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A NATURAL DEDUCTION SYSTEM FOR MODAL LOGIC

JOHN THOMAS CANTY*

This paper relates a particular system of propositional calculus (here-
after referred to as F and described in §1 below), suggested by Dr. Milton
Fisk during the seminar in symbolic logic at the University of Notre Dame,
to the Lewis modal logic 54 [4]. F has no axioms—its description begins by
laying down certain rules as basic and it proceeds by inferring rules from
its basic rules. Thus F may be considered as a systematic for rules which
govern formulas, where Lewis's system is considered as a systematic for
formulas. Indeed, if the basic rules of F are interpreted as claiming that
certain forms of arguments are valid, for instance, if Fl is taken to mean
that any argument of the form "a,β; therefore (a Λ β)" is valid, then the
basic rules can accurately be called principles of (propositional) logic. As
so interpreted, F1-F7 provide a basis for systematizing logical principles.
F then becomes a systematic for evaluating individual arguments: an argu-
ment is valid if it is governed by a principle which can be derived in F.

In this paper a system A is said to imply inferentially 2L system B if
and only if the axioms and rules of B stated in the primitive notation of B
can be inferred in A. Thus §2 shows that F inferentially implies S4. But
S4 does not inferentially imply F (and hence F and S4 are not inferentially
equivalent), since the rules of F cannot be inferred in S4—they hold for wffs
while those of S4 hold only for theses. But since §3 contains a formal proof
that every thesis of F is a thesis of S4 and since every thesis of S4 is a
thesis of F (as a corollary of §2), it is shown that the two systems are
formally equivalent in the sense that they have the same set of theses.

The description of system F that appears here differs from that de-
scription of the systematic for arguments which Dr. Fisk originally sug-
gested, in that the metarule of replacement (Fll) which he had taken as
basic is derived from the basic rules.

*This paper is the substance of a dissertation for the M.A. degree in Philosophy at
the University of Notre Dame. The research was done during a fellowship granted
by the National Defense Education Act, and the author is indebted to Professor
Boleslaw Sobociήski of the University of Notre Dame and Dr. Milton Fisk of Yale
University for their help in the preparation of this paper.

Received May 23, 1963



200 JOHN THOMAS CANTY

§ 1 System F In this system lower case Latin letters are used as proposi-
tional variables: p, q, r, etc. There are three primitive symbols for prop-
ositional functors: ' ~ ' for 'not', Ά ' for 'and', and '—>' for 'only if'; and
parentheses are used for punctuation. Any lower case Latin letter standing
alone is a well formed formula, and (i) if a is a wff then ~a is well formed,
(ii) if a and β are wffs then (a A β) and (a —> β) are well formed, and (iii) no
other formula is a wff.1 Any other propositional functors used in the sys-
tem are introduced by definitions in accordance with the method of con-
structing definitions for propositional calculus. Thus Definition 1 below in-
troduces ' <-» \

Definition 1 (a <-> β) =d f {{a -> β) A (β -> a))

Furthermore, since ' <r> ' is not taken as a primitive term the system re-
quires a rule of definition, namely, that a definiens may be abbreviated by
its def iniendum and a definiendum by its definiens. (It will be shown later
that the definiens and def iniendum of any definition are replaceable by each
other in any wff.)

F has no axioms but is given by seven rules of inference (called basic),
a definition of thesis, and a notion of proof from hypotheses. In expressing
rules of inference the turnstile, * h ', is used to separate the premiss
formulas from the conclusion formula and commas are used to separate in-
dividual premiss formulas. Thus, Fl below is a rule to the effect that the
conclusion (a A β) follows from the premisses a and β, for any a9β.

