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CHURCH'S THEOREM ON THE DECISION PROBLEM1

THOMAS E. PATTON

I. Introduction. This expository paper borrows from three main sources to
present a proof of Church's theorem in the form

(1) The set of valid quantificational formulas is not effective.

A set C of formulas is called effective if there is a clerical routine
which, for any given formula F> correctly answers Yes or No to the ques-
tion whether F εC. (Sets and relations of numbers will be called effective
in parallel fashion.) But effectiveness, being an intuitive notion, must be
replaced by a suitable formal analogue if we are to have a claim which
admits of mathematical proof. The notion of recursiveness has been cast
in this role, in what seems a paradigm of successful explication. Using this
technical term and another soon to be explained, then, we*arrive at

(2) The set of Gδdel numbers of valid quantificational formulas is not re-
cursive.

While (2) is provable, however, in order to infer (1) we need an addi-
tional premise, a version of Church's Thesis, namely,

(3) All effective sets of numbers are recursive.

But by using (3) and its analogue for relations, it turns out that a proof
of (1) is possible which saves labor by not using (2) at all. This general
strategy, whose source is Quine [6], will be the one followed here. The plan
is (a) to exhibit a nonrecursive set of numbers, (b) to establish a link be-
tween recursiveness and quantificational validity, and then (c) in terms of
this link, to show that the denial of (l) implies that the set presented in (a)
is recursive. This proof, while owing its spirit to Quine, won't follow him
in details, however. For phase (a), we borrow the same diagonal argument
as Quine does from Kleene [3], but here adapt it to a definition of recur-
siveness, adapted from Smullyan [7], which lends itself particularly well to
the purposes of phase (b).2

II. Recursive enumerability and recursiveness will be treated in terms of
the elementary arithmetic (EA). An EA may be defined as a finite set of
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formulas, as defined below, called axioms, and an ordered finite set of
symbols called digits. Formulas are written using digits, right arrows,
commas, other symbols called variables, and others called predicates.
Calling a finite string of symbols composed of digits and/or variables a
term, an atomic formula is a predicate followed by a finite number of terms
with commas between them. A formula, finally, is either,an atomic formu-
la or else two formulas with the right arrow between them. (Formulas with
two or more arrows are to be read as having association to the right.)

An E A is called n-adic if it has just n digits (except that an EA with
just one digit is called unary.) We will construe the digits of an n-adic EA
as names of the first n positive integers. Then if d0, du . . . ,dk are each
one of the digits of an n-adic EA, the string d&.. .dγd^ which is called an
n-adic numeral, will be construed as naming the number do + ndι + n2d2 + . . .
+ nkd%. For the special case of a unary EA, we note that a string of k
digits thus comes to name the positive integer k.

One formula is said to follow from another by instantiation, and is
called an instance of the other, if it is obtainable from the other by uni-
formly putting numerals for all variables. Also, a formula F is said to fol-
low from two others by modus ponens if the two others are an atomic form-
ula G and the formula ζG->F\ A proof in an EA S is then defined as a
sequence of formulas each of which is either an axiom of S or follows by
instantiation from a previous formula of the sequence or follows by modus
ponens from two such previous formulas. The sequence is called a proof of
its last formula, which is called a theorem of S.

A predicate P of an n-adic EA S is said to represent a set Qof numbers
(positive integers) if for every number x, x ε Q iff P followed by the n-adic
numeral of S that names x is a theorem of S. Predicates are said to repre-
sent relations of numbers, seen as ordered m-tuples of numbers, in par-
allel fashion. We call a set Q of numbers recursively enumerable if a
predicate of some unary EA represents Q. The set Q is called recursive,
finally, if both Q and its complement Q are recursively enumerable. Again,
parallel definitions are given for relations of numbers.3

As an example, consider the unary EA whose digit is the arabic num-
eral Ί' and whose axioms, in which Έ' is a predicate, V is a variable,
and '11', ζx9

9 and (xll9 are terms, are the formulas

(4) Ell

Ex -> Exll

If we subjoin to(4) the following two formulas, which arise by instantia-
tion and modus ponens respectively, the sequence that results is a proof in
this EA of the theorem Έllll':

(5) Ell — Ellll

Ellll

Where X is a unary numeral, the formula 'EX9 is provable here, plain-
ly, iff X names an even number—hence the set of even numbers, which ζE9



CHURCH'S THEOREM ON THE DECISION PROBLEM 149

represents, is recursively enumerable. This set is also recursive, for the
predicate Ό* represents the set of odd numbers, its complement, in the
unary EA with axioms ζ0V and 'Ox ~+0xll \

Some recursively enumerable sets are not recursive, however, and this
crucial fact must now be established. First of all, for the balance of this
section, let us assume that every unary EA is written using just the six
symbols Ί', 6F\ V , the right arrow, the comma, and the prime. This
economy won't decrease the number of sets representable in unary EA's,
for we may add primes to ζF9 and ζx9 when additional predicates and vari-
ables are needed. Now consider all concatenations of one or more EA
formulas written in these six symbols. By dint of clerical routine, we may
put these in lexicographical order, in which shorter concatenations precede
longer ones, with the order being alphabetical when the length is the same.
This allows us to assign to each concatenation, as its Godel number, its
rank in the ordering. We next remark that both unary EA's and proofs
within them may here be seen, harmlessly if artificially, as concatenations
of formulas. In fact, every such concatenation uniquely determines a unary
EA and a unary EA proof.

