MODAL SYSTEM S4．4

BOLESŁAW SOBOCIŃSKI

It is known that Group II of Lewis－Langford，$c f .[3]$, p．493，i．e．the matrices 4 and \boldsymbol{H}^{1}
f1

$*$| C | 1 | 2 | 3 | 4 | N |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 | 4 |
| 2 | 1 | 1 | 3 | 3 | 3 |
| 3 | 1 | 2 | 1 | 2 | 2 |
| 4 | 1 | 1 | 1 | 1 | 1 |

解2

$*$| p | M | L |
| :---: | :---: | :---: |
| 1 | 1 | 1 |
| 2 | 2 | 4 |
| 3 | 1 | 3 |
| 4 | 4 | 4 |

朋

$*$| p | M | L |
| :---: | :---: | :---: |
| 1 | 1 | 1 |
| 2 | 1 | 4 |
| 3 | 1 | 4 |
| 4 | 4 | 4 |

which falsify the proper axiom of S5：
C11 © $M p L M p$
（i．e．C11＊§MLpLp）
are such that besides system S 4 ，they verify several consequences of S 5 which are unprovable in the former system，as，e．g．，the formulas：

```
G1 ©MLpLMp
D2 ALCLpqLCLqp
M1 `<<pLpLpCMLpLp
```


The theses $G 1$ and D2 are the proper axioms of the well－known sys－ tems S4．2 and S4．3 respectively，cf．［2］，［1］，［6］，and［11］．In［2］，p．263， Dummett and Lemmon have proved that $M 1$ ，i．e．their formula（8），does not hold in S4．3．Prior，［6］，p．139，pointed out that Geach showed that in the field of S4．2 theses M1 and N1 are equivalent．

As one can easily notice 脽 and 股 verify also the following two formulas

$R 1$ © $p C M L p L p$

```
(i.e. R1* ©NpCMpLMp)
```

and

V1 ALpALCpqLCpNq

It is clear that $R 1$ is a weaker form of C11＊（i．e．of C11），but，as $\not \approx 1$ and $\mathrm{m}_{\mathrm{H}} 2$ show，in the field of S 4 it does not imply $S 5$ ．On the other hand
formula $V 1$ is such that neither addition of it to $S 5$ reduces the latter system to the classical logic nor is it a consequence of S5. Namely,
ffl

$* *$| C | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | N |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 8 |
| 2 | 1 | 1 | 3 | 3 | 5 | 5 | 7 | 7 | 7 |
| 3 | 1 | 2 | 1 | 2 | 5 | 6 | 5 | 6 | 6 |
| 4 | 1 | 1 | 1 | 1 | 5 | 5 | 5 | 5 | 5 |
| 5 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 4 |
| 6 | 1 | 1 | 3 | 3 | 1 | 1 | 3 | 3 | 3 |
| 7 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 |
| 8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

Af 5

$*$| p | M | L |
| :---: | :---: | :---: |
| 1 | 1 | 1 |
| 2 | 1 | 8 |
| 3 | 1 | 8 |
| 4 | 1 | 8 |
| 5 | 1 | 8 |
| 6 | 1 | 8 |
| 7 | 1 | 8 |
| 8 | 8 | 8 |

敫

$*$| p | M | L |
| :---: | :---: | :---: |
| 1 | 1 | 1 |
| 2 | 1 | 6 |
| 3 | 3 | 8 |
| 4 | 4 | 8 |
| 5 | 1 | 5 |
| 6 | 1 | 6 |
| 7 | 3 | 8 |
| 8 | 8 | 8 |

AH 7

$* *$| p | M | L |
| :---: | :---: | :---: |
| 1 | 1 | 1 |
| 2 | 2 | 6 |
| 3 | 3 | 7 |
| 4 | 4 | 8 |
| 5 | 1 | 5 |
| 6 | 2 | 6 |
| 7 | 3 | 7 |
| 8 | 8 | 8 |

 AL2ALC23LC2N3 $=$ CN8CNL3LC26 $=$ C1CN8L5 $=$ C1C18 $=C 18=8$, and matrices fill and fil, given above, verify 55 and $V 1$, but they falsify, e.g., $\S p L p$ for $p / 2: ~ 厄 2 L 2=L C 24=L 3=4$.