(BR) The basic rules of F are:

Fl. oίyβ \-(a Λ β) Adjunction
F2. a, (a -+ β)\-β Strict Detachment
F3. (~β -> ~ot) f- (a —> β) Transposition
F4. ot\ ~ a Double Negation
F5. a, ~(a A β) h ~ β Material Detachment
F6. (a -* β) \-(a A γ) -> (|8 Λ γ) Factorization
F7. (a ~* β) \- {β -> γ) -» (α-» γ) Hypothetical Syllogism

(TH) A thesis is defined recursively as follows:

(i) for any natural number n which is finite, if QΊ , . . . , an^ι \-an in F,
then (oti A , . . . , Λ ctn.x) —> an is a thesis, and
(ii) any a derived from theses alone by the rules of F is a thesis.2

(PR) There is a proof of an from a set of hypotheses, al9... 9 an-ι if and
only if there is a finite sequence of wffs, βλ,.. ., βm such that m — n9

an is βm , and for 1 < ί < m either

(i) β{ is an hypothesis or
(ii) βi is a thesis or

(iii) βi follows in the sequence according to the rules of F

Since (TH) and (PR) together yield a complete definition of proof from
hypotheses, with this definition, Fl may be read as, "for any oι9 β there is a
proof of (a A β) from the set of hypotheses a, β." Similarly, giving a proof
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of an from hypotheses α 1 ? . . . , otn_x is sufficient for establishing another

rule of F, namely, aί9.. . , an^ \- an. Thus in giving the proof immediately

following the citation of F8 below, the derived rule, (((a —> γ) follows from

{a —» β)9 (β —» y) for any a9β9γ", is established. Finally, the turnstile shall

perform yet another function in this system: " α is a thesis" shall be ab-

breviated as " \-a". This usage of the symbol corresponds to its previous

usage since a thesis can be understood as a wff which follows from the

empty set of hypotheses.

§2 F ίnferentially implies 54 In order to show that F contains S4 a singu-

lary modal functor ' ( ) ' for 'it is possible that' is defined as follows:

Definition 2. ζ)a = d f ~(a -> ~ α)

With this definition and the derivations of F8-F31 below the equivalence

necessary for deducing the rules and axioms of S4 in F is obtained in the

form of two derived rules:

F32. (a -> jS) \-~<)(a A ~β)

F33. - 0 ( α A ~/3) (-(« ^ j8)

To this end, the proofs of the required rules follow.

F8. ( α - ]8), (β-Ύ)\-(a^ γ)

Proof by F7, hypotheses, F2.

F9. ~~a \-a

1. ~~a [Hypothesis]

2. ( a -> a) [F4,(TH),F3]

3. α [1, 2, F £ ]

FJ0. (of -» β) I— (—/3 — ~α?)

1. (α ~> β) [Hypothesis]

2. ( a - j3) [ l ,F5, (TO), F8]

3. {~β -+ ~a) [2, F4, (T^), F8, F3]

Fll. a \- a

Proof by F4, (TH), hypothesis, F2, F9, (TH), F2.

Fi2. a, β \- a

Proof by F I I , hypotheses.

F13. (a A /3) (- a

Proof by F12,(TH), hypothesis, F2.

F14. (a A β) \- β

Proof similar to F13.

F15. (a A β) (- (0 A a)

Proof by FI4, F i 3 , hypothesis, F l .

FI6. (α ̂  /3) \- ((a -> jS) A (j3 -* of))

Proof by Definition 1, hypothesis.

F ί 7 . ((of — ]8) Λ ()3 -* α)) |- (α <^ #

Proof by Definition 1, hypothesis.
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F18. (a«+β) ]r(~a<+~β)

1. (a**β) [Hypothesis]

2. (~β -*~a) [l, F16, F13, Flo]

3. (~a ->~β) [l, F16, F14, Flo]

4. (~a*+~β) [2,3,FI,F1Z]

F19. (a<r>β)\- ((a A γ)<+(β A y))

Proof similar to F18, using F6.

