriate com-
pleteness results can be established for R*+R3+R4 and the U and V systems
obtained from this system.

If, however, case (ii) obtains, if a domain of individual items is not
selected, or a context not indicated, it is indeterminate without further
stipulation or interpretation what statements, if any the closed symbolic
sentences of systems R*, UR* or UR* yield, since it is not clear what
referents any referring expressions have or could have or could not have.
There are various ways of slicing through this difficulty or of introducing
an interpretation; for example:

9. A proof of this result can be adapted from the proof of theorem 2 in T. Hailperin
'Quantification Theory and Empty Individual-Domains' J.S.L. 18 (1953) 197-200.
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(a) An interpretation which treats the case as similar to that of a domain
empty of existing items or, better, null of possible items. Case (ii) is
assimilated under case (i).
(b) A move according to which closed sentences are not assigned an
interpretation at least in case (ii) (in case (i) and other cases also for
sentences of R*, it may be argued) because they are not significant.
(c) An interpretation under which all non-compound quantified wff are false
and the inference:

~(Σx)Az)~>(πx)A

is retained. Under this interpretation though all non-compound quantified
wff not all wff are false, e.g. truth-functional compounds such as:

(πx)A = (Σx)A; (πx)(A^B) D . (πx)A D (TΓX)B

are true
(d) A ploy according to which the closed sentences are statement-incapable
at least in case (ii), and perhaps also for a large class of selected domains
or non-usual contexts. How this move can be implemented should emerge
from my suggestion below for completing the theory of descriptions
proposed. Other interpretations remain, e.g. analogues of those made in
different connections by Mostowski and Strawson.

On empty domains. Quantifiers Ά' and 'V of R* are next defined:

(Ax)A^Df(Σy)E(y) ^(πx)A
(Vx)A^Df~(Ax)~A

Therefore [(Vx)A = . (Σy)E(y)& (Σx)A] and [(lx)A(x) D (VX)A(X)] <Λ' & <V
are frequently employed quantifiers. The added condition simply requires
that the domain or universe has an existent member, i.e. that the domain of
individuals is non-empty. So the condition makes explicit a presupposition
made in usual interpretations of restricted predicate logic, viz. [(Σy)E(y)].
Consider that subsystem IRX* of R* the wff of which consists of the wff of
R* which contain no quantifiers other than 'Λ' and 'V\ Now what happens
when the domain of individuals of IRi* is empty. Since [(Σy)E(y)] is false
when no individuals of the indicated domain exist, it follows that all non-
vacuously Λ-quantified wff are true and non-vacuously V-quantified wff
false; and in particular that [(Ax) /] is false. This suggests that \Rλ* is
syntactically isomorphic with inclusive quantification theory, i.e. with
quantification logic when empty as well as non-empty domains are
admitted.

Theorem: IRX* can be completely axiomatized using the A-closures of

IR1: (Ax)(A D B) Z> (Ax)A z> (Ax)B
IR2: A D (Ax)A, provided x is not free in A

IR3: (Ax)A D C* A , provided x is free in A,

together with RR1 & ΪRO: If A is truth-functionally valid and A' is the Λ-
closure of A, then A' ('A' & 'B' represent wff of IRi*).
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Proof: It suffices to show that IR1-IR3 are derivable given R*, and that the
axiomatization is complete. First IR1-IR3 will be derived. When [(Σy)E(y)]
is true [(Ax)Λ(x) = (πx)A(x)]. Since IR1-IR3 hold when (Λ' is supplanted by
by V , IR1-IR3 hold when [(Σy)E(y)] is true. So suppose [(Σy)E(y)] is
false. IR1, expanded by definition, is of the form: (/D/>)Z> ((^D?)D(/Dr));
IR2 is of the form: A~D. f^(πx)A, i.e. / D . A^(πx)A. Thus IR1 and IR2

V V

hold. IR3 expands to the closure of: (£Z)(ΉX)A) D Q A , i.e. ^ ^ ^ '
v v

i.e. X A . Since X A contains y free its closure is the closure of

v v

(Ay) §* A\ i.e. of (Σx)E(x) Ώ(τry)§*A . Since this is of the form: (/=)/>),

IR3 holds. The point of this shuffle with IR3 is clarified if IR3 is replaced
by closures of

IR4: (Λx)A?(Λy) ζ*y A\

IR5: A D (Λx)B D . (f\x)(A^B), provided x is not free in A.