In this paper I shall show that the addition of $R 1$, as a new axiom to S 4 , gives a modal system which I call S4.4 and which, being, obviously, a proper subsystem of S5, contains theses G1, D2, M1 and N1. It allows us to construct the following family of the proper extensions of S4:

1) $\mathrm{S} 4.4=\{\mathrm{S} 4 ; R 1\}$
2) $\mathrm{S} 4.3 .1=\{\mathrm{S} 4.3 ; \mathrm{N} 1\}$
3) $\mathrm{S} 4.3=\{\mathrm{S} 4 ; D 2\}$
4) $\mathrm{S} 4.2 .1=\{\mathrm{S} 4.2 ; \mathrm{N} 1\}$
5) $\mathrm{S} 4.2=\{\mathrm{S} 4 ; G 1\}$
6) $\mathrm{S4.1.1}=\{\mathrm{S} 4 ; M 1\}$
7) $\mathrm{S} 4.1=\{\mathrm{S} 4 ; N 1\}$
and to prove that
a) S 4.4 is a proper extension of S 4.3 .1
b) S 4.3 .1 is a proper extension of $\mathbf{S 4 . 3}$.
c) S4.2.1 is a proper subsystem of $\mathbf{S 4 . 3 . 1}$, is a proper extension of S4.2, but it does not contain S 4.3
d) S4.1.1 is a proper subsystem of S4.2.1, it contains S4.1, but it does not contain S4.2
e) S 4.1 is a proper extension of S 4 .

I must note that I have no proof that S 4.1 does not contain S4.1.1, i.e. that the latter system is a proper extension of S4.1.

Moreover, since $V 1$ is verified by $\notin 1$ and $\notin \mathbb{A l} 2$, we can construct a proper extension of S4, say, system V1 obtained by the addition of $V 1$, as a new axiom, to S4. Due to results of Scroogs, $c f$. [8], we know that the proper extensions of S 5 are not especially interesting. On the other hand, as far as I know, the effects of the additions of the proper axioms of the possible extensions of S5, cf. [8], pp. 119-120, to S4 is not yet investigated. Concerning V1 I shall show here that this system contains S4.4. And, the investigations given in [9] will prove that system V1 possesses the different properties than the analogous system $\{\mathbf{S 5} ; \mathrm{V} 1\}$.

The connections existing among the systems discussed in this paper can be presented clearly by the following diagram

1. System S4.4. Let us assume $S 4$ and the thesis

R1 epCMLpLp

Then, we have:

$Z 1$	§MpCMLpLMp	$[R 1, p / M p ; S 1]$
$L 1$	$M L p L M L p$	$[Z 1, p / L p ; S 4]$
$G 1$		$[L 1 ; \mathrm{S} 2]$

Thus, in virtue of $L 1$ or G1 S4.4 contains S4.2. ${ }^{2}$
Z2 © $2 p C p q$ [$\mathrm{S1}^{\circ}$]
$Z 3$ © $M L q M L C p q$ [$\mathrm{S2}^{\circ}$]
$Z 4$ © ${ }^{\text {© NpNLp }}$ [S°]
$Z 5$ © $\left.\mathbf{~ M K р q M p ~ [~} \mathrm{S}^{\circ}{ }^{\circ}\right]$
$Z 6$ eCpCqrCCsvCCvpCCtzCCzqCsCtr [$\left.\mathrm{S}^{\circ}{ }^{\circ}\right]$
$Z 7$ © $N p C M K L q r C L p q \quad[Z 6, p / C L p q, q / M L C L p q, r / L C L p q, s / N p, v / N L p$, $\left.t / M K L q r, z / M L q ; R 1, p / C L p q ; Z 4 ; Z 2, p / L p ; Z 5, p / L q, q / r ; Z 3, p / L p ; \mathrm{S1}^{\circ}\right]$
$Z 8$ ApALCLqrLCLpq [Z7,r/Nr;S1 $\left.{ }^{\circ}\right]$
Z9 『 $L p L C q p$
$\left[52^{\circ}\right]$
210 §CpCqrCCsqCCrtCpCst
[$\mathrm{S} 1^{\circ}$]
$Z 11$ CpCMKLpsLCqp [Z10,q/MLp,r/Lp,s/MKLps,t/LCqp;R1;
212 CpALCLpsLCqp $\left.Z 5, p / L p, q / s ; Z 9 ; S 1^{\circ}\right]$

