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Introduction: Circa 300 B.C., Euclid of Alexandria {not Euclid of
Megara) borrowing partly, but not altogether, from the Pythagorean School
proved (Elements; Book EX, Proposition 14) the following result as rendered
into modern language from the Greek [l]: If a number be the least that is
measured by prime numbers, it will not be measured by any other prime
number except those originally measuring it. This uniqueness theorem of
Euclid contains the spirit if not the full essence of what is now called by
many texts (see, e.g., [2], [3], and [4]) the Fundamental Theorem of Arith-
metic (abbreviated FTA) and by nearly as many other texts (see, e.g., [δ]
and [θ]) essentially the Unique Factorization Theorem (abbreviated UFT),
viz., Every natural number n > 1 has a unique representation of the form
w = Pi 'Pz Φk> where k is a natural number and the pi are primes
with possible repetitions. The proof given by Euclid for his Proposition 14
of Book EX makes use of Proposition 30 of his Book VII, viz.} If two
numbers by multiplying one another make some number, and any prime
number measure the product, it will also measure one of the original
numbers. The modern texts cited above, among others, use this result
together with formal induction in order to establish uniqueness of prime
decomposition. The principal argument against Euclid having known the
essence of the FTA is that throughout the Elements his products contain at
most three factors (his argument in Book EX, Proposition 14 holds not only
for square-free numbers with at most three factors, but for factors with
repetition too; further T. L. Heath [l] in his Scholium to the Proposition 14
explicitly states, "In other words, a number can be resolved into prime
factors in only one way.") The Greeks established their uniqueness result
with the maximum generality (number of factors) that they clearly conceived
with their geometrically oriented notation. Since the analogous result with
two factors (not given in the Elements) is not a corollary to the result with
three factors, it is reasonable to assume that formal induction either did
not occur to them or else was considered logically unacceptable.
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The FTA as we know it through Gauss [7], viz., n =/)f1 p%m,
where m and α, are natural numbers and the p{ are distinct primes is a
highly sophisticated analogue of Euclid's model which makes use of the
notion of an exponent which had been introduced into mathematics in the
meantime. Gauss seems to have been the first person to give a complete
published proof to the FTA as we usually know it, although, e.g., Newton,
Wallis, and Euler made use of it in their arithmetical investigations. The
main purpose of this paper is to show by analogical reasoning and formal
induction that infinitely many other "models" of the FTA are available.
The simplest of those "models" is shown to yield a rich vein of new
theorems for elementary, algebraic, and analytic number theories.

Uses for the FTA: In order to appreciate more fully the potential of
new models of the FTA let's review briefly some of the applications of
Gauss' model of the FTA. First, Hardy [8], Ingham [4], and Mordell[9]
write to the effect that the Fundamental Theorem is the foundation of all of
higher arithmetic, and that which gives deep significance to the study of
prime numbers themselves beyond that of intellectual curiosity. Secondly,
Gauss' theory of residues and congruences hinges to no small extent upon
the FTA as does Euler's Identity (which Hardy and Wright[3], among others,
call "an analytic expression of the FTA.") Thirdly, the Fundamental
Theorem of finitely generated abelian groups makes essential use of the
FTA for the case of finite abelian groups. More recently K. Godel [lθ]in
his epoch paper of 1931 uses the FTA to number the wffs and proofs in his
axiomatic number theory that has undecidable propositions. Lastly those
engaged in information theory have made use for FTA in order to establish
the form of the entropy function of that theory (see, e.g., [ll]).

New Models of the FTA: With these points in mind let's search for new
models of the FTA remembering that, if uses for these new models do
come, it may be centuries into the future. The basic tool for our investiga-
tion is mathematical induction—one of the most powerful methods of logic,
algebra and number theory, indeed, of analysis itself. The method is called
reflexive induction, i.e., when possible apply a rule to a portion of the
entity obtained from a prior application of that same rule. An induction
upon the whole object considered as an unanalyzed entirety is called
irreflexive induction. E.g., Euclid's Algorithm is obtained from the Divi-
sion Algorithm by reflexive induction upon the Division Algorithm. But a
concatenated repetition of an entire pattern is an irreflexive induction upon
that pattern. Further a reflexive induction may be either finite as with a
continued fraction expansion of a rational number or infinite as with a con-
tinued fraction expansion of an irrational number. Similarly an irreflexive
induction may be either finite as with a finite iterative array of canonic
cells or infinite as with a nonterminating array of canonic cells.

Can one use reflexive induction upon the FTA? Yes! One may apply
the FTA to its own natural number exponents. Clearly, by the Well-order-
ing Principle, the reflexive induction is finite. Call the final unique con-
figuration of primes alone that represents a natural number, a mosaic,
E.g., the mosaic of 400 is ^2.52. Thus, Lemma {new model of FTA). There
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exists a one-one effectively calculable function from the natural numbers
onto the mosaics identify 1 with the "empty" mosaic .