As a last bit of notation, for any number m, let g(m) be the concatena-
tion of formulas whose Godel number is m and let F(m) be the formula that
consists of ζF* followed by m tokens of the digit ζl\ Now consider the re-
lation K borne by a number m to a number n iff g{m) is a proof of F{n) in
the EΔg(n). From the analogue of (3) for relations, we see that if is re-
cursive, since K is plainly effective. Let us next show that the setD of
numbers n such that F(n) is provable in g(n) is recursively enumerable.
From the fact that K is recursive and a fortiori recursively enumerable,
we know that some predicate R represents K in some unary EA. But this
EA becomes one in which a new predicate P represents the set D if we
simply add the axiom ζRy,x -* Px\

D is not recursive, however, for suppose that it is. ThenZ), being re-
cursively enumerable, is represented in some unary EA by a predicate
which, since typographical alterations are possible, may be taken to be Ψ\
Hence where s is the Godel number of this EA,

(6) (n) [n £D<=>F(n) is provable ing{s) ]

But it follows from the definition of D that

(7) (n) [n ε D<ξ=$>F(n) is provable ing(n)]

Letting n be s in (6) and (7), we obtain a contradiction.4

III. Quantificational arithmetics. In order to establish a link between re-
cursiveness and quantificational logic, we next prove a normal form theo-
rem about unary EA's. A unary EA formula will be called normal if each
of its terms is either a single variable or a numeral. Moreover, each
unary EA formula has what we will call a normal version. This is obtain-
able from the given formula by a series of transformations based on the
following rule, in which C is the formula at hand at any stage: if C has a
term that contains a variable Λ; and a stringy, either another variable or a
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numeral, delete y, replace x by a new variable z, and add tAx>y9z
i to C as

an antecedent. For example, the upper of the two formulas below is trans-
formed into the lower by three applications of this rule:

(82L)GylH->Hxlly

(8b) Az2,y,z3 -> Ax,ll,z2 -> Ay\lll,zγ -» Gzλ ••-• Hzx

We next define a unary EA to be normal if each of its axioms is either
normal or else is the formula 'Sxl,x\ (We assume from now on that the
unary EA digit is Ί'.) Moreover, every unary EA will be said to have a
normal version, comprising normal versions of its axioms (typographically
altered to avoid the predicates (S* and Ά' if these occur), the axiom 'Sxl,x',
and the two axioms

(9) Sy,x -> Ax,l,y

Ax,y,z —> Sw,y —> Su,z -* Ax,w,u

We now show that a unary EA predicate represents the same set or re-
lation in a normal version as in the EA itself, which implies

(10) Every recursively enumerable set or relation is represented in a nor-
mal version of some unary EA.

Due to the axioms (9) and ζSxl9x?, in every normal version of a unary
EA, the predicates 'S' and ζA9 represent the Successor and Addition rela-
tions. Thus if, say, (8a) is-an axiom in a unary EA, its instances are also
derivable in any normal version of this EA, while no instance of this form
is derivable in the normal version unless derivable in the given EA. Fin-
ally, every unary EA theorem has a proof in which all instantiations precede
all steps by modus ponens, the effect of which proof may be had in any
normal version.

Quantificational arithmetics (QA's) will now be introduced, in order to
define a counterpart QA for any normal version of a unary EA. L e t £ be a
normal unary EA formula whose longest numeral term has k+1 digits. The
counterpart QA formula CE is then defined to be the universal closure with
respect to all variables but Ί' of a conditional whose antecedent is the con-
junction 'SΛTii Sxkxk.u and whose consequent is obtained from E by
putting in parentheses by right association, changing ' -* ' to ' D ', putting
lXi* for each numeral term withe'+I digits, and deleting commas. As an
example,

(11) Fx,ll -» Gy,lll,x -> Hy,l

{x)(y)(xχ)M[(Sx1l.Sx2x1) D (FxxλΏ (Gyx2x Ώ Hyl))]

Let us now define CS, the QA counterpart to a normal version S of a
unary EA as a set of axioms that comprises the QA counterparts to the
normal axioms of S and, corresponding to the axiom 'Sxl^c', the formula
'{x){ly)Syx\ The theorems of CS will be these axioms and such QA coun-
terparts to formulas of S as are quantificationally derivable from them. By
an atomic instance we will mean an atomic EA formula, like F(m) of the
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previous section, whose terms are all numerals. In the remainder of this

section, then, we show that

(12) An atomic instance E is provable in a normal version S of a unary EA
iff CE is provable in the QA counterpart CS.