Z13 CApqCCprArq
$\left[Z 11, s / N s ; \mathrm{S1}^{\circ}{ }^{\circ}\right]$
$Z 14$ AALCLpsLCqpALCLqrLCLpq[$Z 13, q / A L C L q r L C L p q, r / A L C L p s L C q p ;$ $\left.Z 8 ; Z 13 ; \mathrm{S}^{1}{ }^{\circ}\right]$
215 CAApqAqpApq
[$\mathrm{S} 1^{\circ}$]
D2 \quad [LCLpqLCLqp $\quad Z 15, p / L C L p q, q / L C L q p ; Z 14, q / L q, r / p, s / q ; S 4]$
Hence, S4.4 contains S4.3. ${ }^{3}$

$Z 16$	§MLpCpLp	$\left[\mathrm{R1;} \mathrm{S1}^{\circ}{ }^{\circ}\right]$
$Z 17$	§ $M L p L C p L p$	$\left[Z 16 ; \mathrm{S} 2^{\circ} ; L 1 ; \mathrm{S} 1^{\circ}\right]$
$W 1$	§CCpLpqCMLpq	$\left[Z 16 ; \mathrm{S} 1^{\circ}\right]$
$W 2$	§CLCpLpqCMLpq	$\left[Z 17 ; \mathrm{S} 1^{\circ}\right]$
$W 3$	§ $L C C p L p q C M L p q$	$[W 1 ; \mathrm{S} 2]$
$W 4$	§ $L C L C p L p q C M L p q$	$[W 2 ; \mathrm{S} 2]$
$T 1$	§CCpLpLpCMLpLp	$[W 1, q / L p]$
$T 2$	§CLCpLpLpCMLpLp	$[W 2, q / L p]$

$T 3$	© $L C C p L p L p C M L p L p$	$[W 3, q / L p]$
$M 1$	© $L C L C p L p L p C M L p L p$	$[W 4, p / L p]$

Thus， 54.4 implies M1．
2．Theses $W 1-W 4, T 1-T 3, M 1$ and N1．It is clear that in the field of S1 each of the theses $W 1-W 4$ is equivalent to $R 1$ ．It will be shown here that a）$T 1$ or $T 2$ can also serve as the proper axiom of $S 4.4$ ，and that b）$T 3$ is provable in S2．Moreover，it will be proved that M1 together with $54 \mathrm{im}-$ plies N1，and it will be reconstracted Geach＇s proof that in the field of S 4.2 M1 is a consequence of N1．
2．1 Assume S 1 and $T 1$ or $T 2$ ．Then in the case of $T 1$ we have immediately
$Z 1$ ©NCpLpCMLpLp
［T1； $\mathrm{S}^{\circ}{ }^{\circ}$ ］
and in the case of T 2 ：
Z2 ©NLCpLpCMLpLp
$\left[T 2 ; \mathrm{S}^{\circ}{ }^{\circ}\right]$
which in virtue of S1 implies，obviously，Z1．Hence
$Z 3$ 厄KpNLpCMLpLp
［ $\left.21 ; \mathrm{S1}^{\circ}{ }^{\circ}\right]$

［Z3； $\mathrm{S1}^{\circ}$ ］

2．2 Now，let us assume S2．Then：
$Z 1$ © $L p p$［S1］
Z2 ©NCpqp［S1 $\left.{ }^{\circ}\right]$
$Z 3$ © CNprCCqrCCpqr ［ $\mathrm{S} 1^{\circ}$ ］
$Z 4$ §CCpqLpp［Z3，p／Cpq，q／Lp，r／p；Z2；Z1；S1 $\left.{ }^{\circ}\right]$
$Z 5$ © $L C C p q L p L p$［Z4；S2 $\left.{ }^{\circ}\right]$
$Z 6$ © $L C C p q L p C r L p$［Z5；S1 $\left.{ }^{\circ}\right]$
T3 © $L C C p L p L p C M L p L p][Z 6, q / L p, r / M L p]$
Hence，$T 3$ is a consequence of S2．
2．3 Let us assume S4 and M1．Then：
$Z 1$ © $L C L L C p L p L p C M L p L p$［M1； $\left.\mathrm{S4}^{\circ}\right]$
$Z 2$ © $L C p q L C L p L q$
［ $\mathrm{S}^{\circ}{ }^{\circ}$ ］
$Z 3$ © $L C L C p L p p C M L p L p \quad\left[Z 2, p / C L C p L p, q / p ; Z 1 ; S 4^{\circ}\right]$
N1 © LCLCpLppCMLpp［Z3； S 1$]$
Hence，in the field of S4 M1 implies N1．
2．4 Let us assume S4．2 and N1．Then：
21 © 『qreceprs『epqs［ $\left.\mathrm{S}^{\circ}{ }^{\circ}\right]$
$Z 2$ © $L p p$
L1 © MLpLMLp
［S4．2］

