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DECISION PROCEDURES FOR S2° AND T°

ΓVΌ THOMAS

Decision procedures for the "zero''-modal systems Sl°-S4°, T° are so
far lacking. Procedures for S2° and T° are obtainable by modifying those of
Ohnishi [1] for S2, Ohnishi and Matsumoto [2] for T. Bases chosen are in
the style of Lemmon [3], viz. from:

(1) all tautologies;
(2) CLCpqCLpLq - axiom;
(3) from Lot infer a;
(4) from Caβ, a, infer β;
(5) from a infer La when a is a tautology or axiom;
(6) from a infer La;
(7) from LCaβ infer LCLaLβ;
(7*) from Caβ infer CLaLβ;
(8) rule of substitution;

we take for S2°: (l)-(5), (7), (8): for T°: (l)-(4), (6), (8). As an auxiliary
system we use E2°: (1), (2), (4), (7*), (8), cf. E2 in [3].

To decide S2° we take the system S2* of [1] without the rule (L->), i.e.
Gentzen's LK and the rule (-*L) here called (LI):

with a a single formula, Γ a series of formulas perhaps empty, in which
case (LI) becomes the Rule of Tautology (RT). Restrictions: (RT) may not
be used previous to (LI) or (RT) in one and the same string of a proof-
figure. For decision of T° the restriction is dropped. We call these
systems S0

2, To°. As an auxiliary system we use E0

2, viz. S0

2 without (RT).

Lemma. The cut-theorem is provable in both systems as in §2 of [1] where
Case 3 is alone relevant now.

Theorem 1. If a (is provable) in S2°, then —> a in S0

2.

Proof. If a is a tautology, the theorem holds by LK. If a is (2), use LK,
(Ll). Since (RT) is the only way of producing -*Lay the theorem holds for
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the conclusion of (3) if it holds for the premiss. The lemma settles (4).
For (5) use LK (RT). In respect of (7) use Lemma 3.2 in [1] with E0

2 in
place of E2*. (8) is proved for S0

2 as usual in such cases.

Theorem 2. If a. in T°, then -*a in To°.

Proof the same, where relevant, and (6) holds in To° by unrestricted
(RT).

Theorem 3. The converse of Theorem 1.

The proof is as in 3.3, 3.4 of [1], using E2°, Eo

2, instead of E2, E2*.
(And clearly E0

2 gives a decision procedure for E2°, as E2* does for E2.)

Theorem 4. The converse of Theorem 2.

The proof is obvious, since Caβ yields CLaLβ in T° corresponding to
(LI), and (6) corresponds to unrestricted (RT).

The same process will not work for S30, since both rules used in [1]
for S3* are needed to prove the characteristic axiom of S3.
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