IR* can be alternatively and equivalently axiomatized using IR4 and IR5 in
place of !R3, so an alternative is to show that IR4 and IR5 are derivable.
Since they both hold when V supplants 'A', consider only the case where
[(Σx)E(y)] is false. Since IR4 is then of the form: (/z>/>)=>(/Dtf), it
holds. Also

IR5 = (A Ό(fΏ(Ήx)B))Ό(f^(τrx)(AΌB))
= (f^(Az)(ττx)B)) Z^(^D(A^(ΉX)B); by Comm. and since x is not

free in A.

The completeness of IRX* as an axiomatization of Λ-V quant if icational wff
valid in both empty and non-empty domains can be shown by adapting a
completeness proof used by Hailperin10. The main change, apart from the
systematic introduction of 'Λ' throughout the proof, is the replacement of
<~(Λx)f by '(Vy)(pΏp)'. Since

~(Λx)f=~((Σy)E(y) D (m)f)
ΞΞ (Σy)E(y) (upon choice of a non-null domain for

R*).

addition of ({/\x)f9 is tantamount to addition of '(Σy)E(y)'.
The system IR2* obtained from IRX* by adding R4 as a further condition

on the interpretation (within R*) is therefore, like R*, a syntactical variant

10. T. Hailperin op. cit. Any dispute over the truth-values of vacuous quantifications
would, in the above setting, be automatically resolved in Hailperin's way: for if the
domain is empty

(Λλ')/Ξ- (Ly)E(y)=4-
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of ordinary exclusive quantification theory. Further IRX* is formally
equivalent to a syntactical variant of VRX*. While IRX* is a syntactical
variant of Quine's inclusive quantification theory11, it differs from that
system in interpretation. A system approximating well to Quine's in
interpretation can be obtained from IRX* by replacing Ά9 throughout by 'V\
This system can be restored to exclusive quantification theory by addition
of [(iry)E(y)]. From [(rry)E(y)] using [(πx)(E(x) D . (E(X)ΌA) = A)] it follows:

(Vx)A = (τrx)A=(Λx)A.

On interpretations of predicate calculus. It is hardly surprising, in
view of the above conditional equivalences, that various interpretation -
schemes for quantifiers have not often been disentangled. But for
philosophical applications of the calculus it is most important to distinguish
interpretation-schemes. In particular three standard interpretation-
schemes can be distinguished - where standard interpretations are opposed,
for example, to geometrical and arithmetical interpretations -

(1) A weak interpretation like that of quantifiers V and 'Σ' of R*, where
quantifiers do not carry existential assumptions. Here the domain of
individuals need not be assumed to be non-empty but only to be non-null in
order to retain syntactic variants of all the usual theorems.
(2) A medium interpretation, like that of quantifiers Ά' and <V of IR2*. In
this case it is assumed (for all viable interpretations or applications of the
calculus) that the domain of individuals is non-empty, but not that every
member of the domain exists. If the non-emptiness requirement is
abandoned IR2* gives way to IRi*, a logic in which several of the usual
relationships fail.
(3) A strong interpretation like that of quantifiers 'V and ' 3 \ Under
interpretations like Quine's it is presupposed that all the individuals of the
non-empty domains selected exist: in effect the axiom [(πx)E(x)] is built
into the interpretation. The weak interpretation (1) is more satisfactory
and more comprehensive than interpretations (2) and (3); and adoption of (1)
permits an untrammelled treatment of many problems relating to exist-
ence.12

Thus issues often raised as to the logical truth or analyticity of state-
ments [(Ex)(f(x)v~f(x))] and [(x) f(x) ^(Ex)f(x)] can be illuminated by