$[Z 1, p / C p L p, q / L p, r / p, s / C M L p p ; Z 2 ; N 1]$
$Z 4$ 『 L 『『 $p L p L p C L M L p L p$
$Z 5$ ©®®pLpLpCLMLpLp
［Z4；S4 ${ }^{\circ}$ ］
M1 ©くくpLpLpCMLpLp

Thus，in the field of S4．2 N1 implies M1．${ }^{4}$
3 System V1．Let us assume S2 and
V1 ALpALCpqLCpNq
Then，we have：

$V 2$	LALpALCpqLCpNq	$\left[V 1 ; \mathrm{S} 1^{\circ}\right]$
V3	§NLpCNLCpqLCpNq	$\left[V 2 ; \mathrm{S} 1^{\circ}{ }^{\circ}\right]$
$V 4$	§MKpqCMKpNqLp	$\left[V 3 ; \mathrm{S} 1^{\circ}\right]$

In［6］，p．16，Prior mentions $V 4$ as an odd formula verified by $\not 411$ and盘2．It is clear that in the field of $\mathrm{S} 1^{\circ}$ the theses $V 1$ and $V 4$ are equivalent．

$$
V 5 \text { 厄 } M L p M K p L p
$$

［S2］
$V 6$ © $M L p C M K p N L p L p \quad\left[V 5 ; V 4, q / L p ; S 1^{\circ}\right]$
V7 © $M L p C K p N L p L p$
［V6；S1］
$R 1$ © $p C M L p L p$
$\left[V 7 ; S 1^{\circ}\right]$
Thus，in the field of S2 V1 implies R1．Therefore，V1 contains system S4．4．

4 Axiomatizations of $S 4.4$ and V1．It is known，$c f$ ．［10］，pp．155－156，that the formula

Z1 〔CMpLq®pq

is provable in S2．Hence，we have also in S2
$Z 2$ © $L C M p L q L L C p q$
Therefore，the addition of $R 1$ to S2 yields：

$Z 3$	§ $p L C L p p$	$\left[Z 1, p / L p, q / p ; R 1 ; \mathrm{S} 1^{\circ}\right]$
$Z 4$	$L L C p C L M p M p$	$\left[Z 2, q / C L M p M p ; Z 3, p / M p ; S 1^{\circ}\right]$

And，due to the fact that it was proved in 3 that $V 1$ together with $S 1$ im－ plies $V 4$ ，the addition of $V 1$ to S 2 allows us to make the following deductions：

$V 4$	¢ $M K p q C M K p N q L p$	$\left[V 1 ; \mathrm{S} 1^{\circ}\right]$
$Z 5$	§ $M K K p q K p N q L p$	$\left[V 4 ; \mathrm{S} 2^{\circ}{ }^{\circ}\right]$
$Z 6$	LLCKKpqKpNqp	$\left[Z 2, p / K K p q K p N q, q / p ; Z 5 ; \mathrm{S} 1^{\circ}\right]$

Since the addition of $Z 4$ or $Z 6$ to S 3 gives S4，$c f$ ．［4］，p．148，we have a proof that $\{S 4.4\} \rightleftarrows\{S 4 ; R 1\} \rightleftarrows\{S 3 ; R 1\}$ and that $\{V 1\} \rightleftarrows\{S 4 ; V 1\} \rightleftarrows\{S 3 ; V 1\}$ ．It also shows that each of the systems $\{\mathrm{S} 2 ; R 1\}$ and $\{\mathrm{S} 2 ; V 1\}$ contains system T ， $c f$ ．［12］．Moreover，it can be proved at once that the addition of the Brou－ werian axiom，i．e．