F20. (α <-> j3) f- ((y A a) ** (y A jS))

1. (α«-*j3) [Hypothesis]

2. ((α A y) -> (0 A y)) [l, F16, F13, F6]

3. ((j8 Λ γ) -» (α A y)) [ l , F i 5 , FI4, F5]

4. ((y A tt) -> (Ύ A |3)) [2,FI5, (ΓH), F8]

5. ((y A β) -> (y A α)) [3,F15, (ΓH), Fδ]

6. ((y A a) *+ (γ A J3)) [4, 5, Fl, F17]

F21. (α«-*j8)|- ((α~» y)**(j8 —y))
Proof similar to FIS, using F7

F22. (a++β)\- ((y - α) «-* (y -> /3))

1. (σ^/3) [Hypothesis]

2. (~/3 -> ' -Q) [l, F16, F13, Flo]

3. (^of -» ~j8) [l, FJ5, FJ4, F20]

4. ((~α — ~y) - (~/3 ->~y)) [2, F7]

5. ((-/3 — ~y) -> ( - α — -y)) [3, F7]

6. ((y — α) ~> (y -> j3)) [4,FI6>, (T^), F5, (T^),F5]

7. ((y -> j8) -> (y -> α)) [5,F26>, (T^), F3, (TH),F8]

8. ((y -» a) <->(y -• j3)) [6, 7, Fi , Fiz]

F 2 3 . ( α «-> β) [- ( y <-^ δ ) where δ results from y by replacing a by β(β by a)

in one or more places.

Proof by induction on the length of δ, using Fll, F18-F22, (PR).

With F23 given it is possible to prove a number of metarules for the

system F.

Fl . If\-(a — j8) then a \- β.

1. (en -» j3) [Thesis by the assumption]

2. α [Hypothesis]

3. j3 [1, 2, F2]

Fll . /f α |- β and β \- a then γ \- δ and 6 (— y where 6 results from y by re-

placing a by β {β by a) in one or more places.

1. a \-β [The assumption]

2. β \-a [The assumption]

3. H e -*β) lU(TH)]
4. \-(β -*α?) [2,(ra)j
5 . I—Ccar <-»]3) [3, 4, Fi, FiZ, (Γ^)]

6. Hfr^δ) [5,F25, (T/ί)]

7. y |-δ [6, Fi5, F13, (TH), Fl]

8.6 \-γ [6, F16,F14, (TH),F\]
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Given this metarule of replacement the definiens and definiendum of

any definition are replaceable by each other in any wff: for the rule of

definition which allows either definiens or definiendum to be abbreviated

yields the two rules which are sufficient to carry out either replacement in

accordance with PII.

F24. (a Λ a) (- a

Proof by F13, hypothesis.

F25. a \- (a A a)

Proof by Fll, Fl, hypothesis.

F26. a Λ (β Λ γ) | - (a A /3)Λ γ

Proof by F13, F14, hypothesis, Fl.

F27. (a A β) A γ \- a A (β A γ)

Proof similar to F26.

F28. (a A β) -+ γ \- (~γ A β) -^ ~a

1. (a A β) -» y [Hypothesis]

2. (~y A β) -> (~(α A β) A β) [1, F10, Fθ]

3. ( - 7 A β - > ( μ ~(|8 A a)) [2, F15, Fll]

4. (^y A β) — — α [3,JP5, (Γ^) , FS]

F^9. (j3 A ^ β ) ^ ~(a* ~β)

1. (j3 A ~0) [Hypothesis]

2. j8 ' [1, FI3, F4]

3. ~ ( α A — j8) [2,FJ4, (T^) , FiO, F^]

F50. (>α|- — ( α — ~a)

Proof by Definition 2, hypothesis.

F31. —(α — — a) \- <)a

Proof by Definition 2, hypothesis.