11. W. V. Quine, 'Quantification and the empty domain' J.S.L. 19, (1954) 177-179.

12. Both these points are argued, skillfully by C. Lejewski in a paper, 'Logic and
Existence' Brit. J. Phil. Science, V (1954-5), 104-119, which came to my attention
after this paper had been written. Lejewski is not very explicit either about his
quantificational system, which seems to be Rx*, or about the qualifications which
have to be imposed upon interpretations of his unrestricted quantifiers if formal
quantification theory is to be preserved. To count expressions which necessarily
lack a reference as not meaningful, as Lejewski seems obliged to, seems to me
disastrous. Nor am I at all happy about either Lejewski's or Lesniewski's analysis
of 'exists'.
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considering their analogues in R*. Although [(Σx)(f(x) v ~f(x))] is a
theorem, neither [(lx)(f(x) v ^f(x))] nor [(Vx)(f(x) v~f(x))] are theorems.
For

(3 *)(/(*) v~/(*)) S . (Σx)((f(x) v~/(*)) & E(x))
^.(Σx)(f(x) v~f(x))&(Σx)E(x)
i e. (Vx)(f(x) v-/(*))

[(Vx)(f(x) v ^f(x))] is only true if [(Σx)E(x)] is true. Again, though
[(πx)f(x) Ό(Σx)f(x)] is a theorem, neither [(Vx) f(x) D (3#) /(#)] nor
[(Λ#) /(#) D (VΛΓ) /(#)] are theorems; for the first implies the second and the
second is true only if [(Σx)E(x)] is true. But if [(Σx)E(x)] is rejected as not
logically true so, by a rule of rejection, are those statements which imply
it.

On simplifications using identity. A restricted predicate logic with
identity, =R*, is got from R* by adding the binary constant '=' and the
postulates:

R5: x = x
R6: x = y D . A -DB, where x and y are individual variables or constants,
and B is obtained from A by replacing one particular occurrence of X in A
by y, this particular occurrence of x being neither within the scope of
quantifier (πx) nor of (πy) [nor within the scope of a non-extensional
operator}.

Call the proviso on R6 proviso (a). Some advantages of UR* are
available in =R* without corresponding drawbackds. To explain the point
some preliminary results are needed.

y

Theorem: (i) (ττx)A & (Σy)(y=a) D . C* A\
y

( i [ ) SI A\ & &y)(y=a) =>• (Σχ)A-

Proof: Choose y so that y does not occur in A. Then

1. y = a D . Q* ill D Q* A\ by iteration of R6.
v

2. (irx)Az>§xA\; R2
V

Λ X

3. iy=a) D . (τtx)A D X A from 1 & 2 using Comm
y

4. (Σy)(y=a) D . (πx)A D Q A\ since y is not free in A
v

5. (πx)A & (Σy)(y=a) D Q X A\ changing bound variables if necessary
v

(ϋ) S I A\ ^~((™)~A&(Σy)(y=a)); from (i)

D . (Σx)A v ^(Σy)(y=a) result by importation»

Consequently the requirement in R2 that a b e a consistent constant can be
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can be replaced by the requirement on αthat (Σy)(y=a), and the symbol '<>'
of UR* can be defined for =R* thus:

O(x)^Df(Σy)(y=x).

The postulates of UR* and of URX* are then immediately derivable. But
though constants can be handled in =R* quite satisfactorily the ranges of
free variables of =R* are still confined to consistent values. For instance,
[Primecharlie = Primecharlie] does not follow from R5. These restrictions
could be lifted, much as in UR*, by adding explicitly a condition (Σy)(y=x)
on each distinct variable x occurring free in all axioms of =R* except
instances of R5 and R6. Instead a system =VR*, which allows for null
domains, will be erected. Its primitive symbols are those of =R*. '<>' is
defined as above. The postulates of =VR* are those of VR* together with
VR6, which is the same as R6 (except in allowing x and y to be descrip-
tions) and

VR5: x = x, where x and y are individual variables, individual constants (or
definite descriptions).