C12 © $p L M p$
to $\{\mathrm{C} 2 ; R 1\}$ or to $\{\mathrm{C} 2 ; \mathrm{V} 1\}$ reduces these systems to S 5 ．
5 Connections among the discussed systems．In this section the matrices

fit

$*$| C | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | N | M |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 16 | 1 |
| 2 | 1 | 1 | 3 | 3 | 5 | 5 | 7 | 7 | 9 | 9 | 11 | 11 | 13 | 13 | 15 | 15 | 15 | 1 |
| 3 | 1 | 2 | 1 | 2 | 5 | 6 | 5 | 6 | 9 | 10 | 9 | 10 | 13 | 14 | 13 | 14 | 14 | 1 |
| 4 | 1 | 1 | 1 | 1 | 5 | 5 | 5 | 5 | 9 | 9 | 9 | 9 | 13 | 13 | 13 | 13 | 13 | 1 |
| 5 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 9 | 10 | 11 | 12 | 9 | 10 | 11 | 12 | 12 | 5 |
| 6 | 1 | 1 | 3 | 3 | 1 | 1 | 3 | 3 | 9 | 9 | 11 | 11 | 9 | 9 | 11 | 11 | 11 | 6 |
| 7 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 9 | 10 | 9 | 10 | 9 | 10 | 9 | 10 | 10 | 7 |
| 8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 8 |
| 9 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 8 | 1 |
| 10 | 1 | 1 | 3 | 3 | 5 | 5 | 7 | 7 | 1 | 1 | 3 | 3 | 5 | 5 | 7 | 7 | 7 | 1 |
| 11 | 1 | 2 | 1 | 2 | 5 | 6 | 5 | 6 | 1 | 2 | 1 | 2 | 5 | 6 | 5 | 6 | 6 | 1 |
| 12 | 1 | 1 | 1 | 1 | 5 | 5 | 5 | 5 | 1 | 1 | 1 | 1 | 5 | 5 | 5 | 5 | 5 | 1 |
| 13 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 4 | 5 |
| 14 | 1 | 1 | 3 | 3 | 1 | 1 | 3 | 3 | 1 | 1 | 3 | 3 | 1 | 1 | 3 | 3 | 3 | 6 |
| 15 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 7 |
| 16 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 16 |

 given by Parry, cf. [4], p. 149, example 0.8, and, recently, in virtue of certain reasonings based on the tense logic obtained also by Prior, cf. [5], §§1-3, and that c) matrix \&fs is constructed according to the definition of the 16 -valued matrix given by Prior in [5], §6, but which is not explicitly presented in that paper.
 On the other hand $f 44$ and fit5 verify S5, but falsify V1. Hence system $\{S 5 ; V 1\}$ is a proper extension of $S 5$ and, therefore $\{S 4 ; V 1\}$ also is a proper
 deductions presented in 3 proves that S4.4 is a subsystem of V1. Since, clearly, S4.4 is a subsystem of S5, we can establish at once that

1) $\{S 5 ; V 1\} \rightarrow\{S 5\} \rightarrow\{S 4.4\}$
and that
2) $\{S 5 ; V 1\} \rightarrow\{\mathrm{V} 1\} \rightarrow\{\mathrm{S} 4.4\}$.
b) $\mathbb{A l} 4$ and $\mathbb{A l f}$ verify S 4.3 and $N 1$ (i.e. also M1), but they falsify $R 1$ for $p / 2: ~ 厄 2 C M L 2 L 2=L C 2 C M 66=L C 2 C 16=L C 26=L 5=5$. Hence $S 4.3 .1$ is a proper subsystem of S4.4. On the other hand, in [2], p. 263, Dummett and Lemmon have proved that M1 (i.e. also N1) does not hold in S4.3. Hence S4.3.1 is a proper extension of S4.3. Thus, we have:
3) $\{$ S4.4 $\} \rightarrow\{$ S4.3.1 $\} \rightarrow\{S 4.3\} \rightarrow\{S 4.2\} \rightarrow\{S 4\}$.
c) Since ffls verified S 4.2 .1 and falsified $D 2$ for $p / 2$ and $q / 3$: ALCL23LCL32 $=$ CNLC103LC112 $=C N L 3 L 2=C N 1110=C 610=9$, system S4.2.1 is a proper subsystem of 54.3 .1 and it does not contain S4.3. The proof of Dummett and Lemmon mentioned in the point \mathfrak{b}) shows that S4.2.1

but they falsify $G 1$ for $p / 2$: $\subseteq M L 2 L M 2=L C M 6 L 2=L C 26=L 5=5$. Hence S4.2.1 is a proper extension of S4.1.1 and S 4.2 is not contained in S4.1.1. Thus, we know that
4) $\{$ S4.2.1 $\} \rightarrow\{S 4.2\} \rightarrow\{S 4\}$
and that
5) $\{$ S4.2.1 $\} \rightarrow\{$ S4.1.1 $\}$.
b) In virtue of the result of Dummett and Lemmon mentioned above it is clear that S 4.1 .1 and S 4.1 are the proper extensions of S 4 . As I noticed previously I have no proof that S 4.1 .1 is a proper extension of S 4.1