F3£. (α - 0) | - ~ 0 ( « Λ -j3)

1. (a -» j8) [Hypothesis]

2. (α A -j8) - (jSA ~fi [1, F6]

3. (α A -/3) - ~ ( α A ^i 3 ) [ 2 , F ^ , (TH), F8]

4. —<>(α A ~j3) [3, F4, F50, F5J, Fll]

F 5 5 . - < > ( « Λ — i3> I— <βr ->β)
1. ~()(CXA ~β) [Hypothesis]

2. (flA ~β)->~(<XΛ ~β) [l,F30,F31,F\\,F9]

3. (— — (α A - Ί 8 ) A ~β) -* ~a [2, F^5]

4. (α A ^j8) -»• ~a [3, F4, F9, F24-F27, Fll]

5. ( ~ ~ α Λ α) -> - —13 [4, F i 5 , Fll, F^5]

6. (a - ]3) [5, F4,F9,F24f F25, Fll]

It is now possible to derive the Lewis system S4 in its primitive nota-

tion of conjunction, negation and possibility.3 As Parry has shown [12], S4

is inferentially equivalent to S3 and the Aristotelian Rule, namely,

If [-a then \-~Q~a.
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It suffices then, to prove analogues of Lewis's eight axioms of S3 (cf. p. 500

of [4]), A1-A8 below, three rules of that system (cf. pp. 125-126 of [4]), and

the Aristotelian Rule, RIV below. Lewis's second rule of substitution need

not be proved since the use of schemata in F is equivalent to a rule of sub-

stitution of wffs for propositional variables in F Lewis's rules of adjunc-

tion and inference are special cases of adjunction and strict detachment for

F and are given as Rll and Rill respectively. Lewis's rule of substitution of

equivalent expressions follows from F23 as Rl.

Al. ~0((<* A j3) A ~(β A a))

1. (a A j3) - (j8 A a) [F15, (THJ\

2. ~0((<* A β) A ~{β A a)) [1, F32, (TH)]

A2. ~0((« Λ β) A ~0)
Proof similar to Al, using F14.

A3. ~()(a A ~(a A a))

Proof similar to Al, using F25.

A4. ~ 0 ( ( α A (β A y)) A ~((a Λ β) A y))

Proof similar to Al, using F26.

A5. ~()(a A ~a)

Proof similar to Al, using F4.

A6. ~0((~0(<* A ~0) A ~<X/3 A ~y)) A φ ( α Λ ~y))

Proof similar to Al, using F8.

F34. a \- 0 a

1. a [Hypothesis]

2. {(a ~* — α) A a) — — α [F2, Fi5, Fll, (TZΓ)]

3. ( a A α) -* ~ ( α - ^ α ) [2, F^<5, (TH)]

4. α _ - ( α - ~α) 13, F4, FP, F24, F25, Fll, (T#)j

5. 0 ^ [1,4, F2, F3J]

A7. ^ 0 ( ^ 0 « A — — of)
Proof similar to Al, using F34, F10.

F35. (a -» ~j3) |- (j3 - ~ α )
Proof by FI0, hypothesis, F4, F9, Fll .

F36. (a ->/3) h (0<* - O / 3 )

1. (α -» β) [Hypothesis]

2. <>α -* ~(/3 -» '-α) [l, F7, -FJO, F30, F31, Fll]

3. - ( α - > ~β) - 0/3 [1, F7, Fi0, F50, F5i, Fll]

4. ()a — Oi3 [2, 3, F35, Fll, Fδ]

ilA - 0 ( ~ 0 ( « Λ ^ ^ Λ - ^ 0 ( ^ 0 / 3 A 0α))
Proof similar to Al, using, F3, F10, Fll, F35.

Rl. J/f--(>(αΛ-|3)Λ ~ 0 ( β Λ ^«) and\-γ then\-b where δ results

from γ by replacing a by β (β by a) in one or more places.