Various modifications of usual restricted predicate logic with identity
designed to eliminate existential presuppositions of the usual logic can be
developed in =R*. For if restricted variables w, itf, . . . such that
E(w),E(w') . . . hold, are introduced the following relations result.

Theorem: (i) E(x) = (ly)(y=x)

(ii) (Vx)A & (lz)(z=y) D §* A , y an individual variable or
y constant

(iii) ^ * A & {lz)(z=y) D (1X)A, y an individual variable or
y constant

(iv) <yx)A D 5 * A
ŷ

(v) $X

wA\ D ( 3 * ) Λ
y

(vi) (V3>)((v*μ D S y ̂ | )

Proof: (i) E(x) D . E(x) & (x=x)
D . (Σy)((y=x) &E(y))9 i.e. (ly)(y=x)

y = x&E(y)z)E(x); by R6
(Σy)(y=x & E(y)) -DE{X) by R1, RR2, since y not free in E(x)

(ii) & (iii) from

(Vx)A&E(y)z>§*A
V

S y ^ | &E(y)Ώ(l3ήA by(i)

(iv) & (v) from (ii) and (iii), using E(w) and (i).

(vi) from E(y) D . (VΛΓ) A D β * A\ by RR1
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Theorem: The system Hi obtained from =R* by replacing V throughout by
'V; and taking the V-closure of every axiom is a subsystem of =R*, i.e.
the notation of the resulting system can be defined using the notation of =R*
and every theorem of the resulting system is a theorem of =R*. The

IP

system Hi is effectively the system obtained from Church's system F by
taking the V-closure of every axiom, and adding the symbol Έ' and
individual constants.
Theorem: The system H2, obtained from Hi by deleting the primitive
symbol Έ' and by deleting the clause (or y is a consistent individual
constant9 from the second axiom scheme is a subsystem of =R*.

The second axiom-scheme of H2 is the V-closure of:
V

(H): (Vx)A D Q A , where y is an individual variable.

ζ//A' symbolizes the V-closure of A.

Theorem: A is a theorem of H2 if and only if (A v ~A) <—>^4 is a theorem
of a notational variant of Hintikka's quantification theory without existential
presuppositions13 in which Hintikka's "free variables" are taken as
individual constants.

In both H2 and Hintikka's system
v

is a theorem but
v

is not a theorem scheme.

Theorem: The system H3 obtained from =R* by replacing V throughout by
ζV, by replacing R2 by (H) by deleting Έ' but restricting in interpretation

free variables x, y, z . . . so that E(x), E(y), E(z) . . . respectively hold, is
a subsystem of =R*.

H3 differs from Leblanc's and Hailperin's system for singular infer-
ence14 in only one major respect, namely that [x=x] does not hold uncondi-
tionally, i.e. for any constant whether consistent or not. A system H4 which
is deductively equivalent to the Hailperin Leblanc system can be obtained
by replacing R5 of H3 by VR5, only this move leads to complications in the

13. J. Hintikka 'Existential presuppositions and existential commitments' J. of Philoso-
phy 56 (1959), 125-137. A symbol with the systematic rules of '< >' can be
defined for H 2. If (/v ~f) is added to Hintikka's system as an axiom, the logics are
deductively equivalent (though there are notational differences). Both systems
require non-null domains for interpretations.

14. H. Leblanc and T. Hailperin ^on-designating singular terms' Phil. Review 68
(1959), 239-243.
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theory of descriptions. Since [a=a] holds unconditionally in H4, H4 is
stronger than H3 or H2.

To axiomatize H3 and H4 satisfactorily a system allowing for re-
stricted variables such as tx/E(x)\ i.e. 'x such that sexists ' is wanted.
Systems containing restricted variables are most valuable here for two
reasons: - First when it comes to developing subsystems like FR*
of R* and =VR*; for instance, ((Vx)B(x)' could then be replaced by
ζ(τrx/E(x)) B(x/E(x))\ Secondly, for the development of more comprehen-
sive systems which permit, unlike the makeshift systems URi and VRi, an
unfettered treatment of impossible items; more accurately of systems
under the interpretations of which may be taken substitution-ranges for
individual variables which include or even consist entirely of inconsistent
referring expressions. It is possible, for instance, to construct a
Meinongian system in which =R* can be embedded as that subsystem which
holds for all consistent items. The presentation of such a system lies
beyond the scope of the present venture.