As illustration, the following two axioms, along with axioms (9) and
(Sxl,x*, form a typographical variant of a normal version of the unary EA
of Section Π whose axioms were (4).

(13a) Fll

(13b) Ax,ll,y-+Fx-* Fy

Letting this system be S, the QA counterpart CS contains the axiom
t(x)(ly)Syx9

9 the QA counterparts to (9), and the axioms

(14a) (xiKSx^ΏFxJ

(14b) (x){y)(xi)[Sx1l D (Λxxiyz>(FxΏ Fy))]

As an interpretation in the positive integers of a system CS, let us as-
sign the number 1 to the free variable T, the Successor and Addition rela-
tions to the predicates (S* and Ά' respectively, and to each other predicate
let us assign the set or relation that it represents in the normal version S.
Then all the axioms of CS9 and hence all CS theorems, become true on this
interpretation. We see this easily for the axiom '($)(!y)Syx' and the QA
counterparts to (9). The other CS axioms become synonymous with their
opposite numbers in S, as exemplified by (13) and (14), which are made true
by this interpretation. The axiom 'Fll9, for example, here states that the
number 2 is in the set represented in S by ζF\ which its own presence as
an axiom of S guarantees to be true. But given an atomic instance, say,
F{m)y suppose that its QA counterpart CF(m) is provable in CS . Then
CF{m), as above interpreted, becomes the true statement that the number
m is in the set that *F9 represents in S, or, by definition, thati^ra) is prov-
able in S.

In proving (12), we next establish the converse of this, that an atomic
instance is provable in a normal version S only if its QA counterpart is
provable in CS. First, it is plain that if a normal unary EA formula Z>is an
instance of another such formula E, then CD follows from CE in any QA.
For example, taking (13b) and (14b) as E and CE, let D and CD be the re-
spective formulas

(15a) All,ll,llll — Fll — Fllll

(15b) (χ1)(χ2)(x3)[(Sx1l.Sx2x1.Sx3x2) D {AX1X1X3Ώ(FX1 5 Fx3))]

Here as in every such case, the main antecedent of the matrix of CE is
a conjunct of its correspondent in CD.

Finally, calling an EA formula with no variables an instance, we show
that the effect of modus ponens for normal unary instances may be had for
their QA counterparts in any QA. As we saw before, instantiations may al-
ways precede modus ponens steps in EA proofs, so this completes the
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argument for (12). Such a. modus ponens step is typified well enough by the
inference from ζBll,lll — Clϊ and '311,111' to ζClΓ, whose respective
QA counterparts are

(16a) (x1)(x2)[(Sx1l.Sx2Xi) D (Bxίx2 3 Cxi)]

(16b) (x1){x2)\!(Sx1l.Sx2x1) D -BΛΓiΛζj]

(16c) (*i)(S*iI=> CAΓI)

Plainly, (16a), (16b), and the axiom ζ{x){3y)Syx9 imply (16c).

IV. Church's theorem. We now prove (1) from (3), (10), (12), and the non-
recursiveness of D, itself shown using (3). First, we note that by Gbdel's
completeness theorem, to ask whether a QA formula G is provable in a QA
a conjunction of whose axioms is A is in effect to ask whether Ά D G' is a
valid quantificational formula. Hence any clerical routine that disproved (1)
would also provide clerical answers to all questions of the former kind.

Supposing such a routine R to exist, let us now ask, for some arbitrary
number m, whether m ε D. By (10), since Dis recursively enumerable, D
is represented, by a predicate which may be assumed to be 'F', in a normal
version S of some unary EA. Letting A be a conjunction of the axioms of
the QA counterpart CS, we may apply R to ζA => CF(m)\ If the answer is
Yes, which tells us that CF(m) is provable in CS, we infer by (12) that F{m)
is provable in S, hence that mz D. Similarly, we learn from a No answer
that raφ D,

What has just been described, however, is a clerical routine that qual-
ifies D as an effective set. This is impossible, by (3) and the nonrecursive
character of D. We must conclude, therefore, that no such routine as R
exists, which establishes (1).

NOTES

1. I am indebted to the, referee who read an earlier version of this paper and made
numerous helpful suggestions.

2. Quine defines recursiveness in the general manner of Kleene [3], pp. 227, 266-276,
and makes the connection with quantificational logic through a "schematic function
theory" that he develops for this purpose. In the present paper, recursiveness is de-
fined in the general manner of Post [5], as modified in Smullyan [7], and no recourse
is made to a theory of functions like Quine's.

3. These definitions are taken from Smullyan [7], pp. 3-10, with one significant change-
recursive enumerability is there defined in terms of dyadic (£-adic) rather than unary
EA's. The choice of a base in this definition makes no extensional difference, how-
ever, as is shown in Smullyan [7], pp. 35, 36, and in Patton [4].

4. The relation K and this diagonal argument are adapted from the Quine [6] adaptation
from Kleene [3], pp. 282, 283.
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