1. h~Q(αΛ~/3)Λ ~ 0 ( β A ~ α ) [Hypothesis]

2. f-y [Hypothesis]
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3. \-(a+>β) [ l , F32, F33, F16, F17, Fll, (TH)]

4. h(r^δ) [3,F23, (TH)]

5. \-(γ - δ) [4, F I 6 , i^iZ, Fll, F14, (TH)]

6. h δ [2, 5,F2,(TH)]

Rll ί/ |-α am? \-β then \-(a Λ /3)

Proof by F i , assumptions, (777).

Rill. // \-a and | <> (a Λ ~/3) ^erc |—/3

Proof by F33, assumption, F2, (TH).

Fill. // |-of tfzen |-(~<* -» ct)

If I— a? then there is a proof from hypotheses,

1. ~ α [Hypothesis]

2. α [Thesis by the assumption]

proving ~a \-a.

Hence, \-(~a -* a) by (TH).

RIV. // |-α then \ <> ~a

1. \-a [The assumption]

2. H ~ α - «) [1, PHI]
3. I ( - α -> — a) [2, F4, ^ , Fll, (TH)]

4. I 0 ~<* [3, ^ 0 , F31, Fll, (T^)]

Having thus established Ai-A8y and RI-RIV the proof that F inferentially

implies S4 is complete.

§ 3 F is equivalent to S4 It shall be shown that F is equivalent to S4 in the

sense that a is a thesis of F if and only if a is a thesis of 54. And since F

inferentially implies 54 it is clear that every thesis of 54 is a thesis of F.

Thus it only remains to show that any thesis of F is a thesis of S4.

To this end, the theses of F are ordered in the following way.

(1) Let a be a thesis of F by part (i) of the definition of thesis. That is, a

is (QΊ Λ , . . . , Λ ff^.J —> an where n is a finite number and there is a finite

sequence of wffs, β19. . . , βm , such that the sequence is a proof of an from

the hypothesis al9. . . , an-ι K> for 1 — i —m, there is no βi such that βi is

a thesis of F then a has order 1. If there are theses of F in the sequence

then the order of a is one greater than the thesis of highest order among

those occurring in the sequence.

(2) Let a. be a thesis of F by part (ii) of the definition of thesis. That is,

there is a finite sequence, βλ, . . . , βmi such that, for 1 <i<m, each βi is a

thesis of F, a is βm , and each βi is inferred from one or more members

of the sequence previous to βi by one of the rules of F. Then the order of a

is one greater than the thesis of highest order among the βif .. . , βm-ι.

Since every thesis of F is assigned some order under the above order-

ing, the proof that if a is a thesis of F then a is a thesis of 54 is immediate

by the principle of strong induction and the following two theorems.

Theorem I Every thesis of order 1 is a thesis ofSΛ.
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Theorem II Assuming every thesis of order less than k, for some finite

number k, is a thesis of 54, any thesis of order k is a thesis of S4.

Since every thesis of F arises by part (i) or (ii) of the definition of

thesis, the proof of Theorem II is completed by establishing the two follow-

ing lemmata.

Lemma I Assuming every thesis whose order is less than that of ot is a

thesis of S4, if a is a thesis of F by part (i) of the definition of thesis then a

is a thesis of S4.

Lemma II Assuming every thesis whose order is less than that of a is a

thesis of S4, if a is a thesis of F by part (ii) of the definition of thesis then

a is a thesis of S4.

Moreover, the proof of Lemma I contains the proof of Theorem I. Thus, in

order to prove that if a is a thesis of F then a is a thesis of S4, it only re-

mains to prove Lemma I and Lemma II.

In proving these lemmata, Lewis's rules and the following analogues of

theses of 54 shall be employed.4

Al. (a Λ β) -> (β Λ a)

A2. (a Λ β) -* β

A3. a —> (a A a)

A4. (a Λ (β Λ γ)) -> ((a A β) A γ)

A5. a —> ~~ a

A6. ((a — j8) A (β — γ)) -+ (a - γ)

A7. ~ 0 α-> —a

A8. (a ->j3) - (~ θ0-> ~0α)

A9. (α -> 0 - ( ( j 3 - y)-> (a -* y))

Rl. If |-(α<-»/3) and \-γ then \-δ where δ results from γ by replacing a by

β (β by a) in one or more places.