On definite descriptions. Russell's analysis of definite descriptions
(PM, *14.01) can be replaced (omitting scope indicators) by:

A(C\x)B(x))^Df(Σy)((πx)B(x)^x=y) & A(y)).

Substituting Έ' gives:

E(Ox)B(x))^Df(ly)((iix)B(x)^.x=y) = (l\x)B(x),

a good analogue of *14.11, though reached without the need for the
separate definition *Ί4.02. To eliminate difficulties of scope binary
quantifiers which satisfy equivalences:

(τrx)(B(x), A(x)) Ξ (irx)(B(x) D A(X))
(Σx)(B(x)9A(x)) Ξ (Σx)(B(x) &A(x))

may be introduced. Then 'V can be defined as a binary quantifier thus:

(Dl): (1x)(B(x), A(x)) =Df (Σx)((τry)(B(y) Ξ . y=x), A(x)).

When A(x) is the smallest sentence context in which individual or descrip-
tive expression V may grammatically occur (0\x){B(x),A(x)) may be
replaced by A(C\x)B(x). Not only can the theory of descriptions be
simplified when constructed on (Dl); more important we are no longer
forced into the embarrassing position of having to say that such statements
as "Ponce de Leon sought the fountain of youth", "The King of France is
the king of France" are false or else not immediately treatable under the
theory. In fact, it follows [(f((\x) f(x)) = (Σlx) f(x)] and as a special case
[E((Λx)E(x)) = (llx)E(x)]. Using [E(y) & (!*)(/(*), x=y) D. f(y)] it follows:
[(1*)(/(*),E(*)) D (!*)(/(*),/(*))] but the converse [ ( Ί * ) ( / ( * ) , / ( * ) ) D (!*)(/(*),
E(x))]9 i.e. (written in the usual way) [/((1#)/(#)) ΏE((lx) f(x))] is not a
theorem. Thus Lambert's requirements on descriptions15 are satisfied,

15. T. C. Lambert op. cit. Some such requirements must be met if paradox is to be
avoided.
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and those versions of the Ontological argument which use the last statement
as a premiss are undermined.16 An additional gain is that arguments like:

Scott is the author of Waυerley
. ' . Scott exists if and only if the author of Waυerley exists,

can be directly symbolized and their validity checked. Consider, e.g., the
following formalization of a vogue solution of the Barber paradox. Let 'h'
symbolize the monadic predicate 'lives in Alcoa, is male, and is a shaver'
and 'sh' the binary predicate 'shaves'. Then given the definition of the
barber, b, as:

1. b =df C\x)(h(x) & (τix)(h(y) D . sh{x,y) = ~sh(y,y)))

it follows, using natural deduction:

E(b)

E(C\x)(h{x) & fay)(h(y) D . sh(s,y) ^ ~sh(y,y))))
(Σx)(ττx)Wz)&(iry)My) ^.sh(z,y)^~sh(y,y)) = (*=*)) &E(x))
h(w) (instantiating twice and using simplication)
h(w) . sb(w,w) =~sh(w,w) (instantiating and using [w=w])
sh(w,w) =~%h{w,w)

2. E(b)Ώf

3. ~E(b)

This solution may be extended to apply to other paradoxes: set theoretical
paradoxes can be eliminated by replacing the abstraction axiom by:

(Σw)(πx)(xεw = . Λ(x) & E(x)), where A does not contain w.

For the full development of set theory from this main axiom further condi-
tions specifying when items exist have to be added. It then emerges that a
more attractive axiom, which does not imply the existence of any sets, is:

(Σw)(πx){xεw) =. A(x) &OE(x)); where A does not contain w.