Thus, except of the case of the systems $S 4.1$ and $S 4.1 .1$ the connections indicated in the diagram given above are justified by the discussions presented in the points $a)-b$).

6 Open problems. There are several unsolved problems connected with the results given in this paper. I would like 'o mention the following ones:
α) to prove that S4.1 and S4.1.1 are distinct systems, which is very probable, β) to investigate relations existing between S4.4 and the so-called Diodorian system of Prior,
γ) to constrast the normal characteristic matrices of the systems established here using, e.g., the methods given in [2] and [1],
δ) to prove that there exists or does not exist a system being a proper extension of S4.4.and at the same time being a proper subsystem of $\mathbf{S 5}$.

I tried, unsuccessfully, to solve only the first problem.

NOTES

1. In this paper I am using the same symbolism and in some cases the same numeration of formulas as in [11]. An acquaintance with the Lewis' modal systems and with the papers [11] and [5] is presupposed. It is assumed that all systems discussed in this paper have Lewis' primitive terms and rules of procedure. The expressions "A is a proper subsystem of B " and "A is a proper extension of B " mean respectively that system A is contained in system B, but does not contain B, and that system A contains system B, but is not contained in B. In all matrices used in this paper 1 is always the single designated value. If in the system under consideration a formula can be obtained from the formulas already given and a subsystem of the investigated theory, I mentioned always the weaker system in the proper proof line.
2. $C f .$, e.g., [11], p. 73 and p. 75, point 3.6.
3. $C f$. [11], p. 75, point 3.4. I am sorry that preparing [11] I overlooked a remark of Prior given in [6], p. 139, that P. T. Geach already established the sufficiency of $D 2$ to be the proper axiom of S4.3.
4. Since in [6], p. 139, Prior mentioned only that Geach showed that in the field of $\mathrm{S} 4.2 \mathrm{M1}$ and $N 1$ are mutually interducible, the proofs given in 2.3 and 2.4 can differ from the original deductions of Geach unpresented by Prior.

BIBLIOGRAPHY

[1] R. A. Bull: A note on the modal calculi S4.2 and S4.3. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, v. 10 (1964), pp. 53-54.
[2] M. A. Dummett and E. J. Lemmon: Modal logics between S4 and S5. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, v. 5 (1959), pp. 250-264.
[3] C. L. Lewis and C. H. Langford: Symbolic Logic. Second Edition, 1959. New York, Devon Publication.
[4] W. T. Parry: Modalities in the Survey system of strict implication. The Journal of Symbolic Logic, v. 4 (1939), pp. 137-154.
[5] A. N. Prior: K1, K2 and related modal systems. Notre Dame Journal of Formal Logic, v. V (1964), pp. 299-304.
[6] A. N. Prior: Tense-logic and the continuity of time. Studia Logica, v. XIII (1962), pp. 133-151.
[7] A. N. Prior: Time and Modality. Oxford, 1957. Clarendon Press.
[8] S. J. Scroggs: Extensions of the Lewis system S5. The Journal of Symbolic Logic, v. 16 (1951), pp. 112-120.
[9] B. Sobociński: Family \mathcal{K} of the non-Lewis modal systems. Notre Dame Journal of Formal Logic, v. V (1964), pp. 313-318.
[10] B. Sobociński: A note on modal systems. Notre Dame Journal of Formal Logic, v. IV (1963), pp. 155-157.
[11] B. Sobociński: Remarks about axiomatizations of certain modal systems. Notre Dame Journal of Formal Logic, v. V (1964), pp. 71-80.
[12] N. Yonemitzu: A note on modal systems, von Wright and Lewis S1. Memoirs of the Osaka University of Liberal Acts and Education. B. Natural Sciences, No. 4 (1955), p. 45.

University of Notre Dame
Notre Dame, Indiana