Rll. V \-a and \-βthen \-(a A j3)

Rill. If \-aand K « ~* β) then \-β

RIV. If \-athen \-~ § ~a

11.02 {a --> β) +*> - 0 (<* Λ ~β)

11.7 (a A (a — ]S)) ~> β

12.15 (a * β) +*(β Λ a) |

22.5 a <r> — — α

72.42 (— /3 -• - α ) ~* (α -> /3)

22.5 ((α A j8) A y ) ^ ( f f Λ ( β Λ y ) )

24.02 (o z> j3) ++ ~(a A ~ 0 )

14.29 (a A (α D j3)) -• j3

29.^ (α — j3) - ((α A y) — (j3 A y))

19.61 ((a - |3) A (α -> y)) - (α - (/3 A y))

2 9 . 7 5 - 0 - α -> (j3 -> a)
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RV-RVIII are also derivable in S4.

RV. // \-(a ~> $ and \-(β ~> y) then Hot — r)
Proof by Rll, the assumpt ions , A6, RIM.

RVI. // \-(a -> β) and Ha - γ) then [-(a -> {β Λ y))
Proof by Rll, the assumptions, I P. 61, RIM.

RVII. // \-(a -> /3) awrf|-(α -> (0 => Ύ)) then \-{a-> y)
Proof by RVI, the assumptions, 14.29, RV.

RVIII. (jf [-α <mrf \-~(aΛ ~ β) then \-β
Proof by RIV, the assumptions, 12.3, 11.02, Rl, RIM.

Lemma I. Assuming every thesis whose order is less than that of a. is a
thesis of S4, if a is a thesis of F by part (i) of the definition of thesis thena
is a thesis of S4.

Let α be (<*! Λ , . . . , Λ an.y) —» an, where βl9 .. ., βm is the sequence of
wffs which proves an from the hypotheses al9 .. ., an-ι. Consider the
following sequence: ( C ^ Λ , . . . , Aan_1) —» βx,..., (αx Λ , . . . , Λ Q ^ J
-> βm . In order to establish Lemma I it is sufficient to show that for
any ith line of this latter sequence, if i > 1 and Lemma I holds for the
first i-1 lines, then (αx Λ, . . . , han-x) —> βi is a thesis of S4. Indeed,
under this assumption, the lemma holds by:

A2, 12.15, 12.5, if β{ is an hypothesis,
RVI, if βi follows by Fl,
RVI, 11.7, RV, if βi follows by F2,
12.41, RV, if βi follows by F3,
A5, RV, if βi follows by F4,
14.01, Rl, RVII, if β{ follows by F5,
19.6, RV, if ft follows by F6,
A9, RV, if βi follows by F7, and
RIV, 19.75, RIM, if fo is a thesis of F.

Lemma II. Assuming every thesis whose order is less than that of a is a
thesis of S4, if a is a thesis of F by part (it) of the definition of thesis then
a is a thesis o/S4.

Under the assumption, the proof of the lemma is completed by:

Rll, if a follows by Fl,
RIM, if a follows by F2,
12.41, RIM, if a follows by F3,
A5, RIM, if a follows by F4,
RVIII, if a follows by F5,
19.6, RIM, if a follows by F6, and
A9, RIM, if a follows by F7.