Conditions for possible existence (or for existence) which suffice for most
of set theory can be obtained using one of the following equivalences:

(i) OE(x) = xεV where, however, in the implicit
(ii) OE(x) = M(x) definitions of

'V (given by Quine17) and of 'M' (given by Gδdel17) V and 'Σ' replace usual

16. On such versions - historically the most important versions - see J. Berg 'An
examination of the ontological proof Theoria XXVII (1961) 99. Since the threat of
the Ontological argument has been one of the main motives for excluding existence
as a property, it is of no little importance that premisses of these versions fail. If
Meinong's law [(πx) O ~E{x)] is correct all versions of the Ontological argument
which appeal to logical necessity must fail.

17. W. V. Quine, Mathematical Logic Revised edn., Cambridge Mass. (1951); K.Godel,
The Consistency of the Continuum Hypothesis Revised edn. Princeton (1951). I do
not think the solutions of set-theoretical paradoxes suggested in the text are the best
solutions.
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quantifiers. Two important consequences ensue. First, it follows that the
Russell set and related sets cannot possibly exist. Definitional versions of
set-theoretical (and other) paradoxes may then be avoided by accepting
Lesniewski's requirements on ontological definitions, where, however, his
cxzxy addition to definiens is replaced by an Έ(x)' or, if the second
abstraction axiom is preferred, an iOE(x)9 addition to definiens. Secondly,
if the second axiom scheme is used along with =R* most of set theory and
classical mathematics can be developed without any commitment to the
existence of classes or mathematical items such as numbers.

In both =R* and =VR* definite descriptions can be admitted together
with and on a par with individual constants. Just as [a=a] is not derivable
in =R* unless a is a consistent constant, so \0x) f{x) = 0χ) f(x)] is not
derivable unless 0x) f(x) is a consistent description: for (by definition)

O((Ί*)/(*)) - (Σy)(y = Qχ)f(χ)) = (nχ)f(x),

and

(Σ !*)/(*) =.(!*)/(*) = (!*)/(*)•

Because of these consequences a theory of descriptions based on (Dl)
cannot be employed in =VR*. For [~O(Σx)(f(x) &^f(x))], but it follows
from VR5 that [{Λx)(f(x) &~f(x)) = 0x) (/(#) &~f{x))] holds. A different,
still not completely satisfactory theory of definite descriptions, can be
constructed for =VR* as follows: - 'V is introduced as a primitive symbol:
(\x)A is wff if A is wf and contains x free, x is bound in (Λx)A. From VR5
it follows at once:

Ox) A = Ox)A and from VR6:
a= Ox)A D.B{μ) =B((Λx)A)

Thus an axiom scheme indicating at least when a = (Ίx)̂ 4 is wanted. The
following scheme recommends itself:

VR7: a((ny)(y = Q*)A(x) =. A(y) & (τix)(A{x) z>x=y)))18

From VR7 it follows using VR2:

o(y) =>. y = 0χ) f(χ) =. f(y) & MiΛ*) ^ *=y)

Since (πy)O(y) there follow:

{Σy)(y = 0χ) /W) s(Σy)(/(y) & W(M ^ *=y))
O(0x)f(x))^(Σly)(f(y))
E(θχ)f(χ))^(Hy)f(y)
O((I^)/W)D/(OΛ)/W)
O(y) Ώ. y = (iχ){χ=y)
(iry)(y = (1*)(x=y)).

From VR6 and VR7 it follows, choosing y not free in A(x) and B(x):

18. Compare T. C. Lambert op. cit.
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a((vy)(y = Qx)A(x) D . B(y)=B((Λx)A(x)))
a((iry)((B(Λx)A{x)) &y = {Λx)A{x) z> . B(y) &A(y) & {τrx)(Λ(x) D . x=y)))
a{B{Λx)A{x) D . (Σy)(y = Ox)Λ(x)) z>(Σy)(B(y) &Λ(y) & (irή(A(x) D .x=y)))
a(Oi0x)A(x))Ώ.B((^A(x)) Ώ (Σy) ((πx) (A(x) Ξ . x=y) &B(y)))
a((τry}(B(y) &A(y)&(<πx)(A(x) D . (x=y) D . B ( ( Ψ M ) )

a((Σy)(W(A(x) = . y=x) &B(y)) z>. B((1x)A(x))