From this formulation comes a number of interesting functions at the
interface between recursive function theory and numberttheory [l2], [13],
[l4], [l5]. E.g., define ψ by ψ(n) is the ordinary product of primes alone in
the mosaic of n, and ψ(l) = 1. Clearly ψ is effectively calculable, and the
square-free natural numbers, among infinitely many others, are invariant
under ψ. Also ψ(m) φ m for infinitely many m. The interesting fact is that
if one puts a(n) = card{αεiV a**n, ψ(a)=a} and β(n) = card {aεNia^n,
ψ(a) Φ<z}, where nεN and N is the set of natural numbers, then it can be
shown that lim [a (n)/β{n)] = 7/(Ή2 -7), which is transcendental over the ra-

n—>oo

tional numbers; see [l5]. Further, we are in a position to generalize the
classical concept of a multiplicative function. Recall that a number-
theoretic function/ is called multiplicative when/(α δ) =f(a) «/(δ), if (a,b )
= X. Call a number-theoretic function g generalized multiplicative when

g(a b) =g(a) g(b), if the mosaics of a and b have no prime in common.
Upon defining ψ2 = ψ(ψ( )), it should be clear that every multiplicative
function is generalized multiplicative, and that ψ2 is an example of a gen-
eralized multiplicative function which is not multiplicative. By analogy,
call a number-theoretic function h generalized additive when h(a b) =
h(a) + h(b), if the mosaics of a and b have no prime in common. Then every
additive function is generalized additive, and log ψ2 is a generalized addi-
tive function which is not additive. Further there are infinitely many gen-
eralized multiplicative functions which are not multiplicative.

Another interesting effectively calculable, number-theoretic function
ψ* is defined by ψ*(n) is the sum of the primes alone appearing in the
mosaic of w, and ψ* (X) = 0. Clearly ψ* is additive, i.e., ψ*(a-b)
= ψ*(a) + ψ*(b), if (a, b) = X. Interestingly enough ψ* maps the natural
numbers > 1 onto themselves. This result follows by the famous theorem
of Schnirelmann (proved circa 1930) which asserts that every natural num-
ber > 1 is the sum of a finite number of primes. Another interesting fact
about ψ* is that the distribution function of its fixed-points is essentially
the distribution function for the primes. Finally one can easily relate ψ and
ψ*. Thus define ψ** by ψ**(n) is the sum of the primes alone in the
classical Euclidean model of the FTA. E.g., 60 = 2-2-3-5 and thus ψ**(60)
- 12^ As with 1//*, Schnirelmann's theorem established out ones s for ψ**.
Thenψ* = ψ**(ψ(-)).

Within the present framework one can easily start to formalize the
intuitive notion of an exponential number theory to supplement the standard
additive and multiplicative number theories. Here one studies, e.g., ex-

ponentiated sequences Pi so convenient for establishing, e.g., that
ψ is onto the natural numbers. By analogy to super-additive and super-
multiplicative number-theoretic functions one can show that eΨ satisfies an
interesting functional inequality of the form f{a •&) f(a)f^ , if (a,b) = 1. By
analogy to the author's concept of a generalized number-theoretic function,
one can define a generalized super-exponential function g as one which
satisfies the inequality g(a-b) ^g{a)g(b), if the mosaics of αand b have no
prime in common.
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Upon applying Gauss' model of FTA to its exponents (uniformly for all
natural numbers) any prescribed finite number of times we intuitively
obtain a model of FTA. If two schemes for uniquely representing all
natural numbers by an effective method provide the same presentations for
all the natural numbers then the two schemes are said to be the same. In-
tuitively there cannot be more than tt0 classically conceived models of the
FTA, since the set of all finite complexes of natural numbers has this
cardinality. But might there be only finitely many models of the FTA? No.
By considering exponentiated sequences the schemes obtained by applying
Gauss' model to its exponents any prescribed finite number of times uni-
formly across all natural numbers can be shown to yield distinct schemes
(i.e., for any pair of such schemes there exists in a constructive sense a
natural number with two different presentations by means of those two
schemes. Thus there is at least (and hence precisely) tf0 classically con-
ceived models (e.g., involving the concrete prime numbers and composite
numbers) of the FTA. Each of these schemes is mixed in the sense that, in
general, the natural numbers will be represented by both primes and com-
posites. A countable infinitude of pure models (determined by primes alone
as with Euclid's model and the "mosaic model" given by the Lemma) can
be generated from those mixed models by expanding their compos-
ite numbers with Euclid's model (which is significant for additive and ex-
ponential theiries but not for a multiplicative theory) or with sufficient
repetitions of a mixed model. Hence new models of the FTA are available
in abundance, and in a vague sense, complement with arithmetical results
the discovery of non-Euclidean geometries during the last century. By
striking analogy to the geometric situation with its Euclidean geometry,
Riemannian geometry, and Lobachevskian geometry, the arithmetical situa-
tion has three forms, viz., the Euclidean, the pure non-Euclidean, and the
mixed. In both the arithmetical case and the geometrical case the forms
are mutually exclusive and exhaustive.

In closing we note that no mention is made of schemes for expanding
the exponents in Gauss' model of the FTA by means of sums of kth powers
of natural numbers (i.e., introducing the general Waring problem) nor is
probabilistic number theory considered. Other contexts in which analogous
results to the present paper hold are: unique factorization domains (e.g.,
polynomial domains), ordinal factorization of finite relations [l6J, ideal
theory (especially Dedekind's formulation of the Fundamental Theorem of
Ideal Theory), generalized primes [17], and computable number theory, [14]
and [18]
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