Having thus established the lemmata, the proof that systems F and S4
are formally equivalent in the sense that they contain the same theses is
complete.
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§4 Concluding remarks Moh Shaw-Kwei in [9] has shown that the following
deduction theorem:

If C*Ί, . . . , an_1 \-an then \-(ax Λ , . . . , Λ ^ . J -• an

occurs in a system, S4*, which has (a) the notion of proof from hypotheses
given for F, (b) the rules of S4 strengthened to hold for any wffs, and (c) the
axioms of 54. S4* is not inferentially equivalent to S4 (since the rules of
54* are stronger than the rules of S4), but it is formally equivalent to S4 in
the sense that the two systems have the same theses. Furthermore, he has
shown that a system which he calls V*3 and which he describes using
Gentzen rules for material implication (except the paradoxical "from a in-
fer that β materially implies a"), together with certain metarules and ax-
ioms, (cf. pp. 68-69 of [9]), is inferentially equivalent to S4* (and hence F).

It has here been shown however, that a system, namely F, having the
same theses as S4 can be described using no axioms but only the rules
F1-F7, and a metarule which is the deduction theorem of 54. This formula-
tion has the peculiarity of taking a symbol for 'only if' as primitive and us-
ing a definition of thesis which involves that symbol. That is, the theses of
S4 can be obtained by the natural deductive method without considering any
propositional functor as primitive other than those for 'and', 'not' and'only
if'.

Clearly, a system having the same theses as 55 can be generated by
adding to F any rule from which ()a->~{)~()a can be inferred as a
thesis. For instance, since it can be shown that

~(a -» ~a) -> ((a -> ~ α ) -+ ~(a -» ~a))

is a thesis of 55, one might have S5 by adding to F

~ ( α - * ~α) (r ((α.-» ~α) -* ~(α -* ~α))

It is even possible to describe a system having the same theses as T of
Feys-von Wright.5 For this, the rule F7 must be weakened to F8. It would
then no longer be possible to prove F23, but only the weaker metarule:

If\-(ot '<-> β) then \-(γ <-> δ) where δ results from γ by replacing a by β
(β by a) in one or more places.

But such a rule is sufficient for deriving FII, and thus all the theorems
needed to show that this weaker system has all the theses of T can be ob-
tained. Conversely, it can still be shown that the weakened system F con-
tains no more theses than the theses of T, and thus, that a is a thesis of T
if and only if a is a thesis of the weakened system F.

Since the theses of T, 54, and S5 can be obtained by the natural deduc-
tive method without taking a modal functor as primitive, it has been shown
that systems containing only the paradoxes of strict implication contained in
T, S4, or S5 can be obtained from the notion of proof from hypotheses. K.
Matsumoto and M. Ohnishi have used this Gentzen manner of describing
systems and have obtained systems containing the theses of various Lewis
systems (cf. [6-8, 10, ll]). But they always take a singulary modal functor
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as primitive. And though their formulations have the advantage of yielding
decision procedures for various Lewis systems, since they employ some
singulary modal functor as primitive their formulations fall short of giving
a description of a system which is non-modal in its primitive basis, that is,
a system which takes as primitive only functors such as 'and', 'not', and
'only if.

NOTES

1. Throughout the remainder of the paper lower case Greek letters shall
always be used for well formed formulas.

2. Note that (C^Λ , . . ., A G ^ ) —> an is a schema. Thus (i) of the definition
of thesis establishes an infinite set of theses for each rule to which it is
applied.

3. In this paper these functors will continue to be symbolized with '* ' , '~',
'()' respectively. Furthermore, ' —>' shall be used for Lewis's ' H',
' +> ' for Lewis's ' = ', ' D ' f or Lewis's ' D ', and "α? is a thesis" will
be abbreviated by " j - α " .

4. The numbering of the theses is that of Lewis in [4] except that the num-
ber A9 originates in this paper. A9 is an unnumbered thesis of S4(cf.
p. 500 of [4]). The remainder of the theses listed are found passim pp.
124-174. Following Lewis, the theses and rules of 54 are abbreviated in
accordance with Definitions 1 and 2.

5. For a description of system T cf. [2], p. 500, note 13; [lδ], Appendix II,
pp. 85-90; and in particular [14].
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