Thus the main equivalences of the theory of descriptions in =R* holds in
=VR* under the condition <ζ>(Ίx)A(x)), provided the free variables are
C> -qualified. In particular, then:

(l\x)A(x) =E{(Λx)A{x)
{l\x)E(x) = E(Ox)EM)
O(0x)E(x)) Z){llx)E(x)16

The theory of descriptions constructed for =VR* works tolerably well for
all consistent descriptions. It does not work so pleasingly when applied to
inconsistent descriptions. This is the fault not so much of the theory of
descriptions as of the quantifier-free logic of =VR* which, because it
admits predicate negation only as sentence negation, excludes such results
as:

/((!*)(/(*) &/(*))) &ΛQχHfM &Jto))
The law of contradiction [~(f(x) &f(x))] fails for inconsistent constants and
descriptions,.

So far Russell's case for introducing descriptions through contextual
definitions has not been disputed. But Russell's case has been undermined
by more recent work on descriptions. The Russellian approach depends on
a sharp distinction between logically proper names and descriptions. Since
definite descriptions have been admitted in the interpretation as terms on a
par with both logical and non-logical proper names, Russell's distinction
has been virtually abandoned. Descriptions are introduced by definitions
chiefly for reasons of economy. It would accord equally well with the
approach adopted here to introduce descriptions into R* by treating 'V
along with '=' as a primitive and adding further postulates.

Improvements can be grafted onto the theory of descriptions outlined
for =R*. For the theory presented so far is incomplete in an important
respect, namely with regard to existential import of definite descriptions.
The following points have to be taken account of. Definite descriptions
which do not carry existential import are often used; e.g. descriptions oc-
curring in nonextensional sentence contexts, descriptions coupled with
onto logical predicates such as 'exists' and 'is impossible' and descriptions
employed in fictional contexts. But very often when people make statements
using 'the . . . ', 'some . . . ' and 'all . . . ' they presuppose or imply, even
though they generally do not assert, that the items they refer to exist.
These points cannot be adequately represented in classical logic. In
classical logic furthermore there is a marked but scarcely vindicated
differentiation between the existential import of 'the . . ' and 'some β . '
and that of 'all . . ' . Notice, however, that it is in the general consistent
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with '(Σx)f(x)'9
 ({ΉX) /(x)' and '(Ί#) f(x)' to add on either '<££(#)' or *&~E(x)'

though not both. Therefore the way for a more satisfactory formal treat-
ment of existential import is clear: the way is open to adjoint further
conditions which relate (the making of) 'all-' 'some-' and 'the-' statements
to existence statements. Two ways of endeavouring to represent better the
regular uses of definite and indefinite referring expressions are in-
vestigated.

The first way starts with the introduction of the symbol '—ι' read
'yields the statement' or 'is used to make the statement [ ] ' 1 9 . Two valued
logic is restricted in its application to expressions filling statement
brackets. The following condition is imposed:

[(Σr) .qμ(P)-*[r]]-[Kp(q)l

where, in the relevant cases, qu(q) is an existence sentence, i.e. one in
which Έ9 or ' 3 ' occurs essentially, and 'Kp' is a function from sentences
which depends onqu(p). An important case under the condition is

(D2): [qu((1^(/(*),s(*))-^[(1*) /(*),*(*))]] - [Kg(lx) /(*)].

The theory of descriptions of the first way is given by (Dϊ) and (D2) to-
gether with a more detailed specification of 'Kg'. If qu(g) is a non-
compound extensional predicate Kg((3x) f(x)) = (lx)f(x). Thus if [(lx)f(x)]
is false (in the relevant context) qu(C\x)(f(x),g(x))) does not yield the
relevant statement. If qu(g)9 for a given value of the argument, is a
propositional attitude or belief-weighted predicate like 'sought by a\
'believed by a9 or 'thought by a9 or an ontological predicate then
Kg"((3 x) f(x)) =4-- though for some propositional attitude predicates a case
can be made out for either Kg((lx)f(x) = Ba((l x) f(x)) or Kg((3 x) f(x))=
~>Ba(^(lx) f(x)). And so on. By introducing the function 'K' some
deficiencies of recent theories about descriptions are removed. The
current account approximates to Frege's natural theory and to Strawson's
earlier theory. Other difficulties such as those presented by lying can be
evaded by appropriately modifying the usual definition of lying. The

symbol '> $>' read 'use of . . . referentially implies' or 'presupposes',
which separates off one of the uses of 'imply,' can be defined:

q u ( £ ) > - ^ [Kp(q)]^Df [(Σr) . qμ{p)->[r]] ->[Kp{φ]

e.g. use of 'The king of France likes his beer cold' referentially implies
that there is a king of France iff that the sentence yields a statement
strictly implies that there exists a king of France. To elaborate these
points the underlying three-valued logic, with third value: statement-
incapable, and containing statement-brackets, 'qu' and ' ι' would have to
be presented.

The second way explicitly adds existential clauses to descriptions in

19. On the quotation-function 'qu' and statement-brackets see L. Goddard and R. Routley
op. cit.



SOME THINGS DO NOT EXIST 275

cases where import is indicated by the context of occurrence of the
description. This existential import is indicated in many usual contexts.
The more familiar description operator Ί E > , where the superscript Έ9

displays the existential loading, can then be defined:

(D3): OEX)A(X) = B / 0X)(A(X) & E(X)).

The description theory of the second way is given by (Dl) and (D3) together
with a more detailed specification of the contexts in which ζV and Ί E >

respectively appear. This specification will parallel the specification of

'Kg*.

On ontological commitment. If systems like some of those introduced
are viable Quine's related criteria for ontological commitment of a
theory20— (i) to be is to be the value of a bound variable, and (ii) entities of
a given sort are assumed by a theory if and only if some of them must be
counted among the values of the variables in order that the statements af-
firmed in the theory be true—are defective without repairs. For if a is a
value of a variable bound by a Σ-quantifier or even of a variable bound by a
V-quantifier it does not, in general, follow that a exists. Such criteria are
only correct under the special condition that relevant domains or values of
variables are non-empty, i.e. are so restricted as to include existent
items; but in such an event the criteria are quite circular. In correcting (i)
it may be replaced by (iii), to exist is to be the value of a variable bound by
' 3 \ That (iii) is correct, if not very valuable in testing a theory for
ontological commitment, can be shown by exemplifying it in (iv), a exists if
and only if a is the value of a variable bound by ' 3 \ For (iv) amounts to
the theorem: E(a) = (lx)(x = a). Quine's earlier thesis to the effect that
the only way a theorist commits himself ontologically is by use of existen-
tial generalization also directly reflects a theorem, viz. [E(x) D . f(x) D
(3ΛΓ) f(x)\ i.e. existential generalization holds only if the item generalized
upon exists.

Other criteria are assimilated with (iii) under (i); in particular (v), to
be possible (in one sense) is to be the value of a variable bound by 'Σ'
(under the intended interpretation of 'Σ'). Criterion (ii) is also unspecific
as to exactly what is assumed about the items postulated. For instance, in
order that the statement [(Σx)^E(x)] of Rλ* be true it is not assumed that
there exist entities which satisfy the statements, i.e. which don't exist, but
only that some (possible) items do not exist or that not all possible items
actually exist.

Finally there is no need for a theorist using extended predicate logics
or set theories with quantifiers (Ή' and (Σ9 to commit himself to the
existence of any properties, classes or numbers. Such logics may be
ontologically neutral - at least as far as what exists goes. Since the

20. See W. Quine Word and Object Cambridge Mass. (1960), 242-3;
Point of View Revised edn. Cambridge Mass. (1961), 5-14, 103-107, 130-131; 'On
Universals' J.S.L. 12 (1947), 74.
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expression Όntological commitment' is far from unambiguous, it should be
emphasized that one who speaks of possible items does not thereby
necessarily commit himself to various beings or entities. Not all possible
items exist. One can convincingly argue that possible non-existent items
are necessarily not entities and that they lack being.
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